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Abstract 

X-ray tomography has provided a non-destructive means for microstructure characterization in 3D 

and 4D. A stochastic procedure to accurately reconstruct material microstructure from limited-angle 

x-ray tomographic projections is presented and its utility is demonstrated by reconstructing a variety 

of distinct heterogeneous materials and elucidating the information content of different projection data 

sets. A small number of projections (e.g., 20 - 40) are necessary for accurate reconstructions via the 

stochastic procedure, indicating its high efficiency in using limited structural information.  
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The physical properties and performance of heterogeneous materials are determined by their complex 

microstructures and how such microstructures evolve under various conditions [1-2]. Traditionally, 

the study of material microstructure has been limited by two dimensional (2D) imaging techniques. 

This approach is often inaccurate or inadequate for solving many cutting-edge problems. It is also 

often laborious and time-consuming. Advances in experimental methods, analytical techniques, and 

computational approaches, have now enabled the development of three dimensional (3D) analyses [3]. 

The study of 3D microstructures under an external stimulus (e.g., stress, temperature, and 

environment) as a function of time (i.e., 4D materials science) is also particularly exciting. Examples 

include an understanding of time-dependent deformation structures, phase transformations, 

compositional evolution, magnetic domains, to name just a few. 

 

X-ray tomography is an extremely attractive, non-destructive technique for characterizing 

microstructure in 3D and 4D [4-6]. The use of high brilliance and partially coherent synchrotron light 

allows one to image multi-component materials from the sub-micrometer to nanometer range. In x-ray 

tomography, 2D projections are usually obtained at small angular increments. Given a sufficiently 

large number of such 2D projections, tomographic reconstruction techniques such as the 

filtered-back-projection algorithm [7], algebraic reconstruction techniques [8], as well as 

trajectory-based direct iterative reconstruction method [9] can be employed to generate a grayscale 

image of the microstructure. Further segmentation and thresholding analysis are used to resolve 

details of individual material phases and produce accurate digital representations of the 3D 

microstructure. Such data sets can be used to quantify the microstructure, and/or can be used as an 

input for microstructure-based modeling. Thus, x-ray tomography is an excellent technique that 

eliminates destructive cross-sectioning, and allows for superior resolution and image quality with 

minimal sample preparation [10-16].  

 

The large number of 2D projections required for traditional reconstruction algorithms strongly limits 

the application of this technique in 4D materials science. An extremely large volume of data is usually 

needed as the input for the reconstruction algorithms even for a single “snapshot” of the 

microstructure at a given time-step. Characterizing an entire microstructural evolution process, at 

multiple time steps, may lead to hundreds of TB of data. Efficiently storing, retrieving, and 
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maintaining such large data streams are a significant challenge to the materials community. Therefore, 

it is highly desirable to devise alternative reconstruction procedures that can render accurate virtual 

microstructures from only a handful of 2D projections. This will not only significantly reduce the 

volume of tomography data required to characterize a 4D process but also improve the temporal 

resolution since the time interval between successive snapshots can be much shorter due to the smaller 

number of projections acquired. 

 

If the material of interest only contains a small number of distinct phases and the phase properties (i.e., 

the attenuation coefficients) are known a priori (the focus of this paper), the reconstruction problem 

amounts to distributing different phases in a predefined discrete regular grid (e.g., simple cubic 

lattice), which is the focus of discrete tomography [17, 18]. Discrete tomography is closely related to 

several other mathematical fields, including number theory [19, 20], discrete geometry [21, 22] and 

combinatorics [23, 24]. It typically deals with reconstructions from a small number of projections and 

several associated algorithms have been devised. For example, the discrete algebraic reconstruction 

technique (DART) [25, 26] employs iterative segmentation of grayscale reconstructions to improve 

the accuracy for interface regions. The generic iterative methods [27] generally update a 

reconstruction for each projection angle separately, and thus, the convergence and accuracy of the 

reconstruction depends on the angle selection schemes. In addition, a stochastic method [28, 29] has 

been devised to improve the quality of pre-reconstructed grain maps.  

