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The purpose of this study was to examine in which way adding more indicators or
a covariate influences the performance of latent class analysis (LCA). We varied the
sample size (100 ≤ N ≤ 2000), number, and quality of binary indicators (between 4 and 12
indicators with conditional response probabilities of [0.3, 0.7], [0.2, 0.8], or [0.1, 0.9]), and
the strength of covariate effects (zero, small, medium, large) in a Monte Carlo simulation
study of 2- and 3-class models. The results suggested that in general, a larger sample size,
more indicators, a higher quality of indicators, and a larger covariate effect lead to more
converged and proper replications, as well as fewer boundary parameter estimates and
less parameter bias. Furthermore, interactions among these study factors demonstrated
how using more or higher quality indicators, as well as larger covariate effect size, could
sometimes compensate for small sample size. Including a covariate appeared to be
generally beneficial, although the covariate parameters themselves showed relatively large
bias. Our results provide useful information for practitioners designing an LCA study in
terms of highlighting the factors that lead to better or worse performance of LCA.
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INTRODUCTION
Latent class analysis (LCA) is a latent variable modeling tech-
nique that identifies latent (unobserved) subgroups of individuals
within a population based on nominal or ordinal indicators
(Vermunt and Magidson, 2004). LCA is similar to factor analysis
in that both methods use one or more latent variables to explain
associations among a set of observed variables. Whereas factor
analysis clusters observed variables into homogenous groups of
indicators, LCA clusters individuals into latent classes. To illus-
trate, Geiser et al. (2006) applied LCA to identify five subgroups of
individuals who used different cognitive strategies to solve men-
tal rotation problems. In another application, LCA classification
of eating disorder patients has shown better predictive validity of
mortality rates than classifications based on the DSM-IV criteria
(Crow et al., 2011).

The use of LCA in applied research has increased dramat-
ically over the past 10 years, as indicated by a search of the
PsycInfo database. Whereas in 2002, only 15 articles mentioned
LCA, this amount increased to 104 articles in 2013. Despite the
widespread interest in and use of LCA in the social sciences, many
researchers are still unsure about how different factors influ-
ence the performance of LCA. For example, in our experience
as statistical consultants, researchers often ask us questions like
“Can I apply LCA given my sample size?,” “How many indi-
cators can/should I use in my analysis?,” “Is it better if I use
all available indicators or should I use only a subset of indi-
cators given my sample size?,” or “Is adding a covariate to the
model beneficial or does it place an additional burden on the
estimation?”

Although a few studies have examined issues of sample size
(Finch and Bronk, 2011) and indicator quality (Collins and
Wugalter, 1992), many practical aspects related to the applica-
bility of LCA are still unclear. This includes the relevance of
the number and quality of latent class indicators and the effect
of covariates on the quality of parameter estimation in LCA.
Moreover, no study to our knowledge has yet examined the
interaction among such factors.

High quality indicators are those with strong relationships to
the latent class variable (i.e., showing conditional response prob-
abilities close to one or zero). Although using the best quality
indicators is ideal, this may not always be possible in practice.
Therefore, the question arises, under what conditions can lower
quality indicators be used and still produce reliable and unbiased
results? In the same vein, can high quality indicators compensate
for otherwise suboptimal conditions, such as a small sample size?
Is adding more indicators or a covariate generally beneficial or
detrimental to the quality of estimation in LCA?

In the present study, we aimed to address the following ques-
tions in particular: does the number and quality of latent class
indicators as well as the inclusion of a covariate have an influence
on the quality of the parameter estimation? Can the use of more
and/or higher quality latent class indicators as well as a covariate
compensate for the negative effects of smaller sample sizes? We
present the findings of a Monte Carlo simulation study in which
we explored the impact of these and other conditions on the esti-
mation of LCA parameters. Next, we provide the formal models
of LCA and a description of previous methodological research on
LCA and mixture models in general.
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THE FORMAL MODELS OF LCA
In LCA, there are two types of model parameters (e.g., Collins
and Lanza, 2010): class proportion parameters and item parame-
ters. Let L be the latent class variable with c = 1, . . . , C categories
(or classes). Then γc = P(L = c) is the unconditional probabil-
ity of membership in latent class c, indicating the proportion of
individuals in a particular class, or the relative size of the class.
Let P(Yj = yj|L = c) be the conditional probability of choosing
response yj for item j given membership in class c (Vermunt,
2003). This so-called CRP gives the probability of an individual
endorsing a specific item category, given the individual is in a
certain class. CRPs are particular to each item and class and are
used to interpret each class in terms of a characteristic profile of
item responses. The complete LCA model for an observed item
response pattern y out of an array of response patterns Y is given
by:

