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Abstract 

The reconstruction of phylogenetic relationships in the primate fossil record is dependent upon a 

thorough understanding of the phylogenetic utility of craniodental characters. Here, we test three 

previously proposed hypotheses for the propensity of primate craniomandibular  data to exhibit 

homoplasy using a study design based on the relative congruence between cranial distance 

matrices and a consensus genetic distance matrix (“genetic congruence”) for papionin taxa: 1. 

Matrices based on cranial regions subjected to less masticatory strain are more genetically 

congruent than high-strain cranial matrices; 2. Matrices based on cranial regions developing earlier 

in ontogeny are more genetically congruent than matrices based on regions that develop later; 3. 

Matrices based on cranial regions with greater anatomical/functional complexity are more 

genetically congruent than matrices based on anatomically simpler regions.  

Morphological distance matrices based on the shape of 15 different cranial regions, 

delineated on the basis of previous catarrhine studies, were statistically compared to matrices of 

known genetic distances in papionins. Since sexual dimorphism and allometry are known to 

characterize this clade, several analytical iterations were conducted: 1) mixed-sex, male-only, and 

female-only analyses; 2) with and without an allometric scaling adjustment. Across all data sets, 

the chondrocranium matrix was the most consistently correlated with genetic distances, which is 

also consistent with previous studies of cercopithecoid taxa, however there was no consistent 

support for the internal predictions of the three hypotheses tested. Allometric scaling corrections 

had the largest impact on the genetic congruence of facial shape matrices, a result which is 

consistent with previous studies that have described facial homoplasy in papionin taxa. These 

findings differ from patterns described for hominoid taxa, suggesting that no single predictive 

criterion can explain phylogenetic utility of cranial datasets across catarrhine primate taxa. Many 

of the differences in morphological-genetic matrix correlations could result from different levels of 

phenotypic integration and evolvability in cercopithecoids and hominoids, suggesting that further 

study of these phenomena in extant primates is warranted.    
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Introduction 

 Accurate reconstructions and interpretations of the past, including the taxonomy, 

phylogeny, and evolutionary adaptations of fossil taxa require a thorough understanding of the 

biology of extant taxa. In particular, inferences regarding the hominin and non-hominin primate 

fossil records are dependent upon the development of an accurate inference model of primate 

morphological diversity. The vast majority of the primate fossil record is composed of specimens 

for which direct DNA evidence is unattainable. Thus, morphological data must necessarily form 

the central basis for many phylogenetic, systematic, and evolutionary retrodictions. In primates, 

there is a general consensus that cranial morphology reflects genetic relationships among species 

and individuals to a reasonable degree; however, documented instances of homoplasy and 

phenotypic plasticity complicate such interpretations, and result in potentially contradictory 

information among morphological datasets.  

Most notably, Collard and Wood (2000) determined that several sets of craniomandibular 

and dental characters in hominoid and papionin species did not reflect the known phylogenetic 

relationships among these taxa, suggesting that craniodental characters may not be reliable 

indicators of phylogeny in the fossil record. Several subsequent studies have also revealed that 

different subsets of cranial data differ in their correspondence with genetic distances in human 

populations (Roseman, 2004; Harvati and Weaver, 2006; Smith, 2009; von Cramon-Taubadel, 

2009a; b; 2011b; a), guenons (Cardini and Elton 2008) and hominoid taxa (von Cramon-Taubadel 

and Smith, 2012). These findings highlight the importance of understanding the evolutionary basis 

for patterns of cranial variation across extant primate clades before they are extrapolated into the 

fossil record.  

In the paleo(anthropological) literature, three major factors, thought to predict the 

phylogenetic utility of different craniodental datasets, have been suggested and widely discussed 

(for review see (von Cramon-Taubadel, 2014). These factors comprise (1) the extent to which 

particular aspects of cranial morphology might be influenced by biomechanical (typically 

masticatory) strain, (2) the ontogenetic development and perceived “heritability” of cranial 

regions, and (3) the overall anatomical and functional complexity of particular cranial elements. 
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Below we detail how these factors have been employed as a theoretical basis for proposed 

phylogenetic hypotheses, and the outcomes of previous tests of these hypotheses.  

Biomechanical strain 

The “homoiology hypothesis” is predicated on the idea that skeletal regions that respond to non-

genetic factors such as biomechanical stress (i.e. are subject to phenotypic plasticity) are more 

likely to result in homoplasies (“homoiologies”) than bones under reduced loading regimes 

(Collard and O'Higgins, 2001; Wood and Lieberman, 2001; Lycett and Collard, 2005; Collard and 

Wood, 2007). In other words, bones from higher strain regions should be more variable 

morphologically, and consequently are thought to be less reliable indicators of phylogeny, than 

those from lower strain regions (Lieberman, 1995). In the skull, the primary biomechanical 

stressors derive from the masticatory apparatus, including the strains experienced by the 

craniofacial bones during the chewing cycle, the forces resulting from muscle vectors in the 

temporalis, masseter, and pterygoid muscles, and the stress experienced via the load-bearing 

temporomandibular joint (Bouvier, 1986; Wall, 1999; Vinyard et al., 2003).   

 Wood and Lieberman (2001) compared levels of morphological variation in lower strain 

cranial regions (basicranium, neurocranium, upper face) to those that experience higher levels of 

masticatory strain (palate, mandible) in several catarrhine primates, and determined that on 

average, the higher strain regions were indeed more variable than lower strain regions. From this 

finding, they concluded that highly plastic characters, such as those of the masticatory complex, 

should be avoided in taxonomic evaluations of fossil hominin specimens due to their inherent 

variability and presumed unreliability (Wood and Lieberman, 2001). However, subsequent 

analyses directly comparing phylogenetic trees based on craniodental data and molecular genetic 

data found that, despite elevated levels of variability, high strain cranial regions did not produce 

trees any less congruent with the molecular phylogeny than low strain regions in papionins (Lycett 

and Collard, 2005) or hominoids (Collard and Wood, 2007; von Cramon-Taubadel and Smith, 

2012). In fact, in contrast to the homoiology hypothesis, several of the more phenotypically plastic 

regions were found to reflect the genetic relationships more reliably than those that remodel less in 

response to environmental stimuli (Collard and Wood, 2007).  
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Recently, the homoiology hypothesis was tested in hominoids using 3D landmark-based 

data and a morphological-genetic distance matrix correlation approach (von Cramon-Taubadel and 

Smith, 2012). Morphological matrices based on the shape of the mandible and palatomaxilla 

matrices were found to be less strongly correlated with the genetic matrix than many of the other 

cranial regions; however, they still yielded morphological matrices that were significantly 

correlated with the genetic distances among taxa, albeit with lower correlation coefficients. 

Interestingly, other “masticatory” regions, such as the zygotemporal were among the most strongly 

correlated cranial matrices with the genetic distance matrix (von Cramon-Taubadel and Smith, 

2012). In guenons, the morphology of several masticatory regions, the mandible, oral cavity, and 

zygomatic region, all yielded morphological matrices significantly correlated with genetic 

distances among taxa, but the non-masticatory chondrocranium did so with a higher correlation 

coefficient (Cardini and Elton, 2008). Therefore, despite the intuitive link between masticatory 

strain, plasticity, and homoplasy, the relationship between these factors is complex, and this 

phenomenon does not necessarily negatively affect the correspondence between cranial 

morphology and genetic patterns (von Cramon-Taubadel, 2009b; Roseman et al., 2010).  

The homoiology hypothesis has also been tested empirically in humans (von Cramon-

Taubadel, 2009b). A comparison of cranial regions associated with masticatory function 

(palatomaxilla, zygotemporal) versus those that are unassociated with mastication (basicranium, 

neurocranium, upper face) in 12 human populations revealed that “masticatory” cranial regions are 

more variable in humans, as they are in other catarrhine species (von Cramon-Taubadel, 2009b). 

However, this increased phenotypic plasticity does not impact the extent to which these regions 

reflect past population history, because some masticatory and non-masticatory cranial regions 

were found to be equally genetically congruent when morphological and neutral genetic among-

population distance matrices were compared (von Cramon-Taubadel, 2009b).  

In humans, a number of studies have indicated that the morphology of the masticatory 

apparatus may be influenced by subsistence strategies (Larsen, 1997; González-José et al., 2005; 

Sardi et al., 2006; Lieberman, 2008; Pinhasi et al., 2008; Paschetta et al., 2010; Holmes and Ruff, 

2011; Lieberman, 2011; von Cramon-Taubadel, 2011b). In particular, morphology of the mandible 

shows a weak correspondence with geographic distance (Nicholson and Harvati, 2006), and a 
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lower correlation with neutral genetic distances than many other cranial regions (Smith, 2009). A 

comparison of the morphology of masticatory regions, such as the mandible and palatomaxilla, 

revealed that they co-vary with subsistence behavior among human populations (von Cramon-

Taubadel, 2011a). Thus, it appears that the masticatory regions of the craniofacial complex in 

humans reflect a myriad of neutral and non-neutral evolutionary factors, thus influencing their 

covariation with inter-population genetic relationships.  

Development and heritability 

Several authors have also suggested a direct link between trait heritability, phenotypic plasticity, 

and developmental variation, such that presumably plastic and, therefore, variable traits are 

assumed to also exhibit lower heritability (Lieberman et al., 1996; Wood and Lieberman, 2001). 

The rationale behind this argument is similar to that of the homoiology hypothesis in that 

morphological regions thought not to be affected by phenotypic plasticity are predicted to more 

accurately reflect underlying “genetic” factors, rather than environmentally-induced sources of 

variation during an organism’s lifetime.  

In particular, it is often suggested that of the three major developmental complexes of the 

cranium—splanchnocranium, neurocranium, and basicranium—the endochondrally ossifying 

basicranium should be most developmentally stable (Olson, 1981; Lieberman et al., 1996; Strait, 

2001; Wood and Lieberman, 2001) and therefore, offer a more reliable estimate of underlying 

inherited information. The basicranium develops upon a stable cartilaginous template and 

completes its ossification earlier in ontogeny than the other two developmentally-defined cranial 

regions. Thus, the basicranium is expected to be less susceptible to homoplastic changes than the 

facial skeleton and neurocranium, because it is considered to be more heritable and buffered from 

environmental disturbances during ontogeny (Olson, 1981; Strait et al., 1997; Lieberman et al., 

2000a; Lieberman et al., 2000b). As a result, the basicranium has formed the basis for many 

comparative and phylogenetic studies of fossil hominin and non-hominin primates (Lieberman et 

al., 1996; Strait, 2001; Nevell and Wood, 2008).  

The hypothesis that the basicranium, with its presumed higher heritability, should yield 

matrices that more strongly correlate with genetic distance matrices than other cranial regions, 
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such as the splanchnocranium (face) and neurocranium, has been explicitly tested within humans 

(von Cramon-Taubadel, 2011b) and across hominoid taxa (von Cramon-Taubadel and Smith, 

2012). Among human populations, matrices based on basicranial shape have been shown to yield 

significant correlations with genetic population distances (Smith, 2009; von Cramon-Taubadel, 

2011b); however, a comparison with other cranial regions revealed that it is not significantly more 

genetically congruent than the splanchnocranium or neurocranium (von Cramon-Taubadel, 

2011b). These findings suggest that despite the strong correlation between basicranial shape and 

genetic relationships in humans, developmental factors alone cannot explain this association. In 

hominoid taxa, the basicranium was found to be among the least genetically congruent of the 

cranial regions, although it still produces a morphological matrix that is significantly correlated 

with genetic distances (von Cramon-Taubadel and Smith, 2012).  

The phylogenetic utility of basicranial shape has also been tested in several cercopithecoid 

species (Cardini and Elton, 2008; Gilbert, 2011). Among guenons, the basicranium was found to 

be the cranial region that produced phenotypic patterns most highly correlated with the published 

consensus phylogeny. However, differences in basicranial morphology among taxa did not contain 

the degree of resolution necessary to reconstruct the precise topology of the consensus 

phylogenetic tree (Cardini and Elton, 2008). In addition, the face, dermatocranium, and 

neurocranium all yielded matrices that were also significantly correlated with the genetic distance 

matrix (Cardini and Elton, 2008). A study of the correspondence between basicranial morphology 

and the consensus phylogeny in another cercopithecoid group, the papionins, found that 3D 

basicranial morphology corrected for size-correlated information yielded phenetic trees that are 

inconsistent with the consensus genetic topology for various papionin genera (Gilbert, 2011).  