 

Here, we present a stochastic optimization procedure to generate efficient and accurate 

reconstructions of heterogeneous material microstructures from limited-angle absorption contrast 

x-ray projections (i.e., limited tomography data). Our procedure is unique from previous discrete 

tomography reconstruction methods in several aspects: (i) no segmentation is needed in any stages of 

the reconstruction (in contrast to DART); (ii) projections of all angles are simultaneously considered 

and angle selections do not affect the convergence of the reconstruction (in contrast to the generic 

iterative methods); (iii) reconstructions both from scratch (random initial microstructure) and from 

pre-reconstructed structures can be generated. Moreover, as we will show below, our stochastic 

optimization procedure possesses excellent convergence behavior and is highly robust to noise in the 

projection data. We demonstrate the utility of our procedure by applying it to reconstruct a variety of 
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material microstructures in 2D and 3D and to quantitatively examine the information content of a 

given tomography data set. We find that highly accurate reconstructions can be obtained using only 20 

to 40 projections for the systems that we consider here. This suggests that the typical tomography data 

set that includes thousands of projections for a single microstructure may contain redundant structural 

information that can be possibly reduced to a much smaller minimal set without losing the accuracy in 

reconstruction compared to those obtained from the larger data sets. 

 

We explain our reconstruction procedure by considering a 2D binary material and the associated 

tomography data sets (i.e., projections) that are obtained using 2D parallel beam geometry. However, 

our procedure is general and can be applied to multiple phase materials, and other projection 

geometries. As schematically shown in Fig. 1, parallel rays are sent through a material and a detector 

behind the material can register the intensity of the rays passing through the sample. If we denote the 

position of a ray at the detector by r for the projection associated with angle θ, the total attenuation of 

the ray p(r, θ) due to absorption is given by  

0( , ) ln( / ) ( , )p r J J x y dsθ μ= = −∫ ,                       (1) 

where J0 and J are the intensity of the incident and attenuated ray, respectively, and 

(1) (2)
1 2( , ) ( , ) ( , )x y I x y I x yμ μ μ= + ,                      (2) 

and μi is the attenuation coefficient of phase i and I(i) is the indicator function of phase i, which is 

equal to 1 if the point is in phase i and equal to 0 otherwise, i.e., 

( )
( ) 1 ( , )

( , )
0

i
i x y V

I x y
otherwise

⎧ ∈
= ⎨
⎩

.                          (3) 

It can be seen that the phase indicator functions completely specify the material microstructure [1]. 

Thus, the goal of tomography reconstruction is to recover the phase indictor functions I(i) from the 

total attenuation (i.e., the projections) at different angles p(r, θ).  

 

Our reconstruction procedure is inspired by the stochastic optimization scheme developed by Yeong 

and Torquato to generate virtual microstructures from prescribed statistical morphological descriptors 

of the microstructure, i.e., various correlation functions associated with different phases of the 

material [30-33]. It works as follows. Given a prescribed set of tomographic projections (i.e., a set of 
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total attenuation values at prescribed angles p(r, θ) associated with a binary material), a trial binary 

microstructure is randomly generated (e.g., by assigning a phase to a pixel with certain probability). 

Then the attenuations values p(r, θ) associated with the trial microstructure at corresponding angles 

are computed. We define an energy functional E associated with the trial microstructure, which is the 

sum of the squared difference between the prescribed (p*) and trial attenuation (p) values, i.e.,  

[ ]2( , ) *( , )
r

E p r p r
θ

θ θ= −∑∑                          (4) 

Thus, the reconstruction problem is formulated as an energy minimization problem in which the 

trivial microstructure evolves in order to lower the associated energy E. Ideally, the “ground-state” 

trial microstructure, i.e., the one with E = 0 possesses a set of total attenuations that is identical to the 

actual microstructure. Such a “ground-state” structure is considered the reconstruction of the actual 

microstructure.  