P
(
Y = y

) =
C∑

c=1

P (L = c)
J∏

j=1

P
(
Yj = yj|L = c

)
(1)

The unconditional LCA model shown above can be extended
to include covariates for predicting class membership probabil-
ities via a logistic regression model. Given a covariate X, the
probability of membership in class c can be expressed as

P (L = c|X = x) = eβ0c+β1cx

∑C
c=1 eβ0c+β1cx

(2)

In this logistic regression Equation 2, β0c is a logistic regression
intercept and β1c is a logistic regression slope coefficient. We
assume that the last class C serves as reference class. The regres-
sion parameters in the reference class C are set to zero (i.e., β0C =
β1C = 0). eβ1c represents the odds ratio (OR), or the change in
odds of latent class membership between class c and the reference
class C for every one-unit change in X. Including a covariate in
the model does not change the interpretation of CRPs, but class
proportions are now conditional on the value of X.

PREVIOUS RESEARCH ON THE PERFORMANCE OF LCA UNDER
DIFFERENT CONDITIONS
Sample size
Collins and Wugalter (1992) studied the performance of latent
transition analysis (LTA), a longitudinal extension of LCA. They
found that a “sufficiently large” sample size helped ensure good
parameter recovery with few indicators, leading these authors to
suggest a minimum N of “somewhat smaller than 300” (p. 150),
although they only tested N = 300 and N = 1000 conditions.
Tueller and Lubke (2011) examined structural equation mixture
models (SEMM; a combination of structural equation and latent
class models) and suggested a minimum sample size ranging from
N = 300 to N = 1000. However, the results for SEMM may not
apply in the same way to classical LCA. Steinley and Brusco (2011)
examined model-based clustering and found that even with N =
1000, fit indices (including the Bayesian Information Criterion)
only chose the correct number of clusters 42% of the time, sug-
gesting a much higher sample size would be necessary for such

fit indices to determine the correct number of clusters. Finch and
Bronk (2011) concluded that N = 500 is a “worthy goal” (p. 148)
for researchers using classical LCA, but did not provide direct
empirical evidence for this suggestion.

Number of latent class indicators
In general, adding indicators to an LCA model increases the
number of possible response patterns, some of which may be
observed infrequently. This can lead to data sparseness, low power
of chi-square goodness-of-fit tests (Langeheine et al., 1996), and
an increase in the number of boundary parameter estimates
(Galindo-Garre and Vermunt, 2006). Boundary parameter esti-
mates are probabilities estimated to be exactly zero or one. Some
researchers view these as problematic because they imply “per-
fect reliability” of an indicator, which is unlikely in practice.
Also, no standard errors and therefore no confidence limits are
available for boundary parameter estimates (Galindo-Garre and
Vermunt, 2006). Moreover, their presence can cause numeri-
cal problems in estimation algorithms (Vermunt and Magidson,
2004) as well as problems in computing the parameter’s asymp-
totic variance-covariance matrix (Galindo-Garre and Vermunt,
2006). Boundary estimates may also indicate identification prob-
lems or the convergence to a local likelihood maximum and may
be difficult to interpret (Uebersax, 2000). Thus, boundary param-
eters can present both statistical and substantive difficulties.

Because potential complications can arise from data sparse-
ness and boundary parameter estimates, researchers may prefer
using fewer indicators with LCA. On the other hand, Marsh et al.
(1998) found that using more high-quality indicators per latent
variable in confirmatory factor analysis (CFA) resulted in several
advantages: more converged solutions, more proper solutions,
and less positive and negative parameter bias. These advantages
were even more pronounced for smaller sample sizes and may
have occurred because adding more indicators provides addi-
tional information that can be used in the estimation of latent
variable parameters. Similarly, Collins and Wugalter (1992) sug-
gested that adding additional indicators to LTA can outweigh
the disadvantage of data sparseness by reducing standard errors.
Peugh and Fan (2013) found that enumeration indices usually
led to an overextraction of latent classes in latent profile analysis
(LPA) models with more indicators. Tein et al. (2013) found that
in general, LPA models with more indicators had higher power to
detect the correct number of classes. However, a more thorough
and systematic examination of how the number of indicators
specifically affects parameter bias in LCA is still missing.

