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Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear
scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth

of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems,
whether there exists some general mechanisms that account for the origins of such scaling behaviours in
different contexts, especially in socioeconomic systems, remains an open question. We address this problem by
introducing a geometric network model without free parameter, finding that both super-linear and sub-linear
scaling behaviours can be simultaneously reproduced and that the scaling exponents are exclusively
determined by the dimension of the Euclidean space in which the network is embedded. We implement some
realistic extensions to the basic model to offer more accurate predictions for cities of various scaling behaviours
and the Zipf distribution reported in the literature and observed in our empirical studies. All of the empirical
results can be precisely recovered by our model with analytical predictions of all major properties. By virtue of
these general findings concerning scaling behaviour, our models with simple mechanisms gain new insights
into the evolution and development of complex networked systems.

behaviour is generally shared by a variety of complex networked systems, such as cities®®, online com-
9-11

D iscovered quite recently, but with roots that go back to decades ago in biology and ecology'™, the scaling

munities’ "', and complex networks'?. The scaling behaviours in the form

X~N/ (1)

capture the fact that some macroscopic variables X scale with the system size N, where N represents the number
of entities in a networked system. Based on empirical observations of the exponent 7, two categories, super-linear
and sub-linear scaling behaviours, have been identified.

For instance, in cities, if X represents the gross domestic product (GDP), the total wage, or the number of
crimes, and N is the population of a city, a super-linear scaling with y=1.17°"7"* is found. y > 1 indicates that as a
city grows, the total number of interactions increases at a faster rate, leading to more wealth and innovation per
capita, but also with more crime and pollution as side effects. In online communities, X represents the total
number of activities of users, such as clicks, micro-blogs and tags’"', and N is the total number of active users.
7 lies in the range [1.17-1.48]. The super-linear scaling behaviours have also been observed in complex networks,
but in this context, it is termed accelerating growth'>'* or densification', and is characterized by a higher
generating rate for links than for nodes during network growth. This phenomenon is found in scientific colla-
borations', citation network', Internet autonomous system'>'”, food webs'®, and neural networks"’.

Sub-linear scaling as another type of scaling behaviour with exponent smaller than 1 is also prevalent in complex
networked systems. For instance, the area and road volume of a city are found to scale sub-linearly with its population®.
In online communities, the number of distinct tags scales sub-linearly with the system size’. In information retrieval or
in linguistics, the general Heap’s law captures a sub-linear scaling between the number of distinct words and the total
number of words***". In ecological communities, the diversity of higher taxa scales sub-linearly with the number of
species™. The sub-linear scaling is also found in river networks™, various combinatorial systems* and etc.

Although some effort has been dedicated to explaining the scaling behaviours based on network
approaches™*?, forest-fire model'?, random walks’, Kronecker graphs® and the recently developed city model*,
the origins of the scaling behaviours have not been fully understood yet. In particular, the general findings in
diverse systems prompts us to wonder if there exists some simple but universal underlying mechanism that

| 5:9767 | DOI: 10.1038/srep09767 1


mailto:zhangjiang@bnu.edu.cn
mailto:zhangjiang@bnu.edu.cn
mailto:wenxuwang@bnu.edu.cn
mailto:wenxuwang@bnu.edu.cn

accounts for both classes of scaling behaviours. In this paper, we
propose a geometrical network model to address this fundamental
problem. Partially inspired by the hyperbolic space model for con-
struction of scale-free networks?® and the hidden geometry of com-
plex networks®, we propose a spatial-constrained attachment
(SCA) model to uncover the origins of both super-linear and sub-
linear scaling behaviours in geometric space of arbitrary dimension.
The self-organized phenomena produced by our SCA model are in
good agreement with a variety of empirical findings, including the
scaling behaviours governing the entire number of links, the time
elapsed, and the volume versus the system size measured as the
number of nodes in the network. The simple mechanism of SCA
allows us to derive analytical results for all critical network prop-
erties, such as the accelerating growth, degree distributions of
nodes, and the clustering coefficient. We also slightly modify the
model by considering some realistic restrictions to better mimic
real situations. We apply our model to online communities, a cita-
tion network and nighttime light clusters, finding that the empirical
observations from these cases, including the scaling behaviours,
Zipf size distribution®, and aggregation patterns, can be quantita-
tively reproduced.