 

The energy minimization problem is solved using a simulated annealing procedure [34]. Specifically, 

given an old (or initial) trial microstructure (with an energy Eold), a new trial microstructure is 

generated by changing a randomly selected pixel of phase i to phase j (i ≠ j); or by switching the 

position of two randomly chosen pixels belonging to different phases. The former operation is to 

change the volume fraction of the phases while the latter is to re-distribute the phases to change the 

morphology of the trial microstructure. After a new trial microstructure is generated, its energy Enew is 

computed using Eq. (4). The probability that this new trial microstructure will be accepted and will 

replace the old trial microstructure in the course of the evolution is given by  

( ) min 1,   exp expold new
acc

E Ep old new
T T

⎧ ⎫⎛ ⎞ ⎛ ⎞→ = ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭                      

 (5) 

where T is an effective temperature. In the beginning of the simulated annealing process, T is chosen 

to be high, leading to an acceptance probability of roughly one half. Then the temperature is gradually 

decreased according to a prescribed “cooling schedule”. In this way, the system is allowed to explore 

a sufficiently large configuration space so that it will not get stuck in shallow local energy minima. In 

this work, we use an exponential cooling schedule, i.e., T(t)/T0 = γt, where 0.95<γ<0.99. We note that 

although discrete reconstruction approaches using simulated annealing [35] or level-set method [36] 

were applied to reconstruct geometrically simple objects (e.g., the cross-section of a blood vessel) 

from a small number of projections, to the best of our knowledge, no stochastic optimization scheme 
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has been devised for the reconstruction complex heterogeneous materials from limited tomography 

data. 

 

To demonstrate the utility of our stochastic procedure, we have applied it to reconstruct a variety of 

material microstructures in 2D and 3D. For each target microstructure, we compute the associated set 

of projections (i.e., total attenuations) obtained by sending incident parallel rays at angles θ that are 

evenly distributed over [0, π], using Eq. (1). Without loss of generality, we have used μ1 = 1 and μ2 = 

0 for the binary materials. The number of projections used in a reconstruction is denoted as Nθ. In the 

subsequent reconstruction examples, the final energy Eq. (4) (or the “error” between the target and 

reconstructed attentions at corresponding angles) is smaller than 10-5. 

 

Figure 2A shows a 2D binary model microstructure that mimics a eutectic layered structure. The 

simulated projections at θ = 0 and π/2 in parallel beam geometry are shown in Fig. 2B. We use 

several different numbers of the projections for reconstructing this microstructure, i.e., Nθ = 5, 10, 20, 

and 40, in order to examine the information content of the tomographic data obtained at limited angles. 

The reconstructed microstructures are shown in Fig. 2C. An initial increase of the number of 

projections Nθ (e.g., from 5 to 10 and from 10 to 20) can lead to significantly improved reconstructed 

microstructures. However, further increasing Nθ (e.g., from 20 to 40) does not result in much 

improvement of the accuracy. To quantify the accuracy of the reconstructions, we introduce the 

following metric:  
* 2

,
( , ) ( , ) /a

x y
M I x y I x y N= −∑                        (6) 

where I(x,y) is the indicator function of the colored phase in the reconstructed microstructure and 

I*(x,y) is the indicator function of the black phase in the target microstructure. In other words, Ma is 

simply the fraction of misplaced pixels over the total number of pixels in the system. Figure 2D shows 

Ma as a function of Nθ for the model microstructures we studied. One can see quantitatively that as Nθ 

increases, Ma initial decreases and then reaches a plateau, i.e., further increasing the number of 

projections does not significantly improve accuracy any more. This is consistent with the visual 

comparisons of the reconstructed and target microstructures.  
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Figure 3 shows the reconstruction of a model microstructure composed of equal-sized spheres in a 

matrix (generated via Monte-Carlo simulations) (upper panels) and the reconstruction of a lead-tin 

alloy [37] in 3D (lower panels). In particular, 30 parallel/cone beam projections are used for the 

sphere-packing/alloy microstructure (see Figs. 3A and D). Again, it can be seen that the 

reconstructions (Figs. 3C and F) are virtually identical to the corresponding actual structures (Figs. 3B 

and E). The associated accuracy metrics Ma are respectively 0.048 and 0.035 for the sphere-packing 

and the lead-tin alloy structures. 