Quality of latent class indicators
High quality indicators are predicted by the latent variable to have
a probability near one or zero. Such indicators are generally desir-
able for model estimation and the interpretation of the latent
classes. However, Galindo-Garre and Vermunt (2006) found that
indicators with high population values (i.e., conditional response
probabilities close to one) were more likely to produce boundary
estimates in LCA applications, even though this effect decreased
with larger N. Still, there is evidence that using high quality
indicators is generally beneficial, at least in the context of struc-
tural equation models with continuous latent variables (Marsh
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et al., 1998). Having more high quality indicators can stabilize
the estimation by increasing the information available to esti-
mate latent variable parameters. In this vein, Collins and Wugalter
(1992) speculated that having sufficiently high quality indicators
may compensate for having few indicators and may aid parameter
recovery in LTA models.

Inclusion of covariates
Even though a large number of LCA applications include one or
more covariates to predict class membership, relatively little is
known about how covariates influence estimation quality in LCA.
Clark and Muthén (2009) showed that the single-step inclusion
method performs best at recovering the true covariate parameter
effect, and that it has the highest power and coverage of the effect.
However, Clark and Muthén’s simulation only considered 2-class
models with 10 indicators and two different covariate effect sizes.
Also, Clark and Muthén’s study focused on comparing methods of
covariate inclusion rather than on the question of whether covari-
ate inclusion enhances the performance of LCA in general. None
of the conditions were compared to similar conditions without a
covariate, and potential bias in other model parameters (e.g., class
proportion bias, conditional response probability, or CRP bias)
was not examined in their study.

Other simulation work has examined the use of covariates in
factor mixture models (a combination of LCA and common fac-
tor analysis) and found that increasing the covariate effect size
leads to a higher proportion of individuals assigned to the cor-
rect class, even if class separation is poor (Lubke and Muthén,
2007), and that covariates can aid in correctly determining the
number of classes (Muthén, 2004). In using real data to estimate
an SEMM with and without covariates, the model with covari-
ates performed better, as determined by the BIC (Vermunt and
Magidson, 2005). On the other hand, not much is known about

whether the inclusion of covariates can help compensate for small
samples, too few indicators, or low quality indicators. This study
adds an important contribution to the literature by examining
in detail the effects of covariate inclusion simultaneously with
sample size and number and quality of indicators.

In summary, few studies have examined the performance of
LCA under different conditions. Given the increasing popularity
of LCA, it is important for researchers to know which factors and
their interactions influence the performance of LCA.

HYPOTHESES
Although there have been few simulation studies examining the
effects of including covariates in LCA, we expected that a large
covariate effect size would improve parameter recovery, and that
models with a strong covariate would perform better in general
than models without a covariate or with only weak covariate
effects. We expected that adding more and higher quality indi-
cators would be beneficial and would allow (to some extent) the
use of smaller samples. High quality indicators were expected to
improve parameter recovery, but also increase boundary param-
eter estimates, at least in small sample sizes. In line with previous
research, we expected that N ≥ 500 would consistently perform
well and that conditions below N = 300 may be problematic.

METHODS
SIMULATION CONDITIONS AND PROCEDURE
The simulation followed a factorial design with five manipulated
data characteristics including sample size (70, 100, 200, 300, 500,
1000, or 2000), number of classes (2 or 3), number of indicators
(4, 5, 6, 7, 8, 9, 10, 11, or 12), quality of indicators (low, moder-
ate, or high), and effect of a covariate on latent class membership
(none, small, moderate, or large) (see Table 1 for a summary of
the population parameters). The Supplementary Material shows

Table 1 | Summary of population specifications for class proportions, class profiles, and indicator quality (as CRPs).

γc Class 1 Class 2 Class 3

0.67 0.33

0.4 0.4 0.2

Quality Quality Quality

Indicator High Moderate Low High Moderate Low High Moderate Low

1 0.9 0.8 0.7 0.9 0.8 0.7 0.1 0.2 0.3

2 0.9 0.8 0.7 0.9 0.8 0.7 0.1 0.2 0.3

3 0.9 0.8 0.7 0.1 0.2 0.3 0.1 0.2 0.3

4 0.9 0.8 0.7 0.1 0.2 0.3 0.1 0.2 0.3

5 0.9 0.8 0.7 0.9 0.8 0.7 0.1 0.2 0.3

6 0.9 0.8 0.7 0.1 0.2 0.3 0.1 0.2 0.3

7 0.9 0.8 0.7 0.9 0.8 0.7 0.1 0.2 0.3

8 0.9 0.8 0.7 0.1 0.2 0.3 0.1 0.2 0.3

9 0.9 0.8 0.7 0.9 0.8 0.7 0.1 0.2 0.3

10 0.9 0.8 0.7 0.1 0.2 0.3 0.1 0.2 0.3

11 0.9 0.8 0.7 0.9 0.8 0.7 0.1 0.2 0.3

12 0.9 0.8 0.7 0.1 0.2 0.3 0.1 0.2 0.3
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how Mplus 6 (Muthén and Muthén, 1998–2011) was used to gen-
erate the data and the Supplementary Material gives an example
of how Mplus was used to analyze correctly specified models using
maximum likelihood estimation. The true population parameters
were used as starting values to decrease computing time and avoid
label switching (see discussion below) and local maxima as much
as possible (Collins and Lanza, 2010).