Results

The Model. Our model assumes that a geometric graph grows in an L?
hypercube embedded in d-dimensional Euclidean space®~** according
to the SCA mechanism, where L is the linear size of the hypercube and d
is the spatial dimension. Suppose that initially, a single node is present at
the center of the hypercube as the seed of the growing graph. At each
time step ¢, one new node P is generated, and its coordinates (location)
xp=(x1, X2, ..., x4) are randomly selected with equal probability of
being located anywhere throughout the hypercube. However, P can
survive only if P matches with at least one of the existing node Q with
location x, such that |xp —xq| <7, where r is a given parameter and ||
is the Euclidean distance. The surviving node P is then attached to all the
existing nodes that belong to the r-radius ball of P. In other words,
interactions can be built exclusively within a certain area, limited by
parameter . This process is repeated until a network of the desired size
isachieved (see Fig. 1). The geometric network grows at increasing speed
in the sense that a newly added node is more likely to attach to existing
nodes as the network volume increases. The central area around the seed
is of higher density than the other areas because “dense gets denser.”

a b

Figure 1| An illustration of the basic model in d = 2-dimensional space.
(a) The filled disks represent existing nodes, the red disk represents a newly
added node that will survive. The dark lines represent existing links, and
the dashed lines represent the newly added links. The shaded areas
represent the interaction regions of existing nodes. (b) A simulation of the
basic model after t =3625 steps and N(t) =100 nodes. The shaded area
represents V() in two-dimensional space. In all simulations r=1.

Although the evolution of complex networked systems in different
disciplines is affected by many factors, our model captures some under-
lying mechanisms that are shared among a variety of systems with
spatial constraint and play significant roles in the rising of scaling beha-
viours. Here, space can be classified into real geographical or physical
spaces and, abstract spaces. Cities”’, Internet autonomous systems'” and
brain'® are subject to the former and, similarity spaces (scientific colla-
borations, citation networks, online communities)'>'***, semantic
spaces (languages, tagging systems)”’ and niche spaces (ecological com-
munities, food webs)* are subject to the latter. In our model, the SCA
mechanism uncovers the fact that the survival probability of a new node
and its contribution to the growth of interactions are significantly deter-
mined by its closeness to others that can be measured by its relative
location in a space. Indeed, the establishment of many kinds of inter-
actions is strongly affected by the closeness among entities in a certain
space, such as scientific collaborations, citations, social ties in cities and
online communities, connections of routers, neuronal connections, and
co-occurrence of tags. In general, two closer entities are of higher prob-
ability to build a connection between them, resulting from either the cost
of establishing connections in physical spaces, or similarity induced
connections in abstract spaces. On the other hand, the location of a
new node may be determined by a number of factors, precluding us
from specifying the exact location of every newly generated node. In this
regard, it is reasonable to assume that new nodes are randomly located
in the statistical point of view. Both closeness induced connections and
random birth of new nodes can be captured by our SCA mechanism.
Although it is not sufficiently concrete to model the evolution of every
aspect of real networked systems, the SCA mechanism in our model is
common in many real systems, accounting for the broad implications of
our model in offering deeper understanding of scaling behaviours.

Analytic Results. We derive the analytical results of our model in
thermodynamic limit (L,t— c0). As t approaches infinity, the spatial
shape of the network can be approximated by a symmetrical
d-dimensional ball. The radius R(t) (which is defined as the
maximum distance between any existing nodes and the seed
(center)) of the ball at time ¢ is linearly dependent on #:

R(t)~t. (2)

It is valid because that the average time between two updates to the
nodes at the perimeter of the d-dimensional ball is approximately
~1/R(t) and there are approximately ~R(t) positions at the
perimeter to be updated; thus the average speed at which the radius
increases is a constant (~R(¢)1/R(t), see Supplementary Information
Section 1). Then the total volume V(t) that is filled by all
d-dimensional balls with radius r can be approximated by V (t)~t%.
Suppose that the density of nodes at any location with spherical
coordinate (p,®) is u(p,0,t), where p <R(t) is the spherical radius
and @ =(0,,0,, ...,0,_1) is the vector of spherical angles. Then after
time step 7,~p, the density u(p,®,t) within the infinitesimal space do
starts to become non-zero and increases with the constant rate do /L
until £. Thus, the total number of nodes in the infinitesimal volume do is

Jt (dO’/Ld)dt"’(t*‘L'p)dO'/Ld, (3)
yielding
u(p,®,t)~R—(tL)d_ £ (4)