 

Finally, we show that our reconstruction procedure is sufficiently robust to noises in the projection 

data. We introduce noises in the simulated projection data by randomly varying the totally attenuation 

values in each detector bin with a prescribed average amount and use the perturbed data as input for 

the reconstruction algorithm. Figure 4A shows the target image (i.e., a model microstructure of 

particle reinforced composite) and B, C and D show the reconstructions from noisy projection data 

randomly perturbed by 1%, 5% and 10%. As the noise level increases, more and more 

matrix-associated (black) pixels are found in the particle phase, which decreases the quality of 

reconstruction. However, the shape, size and spatial distributions of the particle phase are still 

apparent even at the highest noise level. These results clear indicate the robustness of our stochastic 

reconstruction method against noise. Stochastic reconstructions from experimental tomography data 

to be reported elsewhere [38] also suggest that our procedure is sufficiently robust to noises from 

different sources.  

 

In summary, we have presented here a stochastic procedure to accurately reconstruct material 

microstructures from limited-angle projections. We have demonstrated the utility of this procedure by 

applying it to successfully reconstruct a number of complex microstructures. Our procedure also 

allowed us to elucidate the information content of the limited tomography data by quantitatively 

comparing the reconstructed microstructures to the target material. The fact that only a relative small 

number of projections are sufficient for each static microstructure suggests that our procedure could 

have fruitful applications in characterizing microstructure evolution over time (i.e., 4D materials 

science). For example, one could significantly improve the temporal resolution for the 

characterization of fast processes such as instable crack growth.  
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Fig. 1: A schematic illustration of a parallel-beam tomography system. The incident rays are parallel 

to one another and are attenuated as they pass through the material sample. The intensity of the 

attenuated rays is obtained using a detector, from which the total attenuation p(r, θ) can be computed. 

This figure schematically shows a profile of the total attenuation associated with angle θ.  

 

 

Fig. 2: Target 2D model microstructure that mimics typical eutectic structures (A) and the associated 

simulated parallel beam projections (B) at angles 0 (black curve) and π/2 (red curve). (C) 

Reconstructed microstructures from limited-angle projections via the stochastic procedure. The 

number of projections Nθ used for the reconstructions are given in the plot. It can be seen that as 

increases Nθ, the accuracy of the reconstructions is improved. (D) The accuracy metric Ma as a 

function of Nθ, which rapidly decays initially as Nθ increases.   
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Fig 3: Upper panels: The reconstruction of a packing of equal-sized spheres in a matrix. The linear 

size of the system is 100 μm. (A) The simulated projections at θ = 0 (upper panel) and π/2 (lower 

panel) associated with the structure. The colors indicate the rescaled total attenuation of the incident 

ray along a particular path, which is effective the total distance the ray travels within a material phase. 

The unit of the rescaled total attenuation is the length a pixel. (B) The target microstructure. (C) The 

reconstructed microstructure. Lower panels: The reconstruction of a lead-tin binary alloy. The linear 

size of the system is 60 μm. (D) The simulated projections at θ = 0 (upper panel) and π/2 (lower 

panel). (E) The target microstructure. (F) The reconstructed microstructure. 

 

 

Fig. 4: Reconstruction of a model microstructure of a particle-reinforced composite material (A) from 

projection data with 1% (B), 5% (C) and 10% noise (D).  