All data characteristics were fully crossed, except in one case:
for the 3-class LCA models, the 4-indicator condition is gen-
erally underidentified (Collins and Lanza, 2010), and so none
of these models were studied. There were 7 (sample size) × 9
(number of indicators) × 3 (quality of indicators) × 4 (covari-
ate effect) = 756 2-class conditions, plus 7 × 8 × 3 × 4 = 672
3-class conditions totaling 1428 conditions, with 1000 replica-
tions generated for each condition. In cases of non-convergence
or potential label switching (see further explanation of exclusion
criteria below), we generated additional replications to maintain
a balanced design with 1000 replications per cell. However, if
more than 50% of a cell’s initial replications were unusable due
to non-convergence or potential label switching, that individual
cell was dropped from the study and not refilled. The simulation
conditions were chosen based on previous Monte Carlo studies,
common findings in the substantive research, and results from a
pilot study.

Following Marsh et al. (1998), we varied the number of indica-
tors between 4 and 12. We studied 2- and 3-class models as these
are common in substantive research. In the 2-class models, Class 1
was generated to have a class proportion parameter of γ1 = 0.67.
Hence, γ2 = 0.33 in this condition, because �γc = 1 by defini-
tion in LCA. In the 3-class models, the γc parameters were 0.4,
0.4, and 0.2 for classes 1, 2, and 3, respectively. We chose these
class proportions to reflect common class proportions found in
substantive research—rarely are all classes exactly equal in size;
often at least one class is about twice the size of another class. Class
profiles were defined following Collins and Wugalter (1992) and
Nylund et al. (2007) such that Class 1 had high CRPs (or class-
specific item means) for all items, Class 2 had high CRPs for half
of the items, and low for the other half, and in the 3-class models,
Class 3 had low CRPs for all items.

All indicators were generated to have two response categories
and be locally independent, conditional on latent class mem-
bership. Indicators in high quality conditions were generated to
either have CRPs (of endorsing the second category) of 0.9 or
0.1, while moderate quality conditions had CRPs of 0.8 and 0.2,
and low quality indicators were generated at 0.7 or 0.3, follow-
ing Collins and Wugalter’s (1992) strong and weak measurement
strength conditions.

A continuous covariate X was generated from a standard nor-
mal distribution. The covariate effect sizes were chosen following
Rosenthal’s (1996) effect size conventions for odds ratios (OR),
where OR = 1.5, 2.5, and 4 describe small, moderate, and large
effect sizes, respectively. The covariate effect was specified in terms
of the logistic regression slope coefficients, β1c = log(OR), and
logistic regression intercept coefficients β0c. Because the last class
serves as reference, only C-1 β1c parameters were estimated in
each model. So in the 3-class models, the β1c parameters were
specified to be equal within each condition.

When a non-zero covariate effect is included in the model, the
intercept parameter β0c reflects class proportions when X = 0,
which in our case was the mean of the covariate. To be consis-
tent with the no-covariate conditions, the covariate intercepts β0c

were specified to be equal with the same as the unconditional class
sizes in the no-covariate conditions.

Even though N = 500 has been recommended as a “worthy
goal” by Finch and Bronk (2011), a sample of this magnitude may
often be unrealistic for applied researchers. Thus, we also stud-
ied smaller sample size conditions below N = 500. The N = 1000
and 2000 conditions were included to explore larger sample sizes
in LCA, and whether there is a point at which larger N does not
continue to meaningfully improve the results.

EXCLUSION CRITERIA
We considered four exclusion criteria to determine if a replica-
tion was eligible for inclusion in the study: (1) non-convergence,
where the estimation failed to provide a complete solution
after 500 iterations and a loglikelihood convergence criterion of
0.0000001; (2) label switching, where a complete solution was
estimated, but the class labels arbitrarily did not match the class
labels of the generated data; (3) incorrigibility, where we were
unable to determine whether a replication was correctly labeled;
and (4) zero variance of one or more observed variables (this
problem only occurred in the 2-class high quality indicator, low
sample size conditions, in which 0.2–0.6% of replications per
condition had one or more observed variables with zero vari-
ance due to sampling error). For each condition, three times
the amount of all non-converged, label-switched, incorrigible,
and zero-variance replications were re-simulated. We applied the
exclusion criteria to these additional replications, and then each
cell was refilled with new replications until 1000 proper replica-
tions were available for each cell to maintain a balanced design
in, so the conditions can be compared using analysis of vari-
ance. (Note that while we excluded label switched solutions due to
the difficulty they present in aggregating simulation results, such
models are unproblematic in practice. However, non-converged
or incorrigible solutions would indicate that the model results
may not be interpretable). Below we describe in detail how we
handled the label-switching issue.