The density of nodes at radius p is

(R(t)—p)p*!
o )
Consequently, the total number of nodes within the radius p is
approximated by p? if p< <R(t), in agreement with the fractal

w(pt)~
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dimension d of the network in the thermodynamic limit***”. Finally, the
total number of nodes in the whole network can be calculated by

N(t)=J

0

R(2) .
K(p.t)dp~R(t) T~ (6)

Note that each node at location ( p,®) at time ¢ is connected to u(p,0,t)
neighbors on average, and there are u(p,0,t)do nodes in total in the
infinitesimal space do, meaning that the total number of links in do is
v(p,0,t)~u(p,0,t)*. Thus, the total number of links in the entire
network is

E(t)= ﬂv(p,@,t)da~td+2. (7)

We can reformulate all the variables as functions of the number of nodes
at t to obtain the scaling behaviours. The first scaling, between the total
number of edges and nodes, can be obtained by eliminating ¢ in both
Egs. (6) and (7):

E(t)~N()7. (8)

This formula is consistent with Eq. (1) if we consider the total number of

interactions to correspond to the number of links and the population is
proportional to the number of nodes in a system. We see that the
exponent y=(d+2)/(d+1) depends exclusively on the dimension
of the space in which the spatial network is embedded. Another
interesting scaling behaviour, between the volume and the size of the
network, can be derived by Eq. (6):

V(£)~N(t)7. 9)

This scaling behaviour indicates a densification effect because the
growth rate of V(t) is slower than that of N(#). As a result, the
network becomes more and more compact and dense. For d=2,
the scaling exponent is 2/3, which is in good agreement with the
empirically observed scaling between area and population in cities®*.
Meanwhile, this scaling also corresponds to the widely observed sub-
linear scaling behaviour of diversity (Heap’s law) in complex systems if
we regard the number of distinct types of entities as the volume in the
similarity space’ (see Fig. 2 (a)). As a bonus, another scaling to describe
the accelerating growth phenomenon can be also analytically obtained:

(10)

demonstrating that the growth rate of new nodes increases as the size of

the network increases (AN (¢) /dt~N (t)d%l). This phenomenon has been
empirically observed in online systems (Fig. 2(a)) and the citation
network (see Supplementary Information Figure S8). Our theoretical
predictions are in good accordance with the numerical results, as
demonstrated in Fig. 2 (b). In addition, we also offer analytical results
for the node-degree distributions and for the clustering coefficients, that
are determined by the distribution of triangles. (The detailed derivations
are provided in Supplementary Information Section 1.4).

+~N(£)7,

Model Extensions. Although both the super-linear and sub-linear
behaviours produced by the basic model are in qualitative agreement
with the empirical findings in complex networked systems, a small
difference remains between the predicted super-linear scaling
exponents ) and the real values (For example, the exponent of the
super-linear scaling in cities is 1.17, slightly smaller than 4/3). The
discrepancy stems from the non-negligible sizes of nodes in real
scenarios, such as in cities, which prohibits the birth of an infinite
number of nodes in a bounded area. Thus, we incorporate the
probability of survival for new nodes even when they are properly
matched with some existing nodes to better mimic the real situation.
As shown later, this additional feature still allows us to derive
analytical results and can produce an adjustable scaling exponent.
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Figure 2 | The scaling behaviours of the Delicious community (a) and the
model (b). In (a), the scalings represent the cumulative number of activities A
(blue circles), the total time elapsed T (for convenience of comparison on the
plot; filled purple squares), and the cumulative number of tags used by users G
(yellow triangles) versus the cumulative number of users of the Delicious
community from Feb 1, 2003 to Nov 8, 2006. The solid lines represent the best
fits. In (b), the scalings represent E(¢) (blue circles), V(t) (filled purple
squares), and ¢ (yellow triangles) versus N(¢) of the basic model (d=2).
The solid lines are theoretical predictions of the mean-field approximations
(see Supplementary Information Section 1), in all simulations r= 1. We also
provide the Flickr munity and the APS citation network as other empirical
evidence in Supplementary Information Figure S7 and S8.

Crowding effect. A newly generated node can survive with probability
w(p,®,t) " if it matches at least one neighboring node (the distance is
smaller than r), where o is adjustable and captures the crowding effect.
As o increases, it becomes more difficult for a new node to attach in a
dense area. The basic model is recovered if we set « to be zero.