Thus, despite the intuitive association between developmental stability, heritability, and 

phylogenetic utility, there seems to be little consistent support for the “basicranial hypothesis” 

across catarrhine primates.   

Recently, a quantitative genetic study of captive baboons found no significant differences 

in heritability across traits from different cranial regions (Roseman et al., 2010), suggesting that 

there is no a priori reason to suspect that cranial regions will perform differently in terms of their 

phylogenetic efficacy. Moreover, and in contrast with previous studies of wild papionin taxa (e.g., 
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Lycett and Collard, 2005), they find no disparity in intrinsic phenotypic variation among cranial 

traits that could be attributable to differences in either additive genetic or environmental variation. 

Nevertheless, empirical studies of wild primates from across a range of taxa have demonstrated 

differences in terms of both phenotypic variability and phylogenetic efficacy of different 

craniomandibular and dental traits (see von Cramon-Taubadel, 2014 for review), even if 

heritability, phenotypic variability, and phylogenetic efficacy are not evidently causally related 

(von Cramon-Taubadel, 2009b; Roseman et al., 2010).  

Anatomical and functional complexity 

The third major rationale that has been employed to explain why some cranial regions might 

reflect genetic relationships more accurately than others centers on the concept of anatomical 

complexity (Lockwood et al., 2004). The logic behind this idea is that, for aspects of anatomy that 

are functionally and/or structurally complex, no single adaptive force can produce sizeable 

homoplastic differences among distantly related species. In other words, these complex regions are 

relatively immune to the effects of diversifying selection. This pattern is thought to be especially 

likely to characterize anatomical complexes that participate in multiple functions that are crucial 

for survival, such as complex locomotor or sensory functions (Lockwood et al., 2004).  

 Lockwood and colleagues (2004) invoked the anatomical complexity hypothesis as an 

explanation for the phylogenetic utility of the temporal bone. They argued that the intricate three-

dimensional morphology of the temporal bone, coupled with its roles in locomotion, equilibrium, 

audition, and mastication, rendered it minimally homoplastic, and therefore phylogenetically 

informative (Lockwood et al., 2004). They also noted that temporal bone form is influenced by 

encephalization and concomitant cognition; functional factors which are thought to contribute to 

high levels of anatomical constraint (Lockwood et al., 2004).  

Lockwood and colleagues (2004) were the first to demonstrate that the 3D morphology of 

the temporal bone could be used to reconstruct the consensus phylogeny of hominoid primates, 

and many subsequent studies have supported this assertion (Harvati and Weaver, 2006; Smith et 

al., 2007; Smith, 2009; von Cramon-Taubadel, 2009a; von Cramon-Taubadel and Smith, 2012). 

However, it has been shown that, in the case of tree-based phylogenetic analyses, the choice of 
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outgroup - in this case Hylobates versus Pongo - may dictate whether the correct topology is 

recovered (Bjarnason et al., 2011). In a comparison of morphological distance matrices based on  

numerous cranial regions to published genetic distances among hominoids, von Cramon-Taubadel 

and Smith (2012) found that temporal bone shape produces morphological matrices that are 

correlated with genetic distances among taxa, but that they were not significantly more strongly 

correlated than matrices based on other, less anatomically complex, cranial bones. In fact, the 

frontal bone yielded morphological distances matrices that were more strongly correlated with the 

genetic distance matrix than the temporal bone (von Cramon-Taubadel and Smith, 2012).  

 Several studies of modern humans have demonstrated that among-population distance 

matrices based on temporal bone morphology are significantly correlated with genetic distances 

among populations (Harvati and Weaver, 2006; Smith et al., 2007; Smith, 2009; von Cramon-

Taubadel, 2009a; Smith et al., 2013). Comparisons of the extent to which a morphological 

distances matrix based on the temporal bone is correlated with neutral genetic distances relative to 

other cranial bone matrices revealed that the temporal bone is significantly more genetically 

congruent than the maxilla, occipital, and zygomatic bones (von Cramon-Taubadel, 2009a). 

However, when its morphology is considered in relation to other relatively complex regions of the 

skull, such as the neurocranium, upper face, and entire chondrocranium, the temporal bone is not 

any more genetically congruent than these other regions (Smith, 2009).  

Cranial morphology and allometry in papionin primates 

 Previous studies of cranial morphology in the papionin taxa have suggested relatively  high 

levels of craniomorphic homoplasy in this tribe (Fleagle and McGraw, 1999; Lockwood and 

Fleagle, 1999; McGraw and Fleagle, 2006; Gilbert, 2007; Gilbert et al., 2009). Phylogenetic 

studies based on traditional morphometric variables resulted in three primary groups of papionins 

initially being recognized: mangabeys, baboons, and geladas (Thorington and Groves, 1970; Jolly, 

1972; Szalay and Delson, 1979; Strasser and Delson, 1987). These categories were accepted until 

early molecular studies suggested that the mangabeys may not constitute a monophyletic group 

(Cronin and Sarich, 1976; Disotell et al., 1992; Disotell, 1994; Harris and Disotell, 1998; Tosi et 

al., 1999; Disotell, 2000; Harris, 2000; Tosi et al., 2003). In particular, one subset of mangabeys 

(now called Lophocebus) was suggested to be more closely related to baboons (Papio), and the 
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other (Cercocebus) to drills and mandrills (Mandrillus). Dental and postcranial similarities among 

the Cercocebus/Mandrillus and Lophocebus/Papio pairs were uncovered shortly thereafter, further 

supporting the idea of paraphyly in this clade (Fleagle and McGraw, 1999; 2002; McGraw and 

Fleagle, 2006; Gilbert, 2007). 

 Many papionin species are characterized by extreme sexual dimorphism, and considerable 

size differences exist among sexes and taxa (Jolly, 1972; Groves, 1978; Fleagle and McGraw, 

1999). As such, some aspects of their cranial morphology appear homoplastic, until the influence 

of sexual dimorphism and body size allometry are thoroughly accounted for (Singleton, 2002; 

Frost et al., 2003; Gilbert and Rossie, 2007; Gilbert, 2008; 2009; Gilbert et al., 2009; Gilbert, 

2011). Superficially, the small-bodied mangabeys (Cercocebus and Lophocebus) tend to resemble 

each other in cranial shape, while the large-bodied genera (Mandrillus, Papio, and Theropithecus) 

tend to share a general cranial form (Thorington and Groves, 1970; Jolly, 1972; Szalay and 

Delson, 1979; Strasser and Delson, 1987). Several studies have attempted to correct for the 

homoplastic impact of allometry in this tribe with varying degrees of success (Frost et al., 2003; 

Gilbert and Rossie, 2007; Gilbert et al., 2009; Gilbert, 2011).  

Gilbert and colleagues found that among the highly dimorphic papionin species, the 

morphology of male individuals tends to reflect phylogeny more accurately than that of females, 

and suggested that the sexes be analyzed separately in subsequent analyses (Gilbert and Rossie, 

2007; Gilbert et al., 2009). Narrow allometric coding (Gilbert and Rossie, 2007) and general 

allometric coding (Gilbert et al., 2009) have both been applied to traditional craniometric 

characters in an attempt to control for the effects of allometry in cladistic analyses of papionin 

primates. These allometric corrections resulted in cladograms that were consistent with the 

molecular phylogeny at the genus level (Gilbert and Rossie, 2007; Gilbert et al., 2009). However, 

these studies did not attempt to resolve interspecific relationships below the genus level.  

Applying allometric adjustment techniques to 3D cranial landmark data in geometric 

morphometric analyses proves more computationally and theoretically complicated (Frost et al., 

2003; Gilbert, 2011). Recently, Gilbert attempted a size correction technique on the 3D basicranial 

morphology of African papionin primates (Gilbert, 2011). In this approach, all principal 

components (PCs) resulting from the geometric morphometric analysis were regressed against 
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centroid size, and any PCs that were found to be correlated with centroid size were then eliminated 

from the analysis. However, this approach did not yield trees that were congruent with the 

molecular phylogeny, and Gilbert explicitly indicated the need for an improved method of 

allometric correction in this group (Gilbert, 2011). As acknowledged by Gilbert, an additional 

potential limitation of this technique is that when size-correlated PCs are entirely excluded from an 

analysis, additional non size-correlated information about shape contained therein will necessarily 

be removed along with them. Gilbert calculated his thresholds for PC removal at r=0.576 for his 

combined sex analyses and r=0.881 for the individual sex analyses. Even using the higher critical 

r-value could result in up to 23% of the variance explained by an eliminated PC to be unrelated to 

size, i.e., pure shape information. Thus, omitting these size-correlated PCs has the potential to 

result in the exclusion of a substantial amount of shape information along with them. Another 

approach to allometric adjustments in papionin cranial datasets was described by Frost and 

colleagues (Frost et al., 2003). In this method, the geometric morphometric shape coordinates are 

regressed against centroid size, and the resulting residuals are extracted from the regression as new 

“size-corrected” variables (Frost et al., 2003). This technique effectively enables the factoring out 

much of the portion of the shape coordinates that is explained by size, resulting in allometrically 

corrected data. However, some shape information is also eliminated along with scaling 

information using this method (Jungers et al., 1995; Gilbert, 2011). 

Given the foregoing discussion, this study has two interconnected aims. Firstly we 

explicitly test the genetic congruence of various cranial regions delineated according to the three 

main criteria described in detail above: Biomechanical strain, development and (presumed) 

heritability, and anatomical and functional complexity. Use of these criteria allowed us to further 

assess the validity of the theoretical assumptions underlying these criteria, and also provided an 

empirical basis for delineating cranial units that adhere to previously hypothesized predictions 

regarding phylogenetic utility. In order to do so we statistically compare the relative strength of 

correlation between a genetic distance matrix representing the genetic relationships among 

papionin taxa and various morphological distance matrices based on different aspects of cranial 

morphology. Throughout the paper we refer to these correlations as (relative) “genetic 

congruence”. Our study was explicitly designed to facilitate direct comparison with the results of a 

previous study based on hominoid taxa (von Cramon-Taubadel and Smith, 2012) as the landmark 
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configurations employed in these studies are intentionally identical in configuration. This allowed 

us to assess whether the cranial regions found to yield the strongest correlations with genetic 

distances in hominoids are also those most genetically congruent in papionins. Any agreement or 

disagreement in terms of patterns of genetic correlations may provide important insight into the 

potential phylogenetic utility of various cranial regions across fossil primates irrespective of the 

theoretical criteria employed to delineate them. In addition, since papionin cranial morphology is 

heavily impacted by the effects of sexual dimorphism and allometry, our second aim was to assess 

the effects of both separation of the sex samples and a computational method of 3D allometric 

adjustment on the initial genetic congruence results obtained.  

Materials and methods 

Materials: Morphological 

Landmark configurations 

Three-dimensional coordinates of 147 craniomandibular landmarks (Table 1; Figs. 1-4) were 

digitized by one of us (HFS) using a Microscribe digitizer (Immersion Corp.). Landmark 

configurations were derived from previous studies on cranial morphology in human populations 

(Smith et al., 2007; Smith, 2009; von Cramon-Taubadel, 2009a; b; 2011b) and hominoid taxa (von 

Cramon-Taubadel and Smith, 2012). Following von Cramon-Taubadel and Smith (2012) and in 

order to maintain consistency with that study, for specimens with a prominent sagittal crest, it was 

necessary to transpose midline cranial vault landmarks (bregma and lambda) onto the anatomical 

midline. This transformation was achieved by orthogonally projecting these landmarks onto a 

midsagittal plane as defined by the midline landmarks glabella, prosthion, and basion (von 

Cramon-Taubadel and Smith, 2012).   

The landmarks were divided into various subsets representing cranial regions as delineated 

in previous studies according to the three main criteria discussed earlier (Table 1, Figs. 1-4). 

Specifically, three developmentally-delineated regions were recognized: chondrocranium, 

neurocranium, and splanchnocranium (Fig. 1). Cranial regions representing areas presumed to be 

under high and low levels of masticatory strain were included: high strain= mandible, 

palatomaxilla and zygotemporal; low strain= basicranium, neurocranium, and upper face (Fig. 2). 

Finally, landmark subsets depicting the shape of eight individual cranial bones were delineated: 
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frontal, maxilla, occipital, parietal, sphenoid, temporal, and zygomatic bones (Fig. 3). It is 

important to note that the landmark configurations employed and the anatomical regions 

delineated are the same as those employed in a previous study of hominoid taxa (von Cramon-

Taubadel and Smith, 2012). 