In LCA solutions, there are c! possible labeling permutations
of c classes, so that even with data generated by well-separated
and homogeneous classes, it is possible that the parameter esti-
mates may not match the labels of the generated data, which leads
to the problem of label switching. For applied users of LCA, label
switching does not indicate any problem with the estimation per
se, because class labeling is arbitrary and does not change either
the model fit or the interpretation of the classes. Label switching is
primarily problematic in the aggregation of results in a simulation
study. Although label switching can often be corrected by inspect-
ing the solution, this method can be unreliable and subjective,
especially when the estimated parameters vary greatly from the
generating parameters (e.g., due to high sampling error in small
samples).

In our simulation, we used the true population parameters as
starting values for each replication to minimize the occurrence of
label switching. In addition, we used an algorithm developed by
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Tueller et al. (2011) to check whether each replication had cor-
rect class labels, incorrect labels, or “incorrigible” labels, mean-
ing the program could not reliably determine if label switching
had occurred, due to the class assignment matrix not meeting
the algorithm’s minimum criteria for class assignment accuracy.
Conceptually, incorrigibility indicates that the parameter recov-
ery is so poor (for example, due to high sampling error in small
samples) that the population classes cannot be properly identi-
fied. Low class assignment accuracy and extremely low parameter
recovery is an undesirable quality in LCA models and may suggest
that the solution itself is untrustworthy. Thus, we felt that it was
acceptable to exclude these replications given that they would be
undesirable solutions for substantive researchers. All incorrigible
or incorrectly labeled models were counted and excluded from the
final analysis.

A trivial amount of replications (0.03%) were detected as
label switched and subsequently excluded from further analy-
sis to avoid subjective decisions as to the correct class labels. A
more relevant issue was the proportion of incorrigible replica-
tions. Although there were very few incorrigible replications in
high and moderate indicator quality conditions, some low qual-
ity conditions had up to 75% incorrigible replications. In total,
126,653 of the original replications (8.9%) were excluded from
the initial analysis due to incorrigibility. Of the 190,896 addi-
tional replications that were generated to refill the design, 50,860
replications (26.6%) were excluded for incorrigibility.

Preliminary analyses revealed several conditions with a high
proportion of replications that met one or more of the four
above-mentioned exclusion criteria. We therefore defined a gen-
eral exclusion criterion for this study at the cell level according to
which any condition with less than 50% usable replications was
not refilled, but rather excluded entirely from further analysis.
We reasoned that conditions with less than 50% usable replica-
tions were likely not feasible in practice either due to high levels
of non-convergence1 or extremely low class assignment accuracy
(incorrigibility). All N = 70 conditions were excluded according
to this criterion, as almost all of these conditions showed high
rates of incorrigible or non-converged replications. All other 2-
class excluded conditions are shown in Figure 1. It can be seen
that in line with our hypotheses, inclusion was positively related
to (1) the number of indicators (the more indicators, the more
included conditions) and (2) the covariate effect size (the stronger
the covariate effect, the more included conditions). The only two
3-class excluded conditions (besides N = 70) were N = 100 and
N = 200 with only 5 indicators and a small covariate effect.

DEPENDENT VARIABLES
For the full set of conditions, before exclusion criteria were
applied, we examined the number of incorrigible and non-
converged replications. Incorrigibility (based on class assignment

1Note that we used the Mplus 6 default convergence criteria, and all models
were correctly specified and given starting values based on the true population
parameters. If a replication did not converge under these conditions, this was
a good indication that there was a problem with the model (such as empirical
underidentification or a local maximum solution), rather than just a problem
of using too few iterations or bad starting values.

FIGURE 1 | 2-class, low indicator quality excluded conditions.

Blackened cells indicate conditions where at least 50% of the replications
were non-converged, label-switched, incorrigible, or had zero-variance.

accuracy) provides a measure of the “messiness” of a solution,
that is, the extent to which the original classes in the popu-
lation are or are not identifiable. For the remaining included
cells of the design, we examined the prevalence of bound-
ary parameter estimates and relative parameter estimate bias
for class proportions, CRPs, and the covariate regression slope
coefficient.