We provide theoretical predictions for the model that incorporates
the crowding effect. Suppose that the node density at a given location
is u(p,0,t). The number of nodes in do is given by

1(p,®,t)do= J

P

t

_,do
:u(pa®as) T4

s, (11)

where 7, is the time step when u(p,0,t) becomes non-zero. Taking
the derivative with respect to ¢ on both sides of Eq. (11), we obtain a
differential equation:

Ly (12)

op/ot= ﬁ,uf .

Solving this equation with the initial condition u(p,®,t,) =0, we
obtain

(0.6~ (t—,) ™. (13)

All scalings are produced with adjustable exponents. To be concrete,
the scaling between the number of edges and nodes is

E(t)~N(t)" "o, (14)
and that between the volume and the number of nodes is
(14o)d
V(t)~N(t)T+a+ad, (15)

Note that if «— + o0, the exponents in Egs. (14) and (15) become 1,
yielding a linear scaling and a homogenous d-dimensional regular
spatial network. Thus the modified model that incorporates the
crowding effects can generally produce scaling behaviours with arbit-
rary exponent values.
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It is interesting to note that the exponents of super-linear scaling and
sub-linear scaling in Egs. (14) and (15) change in different directions
when o changes. Therefore, observing the sub-linear scaling of diversity
may imply the existence of the super-linear scaling of productivity or vice
versa, and knowing one exponent may predict another one. That implies
diversity phenomenon and productivity in systems are two sides of the
same coin. Too fast diversity increase or innovation may slow down the
rate of interactions and depress the productivity, a slow and continuous
innovation process can accelerate interactions and productivity.

Next, we apply our model to cities. Assume that several cities arise in a
2-dimensional space. The development of these cities is modeled with
multiple seeds. We introduce a new rule to naturally mimic the sequen-
tial emergence of new seeds. To be concrete, each newly added, surviving
node has a probability ¢ € [0,1] of moving to a random location in the
hypercube. By contrast, all existing nodes are not allowed to move. The
basic model is recovered for 6=0. If =1, the model resembles the
conventional random geometric graph model*”. In general, mobile nodes
will become new seeds, around which nodes will aggregate, leading to the
formation of densely connected local clusters centered on these seeds.

If +L is sufficiently large so that the clusters are isolated, each
cluster can grow independently. In this case, the distribution of clus-
ter sizes can be estimated using the Yule-Simon process. Suppose that
there are s survival nodes and N, clusters at t. We use sinstead of t asa
new "time" index to facilitate our analysis such that if and only if a
new node is attached to existent network, the step s becomes s+ 1.
We denote the volume of the cluster i by V;(s), and the number of
nodes in the cluster by N;(s). The probability of a newly added node
that attach to cluster iis I1 = V,75) Because all N, clusters evolve

Zj Vi(s)

independently, the volume of the ith cluster obeys Eq. (15):
Vi(s)~Ni(s)", where n=(2+2a)/(3+24) <1. We thus can write
a master equation describing a sub-linear preferential attachment
process for all these clusters® (see Supplementary Information

Section 4.2):
oP N 1—e¢
S—/— =5s——

0Os Z

where Py is the fraction of clusters with N nodes at step s,

Z= Z: . NPy, and 0 is the Dirac delta function. By solving this

equation, we find that the size distribution as s— co is given by*

[(N—1)"Py_; —N"Py]+dy—1 —Py.

(16)

Py~N""exp (1_—4 (N1 —2“”)) , (17)
-1
where ¢ is the solution of  the equation

(1—g)/e= Z:ll l'[;‘:1 (1+¢/ j’7)_1. This distribution resembles
a power law if # is close to 1. However, L is finite in real situations,
leading to certain degree of overlap among clusters and influence on the
exponent. The finite-size effect has been explored in detail (see
Supplementary Information Section 4.3). The isolation assumption of
clusters for deriving analytical results is valid for the scale among cities.

If each cluster corresponds to a city, the model by choosing . =1.5
and & =0.03 gives rise to the optimal recovery of the empirical results
of cities, with scaling exponents® and a power law distribution® that
are nearly identical to the real values, as shown in Fig. 3. Moreover,
the spatial pattern of aggregation clusters produced by our model is
quite similar to those observed in satellite image of nighttime lights in
several cities, as shown in Fig. 3 (see Supplementary Information
Section 4.1 for more details).