 

Samples 

A sample of 370 adult specimens comprising 14 cercopithecoid taxa were included in this 

study (Table 2). All specimens measured were non-pathological and fully adult as defined by a 

fused spheno-occipital synchondrosis. While there has been considerable discussion regarding the 

taxonomic assignment of the various Papio allotaxa (Jolly, 1993; Groves, 2001; Jolly, 2001), this 

level of systematic distinction is not crucial in the present study. Since taxa here are differentiated 

by genetic distances, whether the Papio allotaxa should be categorized as subspecies or separate 

species is immaterial to this study’s research questions. Here we use the species-level designation.   

Previous studies have revealed notable sex differences in the patterns of cranial 

morphology between male and female papionin primates (Fleagle and McGraw, 1999; 2002; Frost 

et al., 2003; McGraw and Fleagle, 2006; Gilbert, 2007; Gilbert et al., 2009). Thus, in order to 

determine whether the degree of correspondence between cranial matrices and the genetic distance 

matrix varied between the sexes, we also conducted separate sex analyses. Of the 14 species 

included in this study, four were found to have non-equivalent sex samples: Macaca mulatta, 

Papio cynocephalus, P. hamadryas, and P. papio (Table 2). The sex-bias in these samples 

precluded these taxa from being included in sex-separated analyses due to a lack of an acceptable 

sample size for one or both sexes. Therefore, a reduced 10 taxon dataset was utilized to conduct 

the separate sex analyses.   

Thus, in sum, morphological distance matrices based on each of the 15 cranial regions 

were compared to the genetic distance matrix four times: once with the entire combined-sex 14 

taxon sample, and again with only the 10 taxa with comparable sex compositions, the latter of 

which was run separately as combined-sex, male-only, and female-only iterations.  

Materials: Genetic distances 
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Information concerning the consensus genetic relationships of the 14 papionin taxa was collected 

from previously published literature (Newman et al., 2004; McGoogan et al., 2007; Perelman et 

al., 2011; Springer et al., 2012). Most taxa considered in the present study were included in a 

recent high-resolution molecular phylogeny of living primates (Perelman et al., 2011). The 

Perelman et al. phylogeny is quite comprehensive, recent, and based on more than 30,000bp of 

nuclear DNA; thus, we used its topology and associated branch lengths as a baseline. However, 

three of the papionin taxa in the present study were not included in the phylogeny of Perelman and 

colleagues (2011). Thus, we drew upon the results of other phylogenetic studies (Newman et al., 

2004; McGoogan et al., 2007) in order to resolve the complete set of genetic distances:  

 

1. Perelman and colleagues (2011) included just three of the five allotaxa of Papio in their 

analysis. Thus, the genetic distances for Papio cynocephalus and P. ursinus were 

calculated from supplementary published sources. Newman et al. (2004) and McGoogan et 

al. (2007) both positioned P. ursinus as the outgroup to the rest of the Papio clade, and P. 

cynocephalus as the sister species to P. anubis. Thus, this topology was adopted here.  

Pairwise genetic distances between Papio taxa presented by Newman et al. were used to 

estimate distances between each species and the added nodes (15a, 17a), and scaled to the 

Papio branch lengths reported in Perelman et al. (2011). Due to the extremely close 

relationship between P. anubis and P. cynocephalus, indicated by a low genetic distance in 

Newman et al. (2004), these species were treated as equidistant from node 15a.  Positioned 

as the sister to the rest of the Papio clade, the branch length for P. ursinus was estimated 

by employing its relative genetic distance from them (from Newman et al., 2004) and 

scaling it to the distances between the next two outside members of the clade, P. papio and 

P. hamadryas.  

 

2. Perelman et al. (2011) included Cercocebus agilis and C. torquatus, but not Cercocebus 

atys in their analysis.  Given that until recently, C. atys was subsumed within C. torquatus 

(removed by Groves 2001), and the fact that they were found to be sister taxa by Springer 

and colleagues (2012) and McGoogan and colleagues (2007), we inferred a close 

phylogenetic relationship between these taxa, and treated them as equidistant from their 
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common node (21a). This recent taxonomic designation means that little data exist on the 

relative distance of C. atys to other species. To estimate the distance between C. atys and 

C. torquatus, we scaled the branch length of C. torquatus from Perelman et al. (2011) by 

the phylogenetic diversity between C. atys and C. torquatus indicated by McGoogan et al. 

(2007). 

Figure 5 illustrates the complete set of branch lengths derived from the literature. In order to 

transform the consensus phylogeny into a genetic distance matrix that could be statistically  

compared to the cranial data matrices, we generated a pairwise genetic distance matrix among all 

taxa (Cardini and Elton, 2008). Following the procedure described by Cardini and Elton (2008), 

we converted the above-described phylogenetic branch lengths into a genetic distance matrix for 

all papionin taxa (Figure 5). Using Phylip 3.695, Neighbor-joining trees (Saitou and Nei, 1987) 

were then generated from the distance matrix to confirm that the published topology was correctly 

recovered from the genetic distance matrix.  

Analytical methods 

Morphological distance matrices 

In order to evaluate the relative strength of statistical  correlations between each of the 15 cranial 

regions and the genetic distance matrix, various morphological distance matrices were generated 

according to the following procedure: First, landmark coordinates from each cranial subset were 

superimposed using Generalized Procrustes Analyses (Gower, 1975) in MorphoJ 1.05f 

(Klingenberg, 2011). Mahalanobis D
2
 distances between each pair of taxa were then calculated 

from the resultant Procrustes variables, and entered into a matrix of pairwise morphological 

distances. This procedure was repeated separately for the subset of landmarks representing each 

cranial region (Table 1) for each dataset (the entire combined-sex 14 taxon dataset, reduced 10 

taxon combined-sex dataset, 10 taxon male-only dataset, and 10 taxon female-only dataset). 

Comparing morphometric and genetic distance matrices 

Each morphological distance matrix was statistically compared to the genetic distance matrix 

using a Mantel test (Mantel, 1967) in PopTools, an add-on for Microsoft Excel. Matrix 

permutations (10,000 iterations) were then used to assess significance, with the alpha level set at α 

= 0.05. Subsequently, Dow-Cheverud tests (Dow and Cheverud, 1985) were conducted to 
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determine whether any of the morphological distance matrices were more strongly correlated with 

the genetic distance matrix than were others. Dow-Cheverud tests were executed in R using a 

script written by the lab of Charles Roseman. The strength of this test was assessed using the 

variable p1Z and its corresponding p-value (with critical alpha set at <0.05). The p1Z value is the 

statistical value of the difference in correlation of two matrices with a third; in this case, the 

difference in correlations between two morphological matrices (representing two cranial units) and 

the genetic distance matrix. All Mantel and Dow-Cheverud tests were performed separately for 

each of the 15 cranial regions in each of the four data sets. For each set of analyses, a sequential 

Bonferroni correction was also applied to correct for multiple comparisons (Holm, 1979).  

Allometric scaling adjustments 

Numerous studies have described allometric patterning in papionin cranial morphology (Fleagle 

and McGraw, 1999; 2002; Frost et al., 2003; Gilbert, 2007; 2008; 2009; Gilbert et al., 2009), the 

result of which can obscure the phylogenetic signal in the skull of this tribe (Gilbert and Rossie, 

2007; Gilbert et al., 2009; Gilbert, 2011). While considerable discussion has centered around how 

to adjust for unwanted allometric cranial characteristics to reveal underlying phylogenetic and 

taxonomic information (Frost et al., 2003; Gilbert and Rossie, 2007; Gilbert et al., 2009; Gilbert, 

2011), no consensus exists as to the most effective method of allometric adjustment, particularly in 

the case of 3D geometric morphometric data. 

 In the present study, we wanted to assess whether an allometric adjustment would increase 

the correlations between cranial morphological matrices and genetic distance matrices in papionin 

primates. To achieve this, we chose the allometric adjustment method described by Frost and 

colleagues (2003). After conducting the Generalized Procrustes Analysis (GPA) for each cranial 

region, we then performed a regression analysis in MorphoJ in which the Procrustes residuals 

were regressed against the natural log of centroid size. The residuals from this analysis were then 

extracted and used as allometric size-corrected variables, which were subsequently used to 

calculate a new set of allometric size-corrected Mahalanobis D
2
 distances among taxa. This 

procedure was repeated independently for each cranial region/data set combination, resulting in a 

total of 60 additional allometric size-adjusted matrices (15 cranial regions in four data sets). Each 

allometrically adjusted matrix was then statistically compared to the genetic matrix using a Mantel 

test and Dow-Cheverud tests (as described above) to determine which allometric size-adjusted 
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cranial regions were significantly correlated with genetic distances for each data set. Finally, the 

results of the allometric size-corrected analyses were compared to those of the non size-corrected 

results using Dow-Cheverud tests to determine whether conducting an allometric adjustment in 

this manner resulted in significantly greater correlation coefficients between cranial morphological 

matrices and the genetic distance matrix. 

 

Results 

Mantel tests 

Table 3 lists the results of all Mantel tests conducted between the genetic matrix and the various 

morphological matrices. Cranial regions are listed by category: functional-developmental units, 

individual cranial bones, and regions defined by degree of presumed masticatory stress. Each 

cranial region is labeled according to predictions made about its genetic congruence based on 

previous results from a similar analysis of hominoid taxa (von Cramon-Taubadel and Smith, 

2012), with 1 being statistically more genetically congruent than 2, which is statistically more 

congruent than 3.   

  

Complete 14 taxon combined-sex data set 

The vast majority of the Mantel tests between the cranial region matrices and genetic matrix for 

the complete 14 taxon data set yielded significant correlations (Table 3). Only the parietal and 

sphenoid matrices were not found to be significantly correlated with genetic distances. The 

chondrocranium and zygotemporal matrices resulted in the highest correlations with the genetic 

matrix, both of which were absolutely higher than that based on the shape of the entire cranium 

(Table 3). All of these correlations remained significant even following application of sequential 

Bonferroni adjustment. 

 

Reduced 10 taxon data set 

The correlations obtained in the Mantel tests for the reduced 10 taxon data set were, on average, 

lower than those of the 14 taxon data set (Table 3). Of the functional-developmental cranial 

regions, the chondrocranium and neurocranium matrices were significantly correlated with the 

genetic distance matrix (Table 3). Of the masticatory strain regions, the correlations for the 
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zygotemporal and mandibular matrices were also significant, as were the correlations based on the 

temporal, zygomatic, and occipital bone matrices (Table 3). However, only the chondrocranium 

matrix remained significantly correlated with the genetic distance matrix following sequential 

Bonferroni adjustment. 

 The separated sex analyses yielded fewer significant correlations than the combined-sex 

analysis for the reduced 10 taxon data set (Table 3). For the male-only comparisons, only the 

chondrocranium and the temporal bone matrices were significantly correlated with the genetic 

matrix following sequential Bonferroni adjustment (Table 3). In the female-only analysis, only the 

zygotemporal and occipital bone matrices were found to be significantly correlated with the 

genetic matrix. However, none of the female-only Mantel tests were significant following 

application of sequential Bonferroni adjustment (Table 3). 

 

Dow-Cheverud tests 

Complete 14 taxon combined-sex data set 

A few cranial matrices in the complete 14 taxon data set were found to differ significantly in their 

correlation with the genetic distance matrix (Table 4). Most notably, the chondrocranium matrix 

was significantly more genetically congruent than the other two developmental matrices and the 

upper face matrix. The sphenoid and parietal bone matrices were the least correlated with the 

genetic matrix, significantly less than almost all other individual bone matrices (Table 4). There 

were very few differences in terms of genetic congruence among the remaining cranial matrices 

(Table 4). Moreover, when the stricter alpha-levels associated with the sequential Bonferroni 

correction are applied, the only significant Dow-Cheverud test result was that the sphenoid matrix 

was less genetically congruent than the matrices based on the entire cranium, maxilla, temporal, 

and occipital bones. 