Relative bias was calculated by subtracting the true value of the
parameter from the simulated parameter estimate and dividing
the difference by the parameter’s true value. In our calculations,
we used the absolute value of this bias measure. The absolute
value of bias was averaged across all replications within each cell.
In the case of CRPs, bias was averaged only among indicators
generated with the same population CRP, i.e., in the low-quality
condition, the biases of all CRPs generated at 0.7 were averaged,
and the biases of all CRPs generated at 0.3 were averaged, so
we could determine if bias differed for high vs. low CRPs. Only
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two “high” CRPs and two “low” CRPs were averaged in each
replication to allow for a fair comparison of parameter bias across
conditions with different numbers of indicators.

Class proportion estimate bias was calculated separately for
each class, given that the classes differed in size. In the covari-
ate conditions, the covariate intercept parameters β0c were used
to examine bias in the class proportion estimates as they reflect
conditional class proportions at X = 0, that is, at the mean of the
covariate X. In the 3-class model, the relative parameter estimate
bias of the two β1c parameters were averaged, as they were both
generated to be the same value.

STATISTICAL ANALYSIS
We examined the impact of sample size, covariate effect size,
number of indicators, and quality of indicators, as well as
all possible interactions among factors using analysis of vari-
ance (ANOVA) for continuous outcomes and logistic regression
for binary outcomes (conducted in SPSS 21). After excluding
conditions with less than 50% usable replications, 1,160,000
out of 1,428,000 replications (81.2%) were still available for
the analysis; such a large sample size has high statistical
power to detect even very small effect sizes. In our presenta-
tion of the results, we therefore focused on effect size mea-
sures, including η2 = SSeffect/SStotal for continuous outcomes.
Specifically, we focused on factors that showed an effect size of
η2 > 0.01, independent of other factors in the model. Values of
0.09 > η2 ≥ 0.01 are considered “small” effect sizes (Cohen,
1988) and this standard of determining meaningful effects has
been used in other simulation studies (Krull and MacKinnon,
1999). We also restricted ourselves to interpreting only 2- and
3-way interactions. For binary outcomes, we used the OR as
an effect size, with 2.5 > OR ≥ 1.5 considered small effect sizes
(Rosenthal, 1996) and worthy of interpretation.

For factors that only surpassed the η2 > 0.01 criterion for 2- or
3-class conditions, but not both, effect sizes for both conditions
were still reported to highlight the differing results between 2-
and 3-class conditions. Non-convergence and incorrigibility were
examined for all conditions prior to any excluded conditions or
refilled replications. Boundary parameter estimates and relative
parameter bias were only examined after we applied the exclusion
criteria.

RESULTS
INCORRIGIBILITY
Incorrigibility ranged between 0 and 74% of replications per con-
dition, and was especially prevalent in conditions with low quality
indicators. Improving indicator quality had the highest impact on
reducing incorrigibility (2-class OR = 11.23, 3-class OR = 5.32)
while increasing covariate effect size (2-class OR = 2.07, 3-class
OR = 2.49) also had a moderate impact on reducing incorrigibil-
ity. The interaction between covariate effect size and quality also
had an effect on incorrigibility (2-class OR = 1.52, 3-class OR =
1.75), such that as indicator quality increased, the impact of the
covariate effect size decreased (see Figure 2). Neither sample size
(2-class OR = 1.11, 3-class OR = 1.10), nor the number of indi-
cators (2-class OR = 1.08, 3-class OR = 1.02), had meaningful
effects on incorrigibility.

NON-CONVERGED SOLUTIONS
In the original set of replications, 0.5% of solutions did not
converge; in the refilled set of replications, 1.3% did not con-
verge. Non-convergence was less than 15% in most conditions.
Exceptions were N = 70 or N = 100 with a large or moder-
ate covariate and only 4 or 5 indicators. Figure 3 shows rare
non-convergence in high-quality indicator conditions. Higher
indicator quality had the largest impact on reducing non-
convergence (2-class OR = 15.96, 3-class OR = 4.34), while
decreasing covariate effect size (2-class OR = 3.25, 3-class OR =
2.10), increasing the number of indicators (2-class OR = 1.78, 3-
class OR = 1.74), and increasing the sample size (2-class OR =
1.50, 3-class OR = 1.33) also reduced non-convergence (see
Figure 3).

BOUNDARY PARAMETER ESTIMATES
The frequency of boundary parameter estimates was assessed by
calculating the proportion of boundary parameter estimates per
total number of independent CRP parameters in each condition.
Boundary parameter prevalence was generally lower than 15%,
except with N = 100 and five or fewer indicators (see Figure 4).
Note that in Figures 4–8, empty cells in low indicator quality
conditions correspond to conditions which had more than 50%
unusable replications, as explained in the exclusion criteria above.