Discussion

In summary, we developed a growing geometric graph model to
uncover the simple underlying mechanisms that account for the
super-linear and sub-linear scaling behaviours that are ubiquitously
observed in complex networked systems. Our basic model without free
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Figure 3 | Comparison of modified SCA model with nighttime light data.
(a) Satellite image of a nighttime light distribution. We suppose that each
connected cluster in the image is a natural city. (b) The clusters grown by
the model using the modified rules (¢=0.03,2=1.5). (c) The scaling
between the total area and the total light intensity of these clusters both for
the nighttime light image (blue circles) and for the image generated by the
model (purple squares). In the model, we take the total number of edges of
each cluster to represent its total light intensity. (d) Area distributions of
nighttime light clusters (blue circles) and the model’s clusters (purple
squares). In (¢c) and (d), only clusters with sizes larger than 33 in simulation
are shown for comparison. In all simulations, r=1.

parameter is capable of reproducing both categories of scaling beha-
viours in qualitative agreement with empirical findings, and the scaling
exponents are determined exclusively by the dimension of Euclidean
space. These results indicate that the SCA plays the primary role in the
origins of the scaling behaviours in complex networked systems.
However, our model is not limited to Euclidean space. Inserting our
SCA mechanism into other spaces, such as hyperbolic space®, may offer
more general interpretations of generalized scaling behaviours.

To better understand the evolutionary dynamics of real systems, we
developed modified models by incorporating crowding effects and mul-
tiple seeds with adjustable parameters into the basic model, offering
accurate predictions for a variety of empirically observed scaling expo-
nents. For both basic and modified models, we derived analytical results
for all important network properties, including the scalings, Zipf distri-
butions, degree distributions and clustering coefficients. The theoretical
predictions are in good agreement with the simulated results.

Our approach also offers new insights into the evolution of com-
plex networked systems with respect to the accelerating growth rates
of interactions and nodes. Furthermore, our approach provides a
deeper understanding of the origins of scaling behaviours in complex
networked systems in terms of the trade-off between costs and effi-
ciency, where the former pertains to the interaction density assoc-
iated with spatial distance and the latter may be measured in terms of
topological properties. Taken together, our finding of simple under-
lying mechanisms that account for the common scaling behaviours
in different fields will inspire further effort toward discovering
universal rules in the science of complexity.

Method

Nighttime light data. The global satellite image of nighttime lights used in our study
is collected by the Operational Linescan System (OLS) of the US Air Force Defense
Meteorological Satellite Program (DMSP) and archived at NOAA National
Geophysical Data Center (NGDC). The image is 30-arc-second grided and spans
from -180 to 180 degrees longitude and from -65 to 75 degrees latitude. The digital
number (DN) values of the nighttime lights range from 1 to 63. In addition, although
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sunlit data, moonlight, glare, observations containing clouds and lighting features
from the aurora are excluded from the DMSP nighttime stable lights dataset, gas flares
are not. Therefore, we used the global gas flare map generated by NGDC* to identify
and remove gas flares, reducing the possibility of mistaking them for urbanized areas.

The year 2009 was chosen because it was the latest product freely accessible when
we first conducted our analysis. For detailed comparison between our model simu-
lation results and nighttime light observations, we narrow our scope down to part of
the south central contiguous United States. Using GIS software, the nighttime lights
image was re-projected into Lambert conic conformal projection, and a 1000 pixels X
1000 pixels region was extracted from the global image. The upper left corner of the
region of interest (ROI) is 113.8 W, 42.2 N, upper right 101.7 W, 43.4 N, lower left
111.7 W, 33.5 N and lower right 100.9 W, 34.5 N. In this region, two lighted pixels
were considered as connected if one of them is the Moore neighborhood of the other,
and all the connected pixels formed a cluster. Thus we identified 921 clusters in
Fig. 3(a). For each cluster, we treated the total number of non-zero pixels as the area of
the cluster, and the sum of non-zero pixels values as the total light intensity of the
cluster. Then, the scaling between light intensity and area as well as the size distri-
bution of the areas of all clusters were calculated to produce Fig. 3(c) in the main text.
More details about nighttime light data can be referred to the Supplementary
Information Section 4.1.

Delicious community data. We compare the scalings of social tagging systems
including Delicious and Flickr (see Supplementary Information Section 2)
communities to the results of our model. The data can be downloaded freely at http://
www.tagora-project.eu/data/. In both systems, users visit certain online resources
(pictures on Flickr) and may tag them with certain words. We can consider the
semantic space of these tags as the space in which our model is established. Then, the
number of distinct tags can be regarded as the total volume occupied by users. And the
total number of tagging events can be viewed as interactions happened in the system.
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