 

Reduced 10 taxon data set 

The reduced 10 taxon data set revealed fewer significant differences among the cranial regions in 

terms of their genetic congruence (Table 5). For the combined-sex analysis, the chondrocranium 

matrix was significantly more genetically congruent than the splanchnocranium matrix and the 

matrix based on the entire cranium (Table 5). The temporal and zygomatic bone matrices were 
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both significantly more genetically congruent than the matrices based on the maxilla, sphenoid and 

the entire cranium (Table 5). Of the regions associated with masticatory strain, the 

chondrocranium matrix was significantly more genetically congruent than the mandible, 

palatomaxilla, upper face, and entire cranium matrices, and the zygotemporal region was 

significantly more genetically congruent than the upper face and entire cranium. However, as in 

the case of the complete 14 taxon dataset, application of a sequential Bonferroni correction yielded 

few significant correlations. In this case the temporal and occipital bone matrices were 

significantly more genetically congruent than the sphenoid bone matrix (Table 5). 

 The Dow-Cheverud tests for the separated sex analyses yielded a smaller number of 

significant differences in correlations between cranial matrices and the genetic matrix. For the 

male-only data set (Suppl. Table 1), the chondrocranium matrix was significantly more genetically 

congruent than the other developmental region matrices even following sequential Bonferroni 

correction. Also, the temporal bone matrix was more strongly correlated with the genetic matrix 

than all bone matrices, except for the zygomatic matrix, although these results were not significant 

following Bonferroni correction. The zygotemporal matrix was also more genetically congruent 

than the neurocranium matrix and the entire cranium matrix, but not once sequential Bonferroni 

correction was applied. In the female-only analysis (Suppl. Table 2), the only significant Dow-

Cheverud tests were that the zygomatic and the entire cranium matrix were more genetically 

congruent than the maxilla matrix, and that the zygotemporal matrix was more genetically 

congruent than the chondrocranium matrix. However, these Dow-Cheverud comparisons were not 

found to be significant following sequential Bonferroni adjustment of alpha-levels. 

 

Allometric size-adjusted analyses 

Performing allometric adjustments on the morphological data resulted in some increased 

correlations between the cranial distance matrices and the genetic distance matrix (Table 6). This 

improved correlation was most pronounced in the male-only data set, and least prevalent in the 

combined-sex 14 taxon data set, where the majority of the morphological matrices were already 

significantly correlated with the genetic distance matrix prior to the allometric size-correction.  

 

Complete 14 taxon combined-sex data set 
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The allometrically adjusted matrices for the 14 taxon data set were on average found to be quite 

similar to those of the uncorrected matrices in terms of patterns of genetic congruence (Table 6). 

The same thirteen morphological matrices were found to be significantly correlated with the 

genetic matrix, such that even after the allometric size-correction, only the parietal and sphenoid 

bones remained non-significantly correlated with the genetic matrix. On average, correlation 

coefficients across the cranial regions actually decreased following the allometric correction. Dow-

Cheverud tests examining whether the allometrically-adjustment resulted in significant 

improvements over the non-adjusted data did not indicate any significant improvements by adding 

the size-correction for the 14 taxon data set (Suppl. Table 3).  

Dow-Cheverud tests revealed that the allometric size-adjustment resulted in the 

chondrocranium matrix being significantly more congruent with the genetic distance matrix than 

the entire cranium matrix, although this finding did not hold up to a sequential Bonferroni 

adjustment. As before, the parietal and sphenoid bone matrices were significantly less genetically 

congruent than several other individual bone matrices (Table 7). Following sequential Bonferroni 

adjustment, the only significantly different result that remained were that the sphenoid bone matrix 

was significantly less genetically congruent than the occipital bone matrix.  

Reduced 10 taxon data set 

The 10 taxon dataset demonstrated a greater number of increased r-values and significant 

correlations after the allometric correction (Table 6). For the combined-sex data set, the 

splanchnocranium, palatomaxilla, and upper face matrices were significantly correlated with the 

genetic matrix following the allometric size-adjustment. The chondrocranium, neurocranium, 

zygotemporal, mandible, zygomatic, temporal, and occipital matrices remained significantly 

correlated with the genetic matrix, and all yielded an absolutely higher r-value than in the 

uncorrected comparison (Table 6). In the Dow-Cheverud tests comparing correlations before and 

after the allometric size-correction, only the splanchnocranium and sphenoid matrices 

demonstrated significantly increased correlations with the genetic distance matrix following the 

allometric adjustment (Suppl. Table 3).  

Dow-Cheverud tests also indicated that the increased genetic congruence of the 

splanchnocranium and neurocranium matrices following the allometric size correction meant that 



20 

 

these matrices are significantly more strongly correlated with the genetic matrix than was the 

entire cranium (Table 8). None of the masticatory strain region matrices differed significantly from 

each other in terms of genetic congruence. However, the chondrocranium, palatomaxilla, and 

zygotemporal matrices were still significantly more correlated with the genetic matrix than the 

entire cranium matrix.  

 In the allometrically adjusted male-only analyses, the correlation coefficients increased 

more dramatically than in any other allometric size-corrected data set (Table 6). Of the 

developmental regions, both the splanchnocranium and neurocranium matrices were significantly 

correlated with the genetic matrix after the size-correction, while the chondrocranium matrix 

remained significantly correlated (Table 6). Four additional masticatory strain regions were found 

to yield genetically congruent matrices following the allometric size-correction: the mandible, 

palatomaxilla, upper face, and zygotemporal matrices (Table 6). The maxilla bone matrix was also 

significantly correlated with the genetic matrix following the allometric size-adjustment procedure 

(Table 6). Dow-Cheverud tests comparing cranial-genetic matrix congruence before and after the 

allometric size-correction indicated that the palatomaxilla matrix was significantly more 

genetically congruent following this adjustment (Suppl. Table 3). Dow-Cheverud tests in the male-

only size-adjusted analysis revealed no significant differences in terms of genetic congruence 

among any of the developmental or masticatory strain matrices (Table 9). Among the individual 

cranial bone matrices, the temporal bone matrix was significantly more genetically congruent than 

the frontal, parietal, sphenoid, and entire cranium matrices. The entire cranium and the zygomatic 

bone matrices were both significantly more highly correlated with the genetic matrix than the 

sphenoid matrix. However, no individual comparisons remained significant following sequential 

Bonferroni adjustment (Table 9). 

 Following the allometric size-adjustment, the female-only data set continued to display the 

fewest number of significant correlations between morphological and genetic distance matrices all 

the data sets (Tables 6). The entire cranium, splanchnocranium, upper face, zygomatic, and 

temporal bone matrices were significantly correlated with the genetic matrix after the size-

correction. The occipital bone matrix continued to reflect genetic distances as in the uncorrected 

analysis; however, the previously genetically congruent zygotemporal matrix was not significantly 
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correlated with the genetic matrix (Table 6). Dow-Cheverud tests revealed that the correlation 

between the splanchnocranium matrix and genetic matrix was significantly increased by the size-

adjustment (Suppl. Table 3).  

The Dow-Cheverud tests for the female-only analysis revealed significant differences in 

genetic congruence among a few cranial matrices after the allometric size-adjustment (Table 10). 

Of the developmental regions, the splanchnocranium matrix was significantly more strongly 

correlated with the genetic matrix than either the chondrocranium or neurocranium matrices (Table 

10). The entire cranium matrix was significantly more genetically congruent than the 

neurocranium, mandible, maxilla, sphenoid, and zygotemporal matrices. The occipital and 

temporal bone matrices were found to be significantly more genetically congruent than the maxilla 

matrix. The decrease in the Mantel test correlation between the zygotemporal matrix and the 

genetic matrix resulted in this matrix no longer being significantly more genetically congruent 

than the neurocranium, mandible and chondrocranium matrices (Table 10), when compared to the 

non-adjusted analysis. However, as was the case in the male-only analysis, no individual Dow-

Cheverud comparison was significant following sequential Bonferroni correction. 

The final set of Dow-Cheverud analyses performed were designed to assess whether the 

sex-specific plus allometrically size-adjusted datasets yielded significantly more genetically 

congruent cranial data matrices than combining the sexes together (Table 11). The results show 

that in the case of males, the occipital bone matrix was more genetically congruent in the 

combined-sex dataset compared with analyzing males separately (Table 11). In the case of 

females, the entire cranium and the sphenoid matrices were more genetically congruent in the 

female-only dataset than in the combined sex sample. Several regions, including the 

chondrocranium, neurocranium, palatomaxilla, zygotemporal, temporal, maxilla and the mandible 

matrices were more highly correlated with the genetic matrix in the combined-sex sample than in 

females alone. 

Discussion 

The results presented here illustrate the lack of any single criterion that can be used to delineate 

ubiquitously genetically congruent cranial modules among papionin taxa. Additionally, the relative 
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correlations of cranial region matrices and the genetic matrix differed somewhat between the 

sexes, while applying an allometric correction to the sex-separated data resulted in some additional 

cranial matrices being significantly correlated with genetic distances in each sex. In both the full 

14-taxon and reduced taxon combined-sex data sets, both the high masticatory strain regions of the 

mandible and zygotemporal, as well as the low strain chondrocranium and neurocranium yielded 

matrices that were found to be correlated with the genetic matrix (Table 3). However, none of the 

various strain region matrices was found to be significantly more genetically congruent than any 

other, lending no support to the homoiology hypothesis (Tables 4, 5, 7 and 8). Of the 

developmental regions, the chondrocranium matrix was consistently more correlated with genetic 

distance than the neurocranium and splanchnocranium matrices, and sometimes significantly more 

genetically congruent than the entire cranium matrix, when sexes were combined (Tables 4, 5, 7). 

Taken at face value, this might suggest some support for the “basicranial hypothesis” in mixed-sex 

(or unknown sex) analyses. However, it should be noted that in cases where the stricter sequential 

Bonferroni adjustment was applied there was no statistical difference in the genetic congruence of 

the chondrocranium matrix and any other cranial region matrices, suggesting that support for this 

hypothesis is weak at best. The anatomical/functional complexity hypothesis received mixed 

support in the combined-sex data. The matrices based on the anatomically complex temporal bone 

were correlated with the genetic matrix in all combined-sex comparisons; however, they were 

often no more strongly correlated than other matrices based on relatively simple bones such as the 

occipital or the frontal. Additionally, another anatomically complex bone – the sphenoid –

consistently yielded matrices with the lowest correlations with the genetic matrix (Tables 3, 6) 

across all analyses. Taken together, the results of the papionin analyses presented here do not 

support the internal predictions of the three major hypotheses regarding relative phylogenetic 

efficacy of cranial regions outlined in the Introduction.  

Sexual dimorphism 

In the case of the allometrically corrected datasets, partitioning the data by sex provided no 

improvement in terms of the relative strength of correlation between morphological matrices and 

the genetic matrix (Table 11). Basing morphological matrices on the male-only dataset resulted in 

very similar genetic correlations to those obtained using the combined-sex dataset. Conversely, the 
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matrices based on the chondrocranium, neurocranium, maxilla, temporal bone, palatomaxilla, 

zygotemporal and mandible were all significantly more strongly correlated with the genetic matrix 

using the combined-sex database than they were using the female-only dataset. This result 

confirms the general observation (Tables 3 and 6) that the female-only dataset consistently yielded 

fewer morphological matrices that were significantly correlated with the genetic matrix, compared 

with the male-only dataset and the combined-sex dataset. The lower number of significant 

correlations between cranial matrices and genetic distance in female papionins is consistent with 

previous studies that have revealed a dearth of phylogenetic information in the cranial morphology 

of females from these species (Gilbert et al., 2009; Gilbert, 2011). In fact, it has previously been 

advocated that female papionin primates be analyzed separately from males, and that their cranial 

form may be less phylogenetically informative than that of their male counterparts (Gilbert et al., 

2009). It has been suggested that male papionin cranial anatomy may reflect actual synapomorphic 

traits, (Gilbert et al., 2009), while female papionins tend to share a more generalized and 

undifferentiated cranial form. While our results show that females differ from males in terms of 

the extent to which morphological matrices are correlated with genetic distances, they do not 

provide compelling evidence in favor of separating the sexes in future studies, as the male-only 

dataset did not yield any morphological matrices that were significantly more genetically 

congruent than analogous matrices based on the morphology of both sexes. 