Boundary parameter prevalence was reduced by decreasing the
indicator quality (2-class η2 = 0.079, 3-class η2 = 0.011), increas-
ing the number of indicators (2-class η2 = 0.039, 3-class η2 =
0.218), increasing the covariate effect size (2-class η2 = 0.010, 3-
class η2 = 0.003), and increasing the sample size (2-class η2 =
0.001, 3-class η2 = 0.211).

Covariate effect size and indicator quality interacted (2-class
η2 = 0.021, 3-class η2 = 0.001) such that stronger covariates
helped decrease the “negative” impact of high quality indicators.
Covariate effect size and the number of indicators interacted (2-
class η2 = 0.048, 3-class η2 = 0.001) such that the impact of
increasing covariate effect size decreased with more indicators.
Indicator quality and number of indicators interacted (2-class
η2 = 0.078, 3-class η2 = 0.012), such that as number of indica-
tors increased, the negative impact of the high indicator quality
decreased. Similarly, as sample size increased, the negative impact
of the high indicator quality decreased (2-class η2 = 0.001, 3-class
η2 = 0.013), and as the number of indicators increased, the effect
of sample size decreased (2-class η2 = 0.005, 3-class η2 = 0.026).

Also, in the 2-class conditions, all 3-way interactions showed
η2 ≥ 0.01. These 3-way interactions were such that increasing
one factor reduced the impact of other 2-way interactions. For
example, increasing the number of indicators attenuated the
interaction between quality and covariate effect size (2-class η2 =
0.096). Similarly, increasing the sample size attenuated the inter-
actions between quality and covariate effect size (2-class η2 =
0.018), covariate effect size and number of indicators (2-class
η2 = 0.016), and quality and number of indicators (2-class η2 =
0.010). These effects did not appear in the 3-class conditions.

With few indicators (4 or 5), the high quality conditions had
more boundary parameter estimates than the low quality con-
ditions. However, except for the 4- and 5-indicator conditions,
prevalence of boundary estimates was very similar among low
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FIGURE 2 | Mean proportion of incorrigible replications per condition by indicator quality and covariate effect size.

and high quality conditions. In summary, using high quality
indicators seemed only problematic in small samples and/or with
few indicators.

PARAMETER BIAS
Class proportion bias
Class proportion bias was generally below 10% for moderate
and high indicator quality conditions with at least 6 indicators
and N ≥ 300, but was high in low indicator quality conditions
(see Figure 5). Class 1 proportion bias was reduced by increas-
ing indicator quality (2-class η2 ≥ 0.052, 3-class η2 = 0.109),
increasing the number of indicators (2-class η2 = 0.044, 3-class
η2 = 0.034), and increasing the sample size (2-class η2 = 0.056,
3-class η2 = 0.046). Similar effect sizes were found for Class 2 and
Class 3 bias.

CRP bias
CRP bias was calculated including boundary parameter estimates,
because in practice, researchers would also typically interpret
boundary estimates for an otherwise proper solution. It was
important to know whether including boundary parameters led
to bias. In addition, in some replications with few indicators, all
low probability CRPs (0.1, 0.2, or 0.3) were estimated at zero

and so bias could not have been calculated without boundary
parameters.

CRP bias for high probability indicators was below 10% in all
high quality and most moderate quality conditions, as well as low
quality conditions with N ≥ 500 (see Figure 6). Low probabil-
ity CRP bias was generally below 10% with N = 2000 and 6–12
indicators. Low probability CRP bias in the 4- and 5-indicator
conditions was often near 100% (see Figure 7). Note that rela-
tive bias was calculated as the absolute value of the difference
between the mean parameter estimate and the population value
of the parameter, then divided by the population value. Even if the
raw difference is the same for two parameters, the relative bias for
the parameter with a smaller population value would be higher.
The higher relative bias for low CRPs and for smaller class pro-
portions was due at least in part to this mathematical property,
which made the results in Figure 7 look more extreme.

High probability CRP bias was reduced by increasing indica-
tor quality (2-class η2 = 0.049, 3-class η2 = 0.111), as well as
sample size (2-class η2 = 0.116, 3-class η2 = 0.113). Indicator
quality and sample size interacted such that the impact of greater
sample size decreased with increasing indicator quality (2-class
η²= 0.012, 3-class η²= 0.025). Low probability CRP bias was
partly reduced by increasing covariate effect size (2-class η²=

www.frontiersin.org August 2014 | Volume 5 | Article 920 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Wurpts and Geiser Indicators and covariates in LCA

FIGURE 3 | Mean proportion of non-converged replications by sample size, number of indicators, and covariate effect size for high and low quality

indicators.