Consequences of allometric size adjustment 

The present study employed a method of allometric correction that involved regressing 

Procrustes residuals against centroid size and then taking the residuals of this analysis as new size-

adjusted variables, following Frost and colleagues (2003). In the case of the larger 14-taxon 

dataset, the allometric adjustment had no effect on the pattern of Mantel test correlations between 

morphological matrices and the genetic distance matrix. In the case of the reduced 10-taxon 

dataset a few additional cranial matrices that centered on facial morphology were significantly 

correlated with the genetic distance matrix following the allometric adjustment.  Following 

allometric adjustment, 11 out of the 15 cranial region matrices tested were significantly correlated 

with the genetic matrix in males. However, the correlation coefficients of the Mantel tests 

performed here were not high (r = 0.235-0.453), meaning that the majority of the morphological 
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variation is inconsistent with the genetic distances, and therefore unexplained by genetic 

relatedness. These allometrically-corrected values are much lower than many obtained for similar 

comparisons in hominoids (von Cramon-Taubadel and Smith, 2012) and humans (von Cramon-

Taubadel, 2009a; b; 2011b). Additionally, Dow-Cheverud tests comparing the genetic congruence 

of morphological matrices before and after allometric adjustment indicated that only a few of these 

changes were statistically significant. Interestingly, all of the significantly different changes are 

centered on facial morphology (10-taxon dataset: splanchnocranium; male-only: palatomaxilla, 

female-only: splanchnocranium), which is consistent with existing knowledge regarding the 

homoplastic facial elongation that characterize the large-bodied papionin genera (Papio and 

Mandrillus) versus the short-faced Lophocebus and Cercocebus genera. Therefore, performing 

allometric corrections may allow for a better correlation between papionin facial morphological 

matrices and known genetic distances, yet may have little to no effect on the genetic congruence of 

non-facial morphological regions.   

Comparison with patterns found in hominoid taxa 

 Despite the fact that the empirical findings do not lend support to the internal predictions of 

the outlined hypotheses, we can compare the patterns of genetic congruence found here directly 

with those found in an analogous study based on hominoid taxa (von Cramon-Taubadel and Smith, 

2012). The pattern of results obtained here differs greatly from that found in hominoids, despite 

utilizing the same landmark definitions to categorize each cranial region and the same analytical 

approach. In the case of the hominoids (von Cramon-Taubadel and Smith, 2012), the 

morphological distance matrices for all cranial regions were significantly correlated with the 

genetic distance matrix. In the latter study sequential Bonferroni correction was not employed, but 

it is worth noting that the highest p-value obtained was 0.002 so these correlations would have 

been considered significant even utilizing a strict Bonferroni correction (α = 0.0027). Moreover, as 

noted above, the r-values were overall much higher in the hominoid study (i.e. ranging from r = 

0.35 to 0.86), suggesting that, in general, the correlation between cranial distances and genetic 

distances is stronger in hominoids than in papionins. This result is also consistent with the findings 

of Roseman et al. (2010) who found no differences in the heritability or conditional evolvability of 

different cranial regions in a captive population of baboons. This suggests that there may be few 
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differences across the papionin cranium in terms of phylogenetic efficacy, with all regions being 

equally useful (or problematic) when attempting to reconstruct phylogenetic relatedness across 

taxa. This finding is consistent with previous phylogenetic studies implementing various alternate 

methods of size correction (Gilbert and Rossie, 2007; Gilbert et al., 2009; Gilbert, 2011), and 

suggests that cranial morphology in papionins, while containing some degree of information about 

genetic relatedness, is simply not as informative as in other primate taxonomic groups. 

The relative pattern of correspondence between morphological and genetic distance for 

different cranial regions (i.e., within each of the delineated cranial categories: biomechanical 

strain, development and heritability, and complexity) also differed between the hominoid and the 

papionin datasets. Taking each of the criteria in turn: In the case of the biomechanical strain 

criterion, the hominoid pattern revealed that the morphological/genetic correlations were 

significantly higher for the upper face and the zygotemporal regions than for the neurocranium and 

chondrocranium, which in turn were higher than the mandible and palatomaxilla (von Cramon-

Taubadel and Smith, 2012). These findings did not match the specific predictions of the 

homoiology hypothesis, which would predict significantly higher correlations for the non-

masticatory regions of the upper face, neurocranium, and cranial base relative to the masticatory 

regions of the palatomaxilla, mandible, and zygotemporal. In the case of the present study, the 

internal predictions of the homoiology hypothesis were also not met. Moreover, the relative 

pattern of correspondence between morphological and genetic distances found in papionins 

differed from that in the hominoids with the chondrocranium matrix generally having significantly 

higher correlations than the upper face and many of the masticatory regions.  

In the case of the second criterion of development and heritability, the hominoid dataset 

did not follow the predictions of the “basicranial hypothesis” in that morphological/genetic 

congruence was consistently greater in the splanchnocranium than it was in either the 

chondrocranium (basicranium) or the neurocranium (von Cramon-Taubadel and Smith, 2012). In 

the case of the papionin datasets analyzed here, the chondrocranium matrix was consistently one 

of the most genetically congruent of all the cranial matrices tested and was generally found to have 

statistically higher correlations with the genetic matrix than the face or the cranial vault matrices 

across all datasets tested. This is obviously in contrast with the hominoid findings but does mirror 



26 

 

more closely the findings of Cardini and Elton (2008) who found the shape of the guenon 

chondrocranium yielded distance matrices more strongly correlated with the genetic distance 

matrix than other major cranial regions. This hints at the fact that the chondrocranium may offer a 

more accurate reflection of the underlying phylogenetic history of the cercopithecoids compared 

with other regions such as the splanchnocranium and neurocranium, while in the case of 

hominoids the facial skeleton may reflect among-taxon relationships more accurately.  

Finally, in the case of individual bones, the hominoid study (von Cramon-Taubadel and 

Smith, 2012) found that morphological distances based on the zygomatic best mirrored genetic 

distance, followed by the neurocranial bones (frontal, parietal, and sphenoid), with the temporal 

and occipital matrices showing the lowest correspondence between morphological and genetic 

distances. As outlined previously this also does not match the internal predictions of the 

anatomical/functional complexity hypothesis. In the case of the papionins, the pattern was 

somewhat different with the temporal and occipital bones generally showing significantly higher 

correlations between morphological and genetic distance than other bones, and the parietal and 

sphenoid matrices generally showing the lowest correlations. One point of overlap between the 

hominoid and papionin results is the overall pattern of generally high genetic congruence for the 

zygomatic bone matrix, across all datasets and both sexes. Nevertheless, the papionin results did 

not match the internal predictions of the anatomical/functional complexity hypothesis nor did they 

match the pattern of genetic congruence found in hominoids. 

It is also worth noting that in the case of the hominoids, despite substantial sexual 

dimorphism among some taxa, the relative correlations between the genetic distance matrix and 

cranial matrices were very similar across the sex-specific analyses and the combined-sex dataset 

(von Cramon-Taubadel and Smith, 2012). However, in the case of the papionins, the sex-specific 

analyses yielded somewhat different patterns both between the sexes and relative to the combined-

sex dataset. In particular, morphological matrices based on the female papionin dataset yielded 

significantly weaker correlations with the genetic matrix than the male-only or the combined 

datasets. This is consistent with the relationship between sexual dimorphism and phylogenetic 

reconstruction that has been noted so often for papionin taxa (Singleton, 2002; Frost et al., 2003; 

Gilbert and Rossie, 2007; Gilbert, 2008; 2009; Gilbert et al., 2009; Gilbert, 2011). One possible 
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explanation for this may be the effect of genetic variance and sex interaction effects concentrated 

in the neurocranium and facial skeleton of papionins (Willmore et al., 2009), despite an 

approximately equivalent level of heritability across traits from all cranial regions. If it is the case 

that sex-specific quantitative genetic patterns in papionins are concentrated in the anatomical 

junction between the face and the neurocranium, this may also help explain why morphological 

distances for the chondrocranium were found to be the most reliably correlated with genetic 

distance in the combined-sex analyses. 

In sum, there is no consistent criterion that appears to explain relative genetic congruence of 

cranial regions across both hominoids and papionins. In hominoids, facial morphology appears to 

be the most reliable correlate of genetic distances in both males and females (von Cramon-

Taubadel and Smith, 2012). Finally, as shown here and corroborated by previous studies (Gilbert, 

2011), basicranial morphological distances are correlated with genetic distances among male 

papionin primates. The fact that the same pattern holds true for guenons (Cardini and Elton, 2008) 

suggests that this may be a cercopithecoid-specific pattern rather than something unique to the 

papionins. In the case of the papionins, an allometric size-adjustment of some form is necessary 

when analyzing the facial skeleton, and there is still debate about the most effective way to 

implement one (Frost et al., 2003; Gilbert and Rossie, 2007; Gilbert et al., 2009; Gilbert, 2011).  

Conclusions and future considerations 

Taken together these findings suggest that a single, broad model explaining or predicting 

cranial phylogenetic utility across all catarrhine primates is simply not tenable. The results 

obtained here and in the case of our previous work on hominoids (von Cramon-Taubadel and 

Smith, 2012) would suggest that future studies attempting to reconstruct phylogeny or taxonomy 

from fossil cranial specimens are probably best served by using all available cranial information. 

Nevertheless, given the fragmentary nature of the fossil record, it should be recognized that not all 

cranial fragments are likely to be equally useful in terms of reconstructing phylogenetic history 

across all taxonomic groups. In the case of the papionins, employing some type of allometric size- 

adjustment for facial morphology is likely to be important to counteract the homoplastic evolution 

characterizing the Cercocebus/Mandrillus and the Lophocebus/Papio clades, although it is equally 

important to recognize the limitations of such correction methods both in terms of the potential for 



28 

 

discarding relevant size and shape information and uncertainty regarding the applicability of such 

methods to fossil taxa.  

This study also further highlights the importance of applying taxonomically- and 

phylogenetically-appropriate evolutionary models when assessing the congruence between 

morphological and genetic among-taxon distances. In previous studies comparing cranial distance 

matrices against neutral genetic distance matrices (e.g., Roseman, 2004; Harvati and Weaver, 

2006; Smith, 2009; von Cramon-Taubadel, 2009a, 2009b, 2011a, 2011b), the theoretical 

assumption being made is that morphological matrices that correlate more strongly with neutral 

genetic distances are doing so because the history of among-population divergence for that 

particular morphology is largely due to neutral stochastic processes such as genetic drift. 

Deviations from proportionality between morphological and genetic among-population distance 

matrices could be indicative of diversifying selection or other non-neutral factors in certain aspects 

of morphology in particular populations (Roseman, 2004). When this theoretical assumption is 

scaled up to supra-specific taxonomic levels, the expectation is that among-taxon morphological 

distances scale linearly with time, in the same way that among-taxon genetic distances are 

expected to when genetic phylogenies are reconstructed using non-coding genomic data (e.g., 

Perelman et al., 2011). Thus, under a neutral model of morphological divergence among taxa 

(Lynch, 1990), we might expect morphological distance to reflect genetic distances. However, in 

reality, the speciation/divergence events that occurred to create the taxonomic diversity of the 

extant primates will include a combination of neutral divergence and specific instances of 

diversifying natural selection (Marroig and Cheverud, 2004), some of which may have led to 

specific convergences (i.e., homoplasy) in the cranial morphology of particular lineages. Given 

this, there are unlikely to be any set “rules” governing which aspects of an organism’s phenotype 

or which parts of a phylogenetic tree are more/less likely to reflect such homoplastic events. This 

is made clear when we consider that the pattern of results obtained for hominoid and for papionin 

taxa are entirely different in terms of the overall strength of congruence between genetic and 

morphological distance matrices, and that none of the empirical expectations of previously 

proposed hypotheses concerning homoplasy are upheld in these two catarrhine groups. These 

observations are likely to reflect the different evolutionary histories of morphological 

diversification in these two primate groups. 



29 

 

Where do we go from here? We need to develop a better understanding of how 

evolutionary forces such as genetic drift and natural selection contribute to speciation and 

taxonomic diversification, which in turn will provide insight into specific instances of phenotypic 

convergence across particular lineages. One misconception that lies at the heart of hypotheses 

regarding homoplasy is the assumption that morphological traits with higher heritability will be 

more “reliable” for reconstructing phylogeny due to the notion that such traits reflect underlying 

genetic information more accurately and are less influenced by the environment (i.e., will be less 

plastic). These misconceptions have been discussed at length previously (von Cramon-Taubadel, 

2009b; Roseman et al., 2010) and the problem lies with a general misunderstanding of how 

additive genetic variance and environmental variance combine and interact to produce observable 

phenotypic variance. Moreover, while the response to selection of a single quantitative trait is 

directly related to its heritability (i.e., the proportion of phenotypic variance due to underlying 

additive genetic variance), the relationship between heritability and the propensity for a 

multivariate morphological structure to respond to selection is more complex. Due to the effects of 

genetic and developmental pleiotropy (Cheverud, 1982; 1988; 1996) phenotypic traits are 

intercorrelated in systematic ways (i.e., integrated sensu  Olson and Miller) (Olson and Miller, 

1958) such that any potential response to selection of one trait is constrained by correlations with 

other traits under the influence of stabilizing selection (Lande, 1976; Lande and Arnold, 1983). 

Combining the factors of heritability, pleiotropy, and integrations leads to the concept of 

conditional evolvability or the ability of a phenotype to respond to directional selection, given 

constraints imposed by stabilizing selection on integrated traits (Hansen and Houle, 2008). 

Consideration of how conditional evolvability might operate highlights the main conceptual 

problem with the functional/anatomical complexity hypothesis: if these functional complexes are 

highly integrated, then a single selection event on that complex could, theoretically, result in 

homoplastic changes due to the high levels of covariance between different traits within the 

complex. Functional complexes (such as the basicranium) may also be relatively tightly integrated 

and subject to strong stabilizing selection, such that they vary less than one would expect under a 

neutral model of diversification. Therefore, both the ability to respond to directional selection 

(evolvability) and protection from diversifying selection (as mediated by stabilizing selection on 

integrated structures) could result in morphological lineages that have not diversified under neutral 
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rates of evolution, and therefore, would generate morphological distance matrices that do not 

correlate well with neutral genetic distance matrices.  

Another issue to consider is the time-depth and the phylogenetic structure of the primate 

group under consideration. If one is comparing deep-time divergences among particular genera 

then an accurate reconstruction of this phylogeny may be best served by a dataset of relatively 

slowly evolving phenotypic traits, with a lower likelihood of multiple new (and potentially 

homoplastic) phenotypic variants having evolved across lineages. If, on the other hand, the aim is 

to reconstruct the phylogeny of a sample of relatively recently diverged and closely related taxa, 

then more rapidly evolving phenotypic traits  that can capture these more recent radiations are 

more likely to be useful.  

Recent studies have suggested that hominoids and cercopithecoids might differ in terms of 

their overall levels of skeletal integration and evolvability. Specifically, Young and colleagues 

(Young et al., 2010) demonstrated patterns of reduced integration among serially homologous limb 

segments in hominoids, while Old and New World monkey limb integration was much stronger, 

consistent with a bias in monkeys towards size-scaled variants of a basic quadrupedal bauplan. In 

contrast, the hominoid postcranial bauplan is highly variable reflecting a range of diverse 

locomotory repertoires include terrestrial knucklewalking, brachiation, and bipedalism. A similar 

pattern of strong integration in the cercopithecoid autopod, compared with a less integrated pattern 

in hominoids has also been shown (Rolian, 2009). Therefore, many of the differences we observe 

here in terms of patterns of morphological-genetic matrix correlations could be due to overall 

different levels of phenotypic integration and consequent evolvability in cercopithecoids and 

hominoids, although this remains to be explicitly tested for the cranium. 

In sum, the results presented here add further empirical weight to the conclusion that there 

are no generalized predictors in terms of which aspects of primate cranial form are more/less likely 

to exhibit homoplasy. Further consideration of how morphological diversity patterns evolve at 

higher taxonomic levels within an evolutionary quantitative genetic framework makes clear why 

this is the case. Some primate taxa, as measured using skeletal phenotypic data, will have 

diversified under largely stochastic conditions, while other lineages will have diversified under the 

action of directional natural selection (Marroig and Cheverud, 2004). Some aspects of skeletal 
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anatomy (modules) have a higher propensity to evolve (both under neutral and selective 

conditions) while strong integration mediated by pleiotropy and stabilizing selection will limit the 

evolvability of other aspects of the phenotype. Disentangling and better understanding these 

processes and their consequences on the evolutionary history of the primates will serve to provide 

an enhanced inference model for understanding the evolutionary morphology of the fossil 

hominins. 
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Table 1. Anatomical definitions of craniomandibular landmarks digitized in the present study, and the cranial regions to which 

these landmarks contribute.  Landmarks and cranial regions are depicted in Figures 1-4.   

 Landmark Anatomical definition  Cranial Regions 

Midline   

1 Alveolon The intersection of the interpalatal suture and a line tangent to the posterior margins of the alveolar 

processes 

F, Pl 

2 Bregma The point where the coronal and sagittal sutures intersect V, Fr, P 

3 Basion The point where the anterior margin of the foramen magnum intersects the midsagittal plane C, O 

4 Glabella Most anterior midline point on the frontal bone F, V, Fr, UF 

5 Hormion The midline point of attachment of the vomer and sphenoid bones C, S 

6 Inion The midline point where the superior nuchal lines merge in the external occipital protuberance C, V, O 

7 Incisivon The most posterior inferior point on the incisive fossa F, M, Pl 

8 Lambda The midline point where the sagittal and lambdoid sutures intersect.  V, O, P 

9 Nasion The point of intersection of the nasofrontal suture and the midsagittal plane. F, Fr, UF 

10 Nasal depth The deepest point of inflection of the nasal profile F, UF 

11 Opisthion The point where the posterior margin of the foramen magnum intersects the midsagittal plane C, O,C 

12 Ophryon The midline point of inflection posterior to the brow ridges V, Fr, V 

13 Palatomaxillare The midline point of intersection of the palatine and the maxillary bones F, M, Pl 

14 Prosthion The most anterior midline point on the maxillary alveolar process between the two central incisors F, M, Pl  

15 Sphenobasion The midline point on the sphenooccipital suture C, O, S 

16 Subspinale The midline point at which the inferior edge of the nasal spine becomes the anterior edge of the maxilla F, M, Pl, UF 

Bilateral   

17 Alare The most lateral point on the nasal aperture taken perpendicular to the nasal height F, M, UF 

18 Alveolare The most anterior point on the alveolus of the first molar F, M, Pl 

19 C/P3 The most inferior point on the external surface of the maxilla between the canine and P3 F, M, Pl 

20 Posterior M2 The point on the lateral alveolus distal to M2 F, M, Pl 

21 Asterion The point where the lambdoid, parietomastoid and occipitomastoid sutures meet V, C, O, P, T 

22 Carotid canal (lat) The most lateral point on the carotid canal C, T 

23 Carotid canal (med) The most medial point on the carotid canal C, T 

24 Coronale The most lateral point on the coronal suture V, Fr, P 

25 Dacryon  The point of intersection of the frontolacrimal and lacrimomaxillary suture F, Fr, M, UF 

26 Ext aud meatus (ant) The most anterior point on the margin of the external auditory meatus V, T 

27 Ext aud meatus (pos) The most posterior point on the margin of the external auditory meatus V, T 

28 Ext palate length The point on the inferior surface of the maxilla that denotes the most posterior point of the alveolar process F, M, Pl 

29 Euryon (parietal) The most lateral point on the parietals that defines the greatest cranial breadth on the parietal V, P 

30 Frontomalare orbitale  The point where the zygomaticofrontal suture crosses the orbital margin F, Fr, Z, UF, Zt 

31 Frontomalare temporale The most lateral point on the zygomaticofrontal suture F, Fr, Z, Zt 

32 Foramen ovale (ant) The most anterior point on the foramen ovale V, S 

33 Foramen ovale (pos) The most posterior point on the foramen ovale V, S 
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34 Foramen magnum (lat) The most lateral point on the margin of the foramen magnum and posterior to occipital condyle C, O 

35 Frontozygomatico-

sphenoid (FRED) 

The point of intersection of the frontozygomatic, zygomaticosphenoid and sphenofrontal sutures 

 

V, F, Fr, S, Z, Zt 

36 Infranasion The point of intersection of the nasofrontal, nasomaxillary and maxillofrontal sutures F, Fr, M, UF 

37 Infratemporale The most medial point on the infratemporal crests  V, S 

38 Jugular (lat) The most inferior, lateral point on the margin of the jugular foramen C, O, T 

39 Jugular (med) The most inferior, medial point on the margin of the jugular foramen C, O, T 

40 Jugale The point in the depth of the notch between the temporal and frontal process of the zygomatic bone F, Z, Zt 

41 Krotaphion The most posterior extent of the sphenoparietal suture (pterion) V, P, S, T 

42 Mandibular fossa (lat) The most lateral point on the mandibular fossa V, T, Zt 

43 Max maxillary curve The point in the depth of the notch between the zygomaxillary suture and the alveolar process F, M, Pl 

44 Mastoidale The most inferior, lateral point on the mastoid process C, T 

45 Nasomaxillare The most inferior point on the nasomaxillary suture F, M, UF 

46 Occipitocondyle (ant) The most anterior, inferior point on the occipital condyle C, O 

47 Occipitocondyle (lat) The most lateral, inferior point on the occipital condyle C, O 

48 Orbitale The most inferior midpoint on the orbital margin F, Z, UF, Zt 

49 Orbitale (sup) The most superior midpoint of the orbital margin F, Fr, UF 

50 Palatomaxillare (lat) The most lateral point on the palato-maxillary suture F, M, Pl 

51 Petrosal The most anterior point of the petrous element of the temporal bone C, T, S 

52 Porion The most superior point on the margin of the external auditory meatus V, T 

53 Radiculare The point of maximum inflection of the zygomatic processes V, T, Zt 

54 Sphenomaxillare (sup) The most superior, lateral point of contact between the maxilla and the lateral pterygoid plate of the 

sphenoid 

V, F, S 

55 Sphenobasion (lat) The most lateral, inferior point on the sphenooccipital synchondrosis C, O, S 

56 Sphenion The most anterior extent of the sphenoparietal suture (Pterion) V, Fr, P, S 

57 Sphenosquamosal The point of intersection of the infratemporal crest and sphenosquamosal suture V, S, T, Zt 

58 Stenion The most medial point on the sphenosquamosal sutures (same as mfm) V, C, S, T, Zt 

59 Styloid foramen The most anterior, inferior point on the styloid foramen C, T 

60 Sphenozygomatic (pos) The most posterior, inferior point on the sphenozygomatic suture V, F, S, Zt 

61 Temporal fossa (pos) The most posterior, inferior point on the temporal fossa  V, T, Zt 

62 Zygotemporale (inf) The most inferior point on the zygomaticotemporal suture V, F, T, Z, Zt 

63 Zygotemporale (sup) The most superior point on the zygomaticotemporal suture V, F, T, Z, Zt 

64 Zygomaxillare The most inferior, anterior point on the zygomaticomaxillary suture F, M, Z, UF, Zt 

65 Zygoorbitale The point where the zygomaticomaxillary suture intersects with the inferior orbital margin F, M, Z, UF, Zt 

66 Zygion The most lateral point on the surface of the zygomatic arch  V, Z, Zt 

Mandibular   

1 Condylion (med) The most medial point on the superior surface of the mandibular condyle Mn 

2 Condylion (lat) The most lateral point on the superior surface of the mandibular condyle Mn 

3 I2 (lat) The most distal point on the alveolus lateral to I2 Mn 

4 Canine/P3 (lat) The most lateral point on the alveolus between the canine and P3 Mn 
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5 Alveolare The most lateral point on the alveolus anterior to the M1 Mn 

6 M1 (pos) The most lateral point on the alveolus posterior to the M1 Mn 

7 M2 (pos) The most lateral point on the alveolus posterior to the M2 Mn 

8 Gonion The point of maximum curvature on the posterior-inferior border where posterior ramus and corpus intersect Mn 

9 Sigmoid notch The most superior point of maximum inflection in the depth of the sigmoid notch Mn 

10 Coronion The most superior point on the coronoid process Mn 

11 Infradentale The most superior midline point on the buccal surface of the alveolus Mn 

12 Pogonion The most anterior midline point on the mental eminence  Mn 

13 Gnathion The most inferior midline point on the mandibular symphysis Mn 

14 Mandibular orale The most superior midline point on the lingual surface of the alveolus Mn 

V = vault, F = face, C = chondrocranium, Fr = frontal, O = occipital, P = parietal, T = temporal, M = maxilla, Mn= mandible, S = 

sphenoid, Z = zygomatic, Pl = palatomaxilla, Zt = zygotemporal, UF = upper face. lat = lateral, med = medial, ant = anterior, pos = 

posterior,  sup = superior, inf = inferior. 
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Table 2. Papionin taxa included in the present study, sample sizes, and the museum collections 

from which each was derived.  

Taxa   Sample sizes  

 Museum Collections Males Females Total 

Cercocebus agilis AMNH, MCZ 11 10 21 

Cercocebus atys FMNH, MCZ, NMNH 8 8 16 

Cercocebus torquatus AMNH, FMNH, MCZ, NMNH 18 10 28 

Lophocebus albigena AMNH, FMNH, NMNH 18 12 30 

Macaca fascicularis NMNH 17 13 30 

Macaca mulatta* MCZ, NMNH 6 22 28 

Macaca nemestrina AMNH, FMNH, MCZ, NMNH 18 22 40 

Macaca sylvanus AMNH, MCZ, NMNH 15 11 26 

Mandrillus sphinx AMNH, FMNH, MCZ, NMNH 20 11 31 

Papio anubis AMNH, FMNH, NMNH 16 13 29 

Papio cynocephalus* AMNH, FMNH, MCZ, NMNH 13 7 20 

Papio hamadryas* AMNH, FMNH, MCZ, NMNH 17 4 21 

Papio papio* AMNH, FMNH, NMNH 15 5 20 

Papio ursinus FMNH, NMNH 20 10 30 

AMNH = American Museum of Natural History (New York), FMNH = Field Museum of 

Natural History (Chicago), MCZ = Museum of Comparative Zoology (Harvard), NMNH = 

National Museum of Natural History (Washington DC).  

*Taxon included in combined-sex analyses only.  
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Table 3. Results of Mantel tests between morphological and molecular matrices for each of the four data sets: complete 14 taxon 

combined-sex data set, reduced 10 taxon combined-sex data set, reduced 10 taxon male-only data set, and reduced 10 taxon female-

only data set. Cranial regions are ordered according to r-value in the combined-sex 14 taxon analysis from strongest (largest r-values) 

to the weakest correlations. Significant correlations (α < 0.05) are indicated in bold. Correlations that remain significant after a 

sequential Bonferroni correction are indicated with an asterisk. Func-Dev = Functional-Developmental regions. 

Cranial 

region 

category 

Predicti

on* 

Cranial region 14 taxon 

Mixed Sex 

10 taxon 

Mixed Sex 

10 taxon  

Males 

10 taxon 

Females 

   r-value p-value r-value p-value r-value p-value r-value p-value 

Entire Cranium   0.477* 0.001 0.066 0.319 0.096 0.230 0.205 0.074 

Func-Dev 3 Chondrocranium 0.557* <0.001 0.440* 0.006 0.513* 0.004 -0.020 0.457 

 1 Splanchnocranium 0.413* 0.002 0.205 0.091 0.170 0.122 0.149 0.154 

 2 Neurocranium 0.335* <0.001 0.290 0.032 0.074 0.313 0.100 0.222 

Bones 1 Zygomatic 0.470* <0.001 0.333 0.016 0.272 0.040 0.249 0.056 

 2 Maxilla 0.453* <0.001 0.100 0.250 0.160 0.124 0.079 0.268 

 3 Temporal 0.452* <0.001 0.348 0.012 0.362* 0.016 0.223 0.055 

 3 Occipital 0.419* <0.001 0.314 0.017 0.102 0.225 0.284 0.023 

 2 Frontal 0.376* 0.007 0.204 0.093 0.154 0.122 0.185 0.110 

 2 Parietal 0.175 0.088 0.082 0.274 0.019 0.421 0.173 0.120 

 2 Sphenoid 0.048 0.366 -0.091 0.274 -0.031 0.419 0.107 0.217 

Masticatory 2 Chondrocranium 0.557* <0.001 0.440 0.006 0.513 0.004 -0.020 0.457 

 1 Zygotemporal 0.498* 0.001 0.325 0.022 0.233 0.064 0.281 0.037 

 3 Palatomaxilla 0.440* 0.001 0.206 0.073 0.119 0.188 0.163 0.139 

 1 Upper face 0.425* 0.002 0.160 0.158 0.163 0.133 0.114 0.194 

 3 Mandible 0.418* <0.001 0.237 0.043 0.220 0.079 0.082 0.297 

 2 Neurocranium 0.335* <0.001 0.290 0.032 0.074 0.313 0.100 0.222 

* Numbers signify which regions in each subset (functional/developmental, masticatory strain, and individual bones) were found to be 

significantly more genetically congruent in hominoids based on Dow-Cheverud tests (see von Cramon-Taubadel and Smith, 2012).  

Thus, 1 is significantly better than 2, which is significantly better than 3.  
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Table 4. Results of all Dow-Cheverud test comparisons for the 14 taxon combined-sex data set. 

Cranial regions are ordered according to the results of the Mantel tests from strongest (largest r-

values) to the weakest correlations. Lower diagonals = p1Z values, upper diagonals = p-values. 

Significant differences (α < 0.05) are indicated in bold. Differences that remain significant after a 

sequential Bonferroni correction are indicated with an asterisk. Chondro = Chondrocranium, 

Neuro= Neurocranium, Palatomax = Palatomaxilla, Zygotemp = Zygotemporal, Zygomat= 

Zygomatic.  

Func-Dev Chondro Cranium Splanchno Neuro    

Chondro  0.086 0.028 0.015     

Cranium 0.150  0.132 0.057     

Splanchno -0.218 -0.214  0.175     

Neuro -0.271 -0.194 0.111      

Bones Cranium Zygomat Maxilla Temporal Occipital Frontal Parietal Sphenoid 

Cranium  0.480 0.320 0.365 0.292 0.079 0.013 <0.001* 

Zygomatic -0.010  0.413 0.403 0.344 0.109 0.030 0.003 

Maxilla -0.045 0.026  0.474 0.398 0.108 0.020 0.002* 

Temporal -0.036 -0.022 -0.001  0.385 0.269 0.016 0.001* 

Occipital -0.067 0.054 -0.036 0.041  0.386 0.027 <0.001* 

Frontal -0.168 0.129 0.137 0.075 0.044  0.064 0.005 

Parietal -0.284 0.238 -0.268 0.267 -0.231 -0.191  0.164 

Sphenoid -0.432 0.350 -0.396 0.401 -0.381 -0.331 -0.139  

Masticatory Chondro Zygotemp Cranium Palatomax Upper face Mandible Neuro  

Chondro  0.194 0.086 0.100 0.035 0.060 0.015  

Zygotemp -0.096  0.362 0.224 0.133 0.151 0.020  

Cranium 0.150 0.043  0.316 0.198 0.332 0.057  

Palatomax -0.152 0.086 -0.058  0.355 0.339 0.141  

Upper face -0.196 -0.123 -0.087 -0.033  0.455 0.150  

Mandible -0.186 0.121 -0.045 0.045 0.011  0.191  

Neuro -0.271 0.229 -0.194 0.126 0.114 -0.108   
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Table 5. Results of all Dow-Cheverud test comparisons for the reduced 10 taxon combined-sex 

data set. Cranial regions are ordered according to the results of the Mantel tests for this data set 

from strongest (largest r-values) to the weakest correlations. Lower diagonals = p1Z values, 

upper diagonals = p-values. Significant differences (α < 0.05) are indicated in bold. Differences 

that remain significant after a sequential Bonferroni correction are indicated with an asterisk.  

Chondro = Chondrocranium, Neuro= Neurocranium, Palatomax = Palatomaxilla, Zygotemp = 

Zygotemporal, Zygomat= Zygomatic.  

Func-Dev Chondro Neuro Splanchno Cranium    

Chondro  0.095 0.024 0.010     

Neuro -0.183  0.192 0.054     

Splanchno -0.301 -0.124  0.136     

Cranium -0.333 -0.231 -0.166      

Bones Temporal Zygomat Occipital Frontal Maxilla Parietal Cranium Sphenoid 

Temporal  0.442 0.380 0.138 0.012 0.022 0.006 0.002* 

Zygomat -0.190  0.467 0.097 0.019 0.071 0.046 0.011 

Occipital -0.038 -0.169  0.210 0.054 0.017 0.052 <0.001* 

Frontal -0.159 -0.179 -0.111  0.135 0.195 0.166 0.022 

Maxilla -0.326 -0.303 -0.213 -0.171  0.470 0.407 0.066 

Parietal -0.261 -0.209 -0.286 -0.126 -0.019  0.455 0.058 

Cranium -0.352 -0.239 -0.227 -0.130 -0.032 -0.014  0.101 

Sphenoid -0.421 -0.338 -0.447 -0.287 -0.215 -0.217 -0.168  

Masticatory Chondro Zygotemp Vault Mandible Palatomax Upper face Cranium  

Chondro  0.139 0.095 0.013 0.022 0.004 0.010  

Zygotemp -0.159  0.344 0.182 0.114 0.042 0.010  

Vault -0.183 -0.056  0.334 0.254 0.128 0.050  

Mandible -0.331 -0.124 -0.060  0.350 0.173 0.133  

Palatomax -0.287 -0.147 -0.092 -0.005  0.253 0.203  

Upper face -0.371 -0.246 -0.167 -0.123 -0.100  0.252  

Cranium -0.333 -0.312 -0.231 -0.160 -0.129 -0.098   
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 Table 6. Results (r-values) of the allometrically size corrected Mantel tests compared with the original Mantel test results.  Cranial 

regions are ordered according to their original Mantel test results in the 14 taxon data set. All significant correlations (α < 0.05) are 

highlighted in bold. Correlations that remain significant after a sequential Bonferroni correction are indicated with an asterisk. 

Zygotemp = Zygotemporal, Chondro = Chondrocranium, Neuro= Neurocranium, Palatomax = Palatomaxilla. 

Cranial 

Regions 

 14 taxon 

Mixed Sex 

 10 taxon 

Mixed Sex 

10 taxon 

Male-only 

10 taxon 

Female-only 

 Original 

r-value 

Original 

p-value 

New r-

value 

New p-

value 

Original 

r-value 

Original 

p-value 

New 

r-value 

New p-

value 

Original 

r-value 

Original 

p-value 

New r-

value 

New p-

value 

Original 

r-value 

Original 

p-value 

New 

r-

value 

New p-

value 

Cranium 0.477* 0.001 0.304* 0.012 0.066 0.319 0.135 0.190 0.096 0.230 0.235 0.043 0.205 0.074 0.354 0.006 

Chondro 0.557* <0.001 0.512* 0.001 0.440* 0.006 0.446* 0.002 0.513* 0.004 0.453* 0.001 -0.020 0.457 0.089 0.275 

Splanchno 0.413* 0.002 0.387* <0.001 0.205 0.091 0.514* 0.002 0.170 0.122 0.388* 0.002 0.149 0.154 0.440* 0.001 

Neuro 0.335* <0.001 0.351* 0.004 0.290 0.032 0.334* 0.028 0.074 0.313 0.235* 0.047 0.100 0.222 0.050 0.361 

Zygomatic 0.470* <0.001 0.487* 0.001 0.333 0.016 0.348 0.019 0.272 0.040 0.299 0.026 0.249 0.056 0.268 0.047 

Maxilla 0.453* <0.001 0.385* 0.002 0.100 0.250 0.141 0.163 0.160 0.124 0.260 0.031 0.079 0.268 0.011 0.419 

Temporal 0.452* <0.001 0.330* <0.001 0.348 0.012 0.416* 0.002 0.362* 0.016 0.431* 0.001 0.223 0.055 0.241 0.042 

Occipital 0.419* <0.001 0.432* 0.001 0.314 0.017 0.324* 0.009 0.102 0.225 0.200 0.087 0.284 0.023 0.271 0.028 

Frontal 0.376* 0.007 0.348* 0.002 0.204 0.093 0.202 0.084 0.154 0.122 0.164 0.129 0.185 0.110 0.222 0.077 

Parietal 0.175 0.088 0.142 0.097 0.082 0.274 0.096 0.261 0.019 0.421 0.080 0.283 0.173 0.120 0.079 0.253 

Sphenoid 0.048 0.366 0.034 0.349 -0.091 0.274 -0.118 0.207 -0.031 0.419 -0.036 0.441 0.107 0.217 0.072 0.293 

Zygotemp 0.498* 0.001 0.356* 0.001 0.325 0.022 0.362* 0.004 0.233 0.064 0.408* 0.003 0.281 0.037 0.199 0.069 

Palatomax 0.440* 0.001 0.360* <0.001 0.206 0.073 0.398* <0.001 0.119 0.188 0.449* 0.004 0.163 0.139 0.199 0.090 

Upper face 0.425* 0.002 0.420* <0.001 0.160 0.158 0.347* <0.001 0.163 0.133 0.388* 0.001 0.114 0.194 0.248 0.037 

Mandible 0.418* <0.001 0.317* 0.001 0.237 0.043 0.318* 0.006 0.220 0.079 0.412* 0.001 0.082 0.297 0.071 0.385 



44 

 

Table 7. Results of all Dow-Cheverud test comparisons for the size-adjusted full 14 taxon 

combined-sex data set. Cranial regions are ordered according to the results of the Mantel tests for 

this data set from strongest (largest r-values) to the weakest correlations. Lower diagonals = p1Z 

values, upper diagonals = p-values. Significant differences (α < 0.05) are indicated in bold. 

Differences that remain significant after a sequential Bonferroni correction are indicated by an 

asterisk. Chondro = Chondrocranium, Neuro= Neurocranium, Palatomax = Palatomaxilla, 

Zygotemp = Zygotemporal, Zygomat= Zygomatic.  

Func-Dev Chondro Splanchno Neuro Cranium    

Chondro  0.190 0.119 0.036     

Splanchno -0.122  0.390 0.202     

Neuro -0.152 -0.035  0.359     

Cranium 0.228 0.121 0.044      

Bones Zygomat Occipital Maxilla Frontal Temporal Cranium Parietal Sphenoid 

Zygomat  0.336 0.234 0.067 0.115 0.110 0.010 0.003 

Occipital 0.050  0.368 0.264 0.194 0.197 0.013 <0.001* 

Maxilla 0.094 0.048  0.392 0.329 0.219 0.045 0.017 

Frontal 0.174 0.082 0.037  0.449 0.421 0.061 0.006 

Temporal 0.132 -0.112 -0.067 -0.014  0.408 0.105 0.022 

Cranium 0.159 0.125 0.116 0.038 0.035  0.138 0.078 

Parietal 0.267 -0.269 -0.229 -0.194 0.176 -0.144  0.198 

Sphenoid -0.377 -0.391 -0.288 -0.312 -0.259 -0.215 -0.111  

Masticatory Chondro Upper Face Palatomax Zygotemp Neuro Mandible Cranium  

Chondro  0.240 0.122 0.115 0.119 0.124 0.036  

Upper Face -0.098  0.292 0.257 0.350 0.313 0.281  

Palatomax -0.143 -0.086  0.495 0.465 0.463 0.298  

Zygotemp -0.169 -0.091 0.005  0.484 0.454 0.278  

Neuro -0.152 0.057 0.007 0.005  0.439 0.359  

Mandible -0.154 0.060 -0.012 -0.184 -0.019  0.263  

Cranium 0.228 0.095 0.069 0.081 0.044 0.095   
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Table 8. Results of all Dow-Cheverud test comparisons for the size-adjusted combined-sex 10 taxon data set. 

Cranial regions are ordered according to the results of the Mantel tests for this data set from strongest (largest r-

values) to the weakest correlations. Lower diagonals = p1Z values, upper diagonals = p-values. Significant 

differences (α < 0.05) are indicated in bold. Differences that remain significant after a sequential Bonferroni 

correction are indicated by an asterisk. Chondro = Chondrocranium, Neuro= Neurocranium, Palatomax = 

Palatomaxilla, Zygotemp = Zygotemporal, Zygomat= Zygomatic.  

Func-Dev Splanchno Chondro Neuro Cranium    

Splanchno  0.332 0.111 0.006*     

Chondro 0.061  0.247 0.016     

Neuro 0.179 -0.106  0.128     

Cranium 0.346 0.310 0.164      

Bones Temporal Zygomatic Occipital Frontal Maxilla Cranium Parietal Sphenoid 

Temporal  0.386 0.244 0.107 0.014 0.012 0.011 0.003 

Zygomatic -0.053  0.462 0.120 0.125 0.116 0.094 0.005 

Occipital 0.105 0.016  0.234 0.088 0.115 0.024 0.005 

Frontal 0.175 0.180 0.105  0.338 0.312 0.258 0.019 

Maxilla 0.301 0.179 0.192 -0.063  0.498 0.385 0.038 

Cranium 0.328 0.174 0.181 0.006 0.006  0.391 0.056 

Sphenoid 0.391 0.370 -0.356 -0.291 -0.234 -0.228  0.090 

Parietal 0.322 0.177 -0.280 0.092 -0.044 -0.033 -0.191  

Masticatory Chondro Palatomax Zygotemp UpperFace   Neuro Mandible Cranium 

Chondro  0.389 0.254 0.253 0.247 0.183 0.016  

Palatomax -0.039  0.375 0.497 0.387 0.235 0.049  

Zygotemp -0.105 -0.036  0.480 0.426 0.413 0.039  

UpperFace -0.097 -0.064 0.001  0.351 0.351 0.072  

Neuro -0.106 0.051 0.013 0.010  0.445 0.128  

Mandible -0.136 0.174 0.024 0.050 -0.013  0.109  

Cranium 0.310 0.232 0.236 0.207 0.164 0.174   
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Table 9. Results of all Dow-Cheverud test comparisons for the size-adjusted male-only 10 taxon data set. 

Cranial regions are ordered according to the results of the Mantel tests for this data set from strongest (largest r-

values) to the weakest correlations. Lower diagonals = p1Z values, upper diagonals = p-values. Significant 

differences (α < 0.05) are indicated in bold. No differences remained significant after a sequential Bonferroni 

correction. Chondro = Chondrocranium, Neuro= Neurocranium, Palatomax = Palatomaxilla, Zygotemp = 

Zygotemporal, Zygomat= Zygomatic.  

Func-Dev Chondro Splanchno Cranium Neuro    

Chondro  0.357 0.089 0.107     

Splanchno -0.053  0.147 0.142     

Cranium 0.201 0.160  0.485     

Neuro -0.178 0.162 0.003      

Bones Temporal Zygomat Maxilla Cranium Occipital Frontal Parietal Sphenoid 

Temporal  0.235 0.094 0.035 0.290 0.038 0.006 0.016 

Zygomat 0.116  0.413 0.349 0.290 0.144 0.152 0.041 

Maxilla 0.194 0.031  0.400 0.357 0.265 0.104 0.347 

Cranium 0.246 0.052 0.028  0.401 0.290 0.147 0.037 

Occipital -0.037 0.070 -0.055 -0.037  0.441 0.123 0.115 

Frontal 0.252 0.159 0.087 -0.077 0.033  0.294 0.101 

Parietal 0.309 0.154 -0.172 -0.141 -0.162 -0.082  0.242 

Sphenoid 0.310 0.246 -0.055 -0.236 -0.165 -0.169 -0.097  

Masticatory Chondro Palatomax Zygotemp Upper Face   Neuro Mandible Cranium  

Chondro  0.517 0.371 0.323 0.107 0.395 0.089  

Palatomax -0.002  0.394 0.308 0.094 0.393 0.093  

Zygotemp -0.048 -0.036  0.404 0.084 0.495 0.080  

Upper Face -0.063 -0.070 -0.028  0.188 0.378 0.123  

Neuro -0.178 0.176 0.180 0.131  0.128 0.485  

Mandible -0.042 0.036 -0.005 -0.042 -0.150  0.132  

Cranium 0.201 0.189 0.192 0.164 0.003 0.167   
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Table 10. Results of all Dow-Cheverud test comparisons for the size-adjusted female-only 10 

taxon data set. Cranial regions are ordered according to the results of the Mantel tests for this 

data set from strongest (largest r-values) to the weakest correlations. Lower diagonals = p1Z 

values, upper diagonals = p-values. Significant differences (α < 0.05) are indicated in bold. No 

differences remained significant after a sequential Bonferroni correction. Chondro = 

Chondrocranium, Neuro= Neurocranium, Palatomax = Palatomaxilla, Zygotemp = 

Zygotemporal, Zygomat= Zygomatic.  

Func-Dev Splanchno Cranium Chondro Neuro    

Splanchno  0.188 0.013 0.019     

Cranium 0.128  0.058 0.031     

Chondro 0.315 -0.208  0.437     

Neuro -0.295 -0.265 -0.027      

Bones Cranium Occipital Zygomat Temporal Frontal Parietal Sphenoid Maxilla 

Cranium  0.309 0.347 0.181 0.193 0.060 0.050 0.006 

Occipital -0.070  0.489 0.424 0.406 0.140 0.097 0.035 

Zygomat -0.062 -0.002  0.453 0.413 0.172 0.163 0.117 

Temporal -0.127 -0.027 0.018  0.476 0.121 0.169 0.032 

Frontal -0.126 0.036 0.039 0.013  0.190 0.240 0.059 

Parietal -0.209 -0.156 0.122 0.158 -0.155  0.501 0.304 

Sphenoid -0.224 -0.176 0.133 0.143 -0.104 -0.006  0.323 

Maxilla -0.352 0.235 0.179 0.270 -0.212 0.075 0.055  

Masticatory Cranium Upper Face Zygotemp Palatomax Chondro Mandible Neuro  

Cranium  0.215 0.033 0.080 0.058 0.019 0.031  

Upper Face -0.117  0.354 0.389 0.219 0.103 0.151  

Zygotemp -0.258 0.051  0.494 0.240 0.095 0.173  

Palatomax -0.213 0.049 -0.001  0.260 0.233 0.182  

Chondro -0.208 0.123 0.094 0.082  0.462 0.437  

Mandible -0.295 0.170 0.182 0.115 -0.014  0.446  

Neuro -0.265 0.138 0.129 0.122 -0.027 -0.021   
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Table 11. Results of all Dow-Cheverud test comparisons between the combined-sex and male-

only and female-only 10 taxon size-adjusted datasets. Cranial regions are ordered according to 

the results of the Mantel tests from strongest (largest r-values) to the weakest correlations. 

Significant differences (α < 0.05) are indicated in bold. Differences that remain significant after a 

sequential Bonferroni correction are indicated by an asterisk.  

 

Cranial 

region 

category 

Cranial region Size-adjusted 

males vs. 

combined sex 

Size-adjusted 

females vs. 

combined sex 

  p1z-

value 

p-value p1z-

value 

p-value 

Entire Cranium  0.109 0.235 -0.229 0.050 

Func-Dev Chondrocranium 0.008 0.458 -0.390* 0.001 

 Splanchnocranium -0.172 0.120 -0.121 0.204 

 Neurocranium -0.131 0.203 -0.292* 0.017 

Bones Zygomatic -0.129 0.180 -0.185 0.096 

 Occipital -0.253 0.038 -0.060 0.326 

 Maxilla 0.194 0.083 -0.219 0.049 

 Frontal -0.058 0.358 0.030 0.412 

 Temporal 0.024 0.425 -0.313* 0.008 

 Parietal -0.059 0.355 -0.031 0.394 

 Sphenoid 0.182 0.088 0.218 0.050 

Masticatory Upper face 0.117 0.195 -0.187 0.094 

 Palatomaxilla 0.083 0.329 -0.369* 0.002 

 Zygotemporal 0.128 0.171 -0.334* 0.003 

 Mandible 0.188 0.098 -0.305* 0.008 
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FIGURES 

Figure 1. Anatomical position of all 116 cranial landmarks digitized. Full anatomical 

descriptions of each landmark can be found in Table 1. Different colors here depict the three 

main cranial regions defined using developmental and functional criteria; pink = 

chondrocranium, yellow = splanchnocranium, blue = neurocranium. 

 

 

Figure 2. Landmark configurations used to describe the shape of cranial regions defined on the 

basis of masticatory function; yellow = upper face, blue = zygotemporal, and pink = 

palatomaxilla. All landmark descriptions can be found in Figure 1 and Table 1. 
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Figure 3. Landmark configurations used to describe the shape of cranial regions defined on the 

basis of individual cranial bones; yellow = temporal, dark blue = zygomatic, light blue = frontal, 

purple = parietal, orange = occipital, green = sphenoid, pink = maxilla. All landmark descriptions 

can be found in Figure 1 and Table 1. 

 

Figure 4. Landmark configuration used to describe the shape of the mandible. Numbers match 

the anatomical descriptions given in Table 1. 
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Figure 5. Consensus molecular phylogeny for the papionin taxa included in the present study 

based on the current published literature. Nodes are numbered (italics) according to Perelman et 

al. (2011) and branch lengths are taken from the maximum likelihood values presented there. 

Branch lengths in bold are derived from additional published sources on specific molecular 

relationships not covered by Perelman et al. (2011); Newman et al. (2004) and McGoogan et al. 

(2007) in the case of Papio cynocephalus and Papio ursinus, and McGoogan et al. (2007) and 

Springer et al. (2012) in the case of Cercocebus atys. Please see text for further details. 

 