0.019, 3-class η²= 0.000), the number of indicators (2-class
η²= 0.081, 3-class η²= 0.139), and sample size (2-class η²= 0.061,
3-class η²= 0.069). Indicator quality and the number of indicators
interacted such that the impact of more indicators decreased
with increasing indicator quality (2-class η²= 0.003, 3-class
η²= 0.011). Also, covariate effect size and the number of indi-
cators interacted such that the impact of greater sample size
decreased with increasing covariate effect size (2-class η²= 0.003,
3-class η²= 0.011).

Covariate bias
Covariate parameter estimate bias was large when the covariate
effect, indicator quality, and sample size were small. The same
type of bias was generally less than 10% with high or moder-
ate quality indicators and a moderate or large covariate effect
with N = 1000 to N = 2000 (see Figure 8). Covariate bias was
reduced by increasing the sample size (2-class η²= 0.096, 3-class
η²= 0.001), as well as the covariate effect size (2-class η²= 0.029,

3-class η²= 0.001), and indicator quality (2-class η²= 0.022, 3-
class η²= 0.000). Three-class conditions showed no factors with
η²> 0.01 overall. The number of indicators did not have a mean-
ingful effect on covariate bias (2-class η²= 0.007, 3-class η²=
0.000).

DISCUSSION
With LCA becoming increasingly popular across diverse fields
within the social sciences, it is important for researchers to know
which factors influence the quality of estimation when using this
method. Although past research suggests a minimum sample size
of N = 500 for LCA (Finch and Bronk, 2011), as well as the
benefits of having more indicators (Collins and Wugalter, 1992;
Marsh et al., 1998; von Oertzen et al., 2010), higher quality indi-
cators (Collins and Wugalter, 1992), and including a covariate
of class membership, these findings have either been taken from
the SEM or general mixture modeling literature, or they are not
based on comprehensive simulation work. To our knowledge, this
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FIGURE 4 | Mean percent of boundary parameter estimates by sample size, number of indicators, indicator quality, and covariate effect size.

study is the first to study more systematically these factors and
their interplay in LCA under a large set of conditions. Below, we
summarize our main findings and explain which factors improve
LCA performance.

SAMPLE SIZE
Many applied researchers face limitations in terms of the size of
the samples that they can gather, so it is important to under-
stand which factors can be beneficial when a sample size of 500
as recommended by Finch and Bronk (2011) may simply not be
available. We found support for the hypothesis that using more
and high quality indicators or a covariate that is strongly related
to class membership can alleviate some of the problems frequently
found with small sample sizes. Nonetheless, there was a relatively
clear limit for the minimum sample size. We found, for example,
that conditions of N = 70 were not feasible under virtually any
condition we examined: either there were too many convergence
problems, or the class assignment accuracy was too low to clearly
interpret the classes with this sample size.

Sample size itself showed a small impact in decreasing non-
convergence, and a moderate impact on decreasing boundary

parameter estimates, as well as class proportion, low CRP, and
covariate effect bias. Sample size interacted with indicator quality
such that as sample size increased, the negative impact of CRPs
of 0.1 or 0.9 on the number of boundary parameters decreased.
Sample size also interacted with the number of indicators in
reducing boundary parameter estimates such that using many
indicators could compensate for a small sample size. Sample size
further interacted with indicator quality in reducing low CRP and
Class 3 proportion bias such that high indicator quality could
compensate for low sample size. These findings highlight what
factors can compensate for a lower sample size—higher num-
ber and quality of indicators, adding a strong covariate—and
which conditions require higher sample sizes—lower number and
quality of indicators.

NUMBER OF INDICATORS
One of the key factors examined here was the influence of the
number of indicators, and whether adding more indicators to an
LCA is beneficial rather than detrimental. In line with the results
of Marsh et al. (1998) for SEM with continuous variables, and
Collins and Wugalter (1992) for LTA, we found that using more
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FIGURE 5 | Mean class proportion relative bias by indicator quality, number of indicators, and sample size.

indicators in LCA is generally beneficial. Increasing the number of
indicators had a large effect on decreasing the occurrence of solu-
tions with low class assignment accuracy. This makes sense, given
that more indicators contribute to greater certainty in defining
classes. Using more indicators also improved convergence rates
and led to reduced class proportion and low probability CRP bias.
Also, the number of indicators interacted with indicator qual-
ity such that using more indicators negated the negative impact
of using indicators with CRPs close to zero or one on bound-
ary parameter estimates. Furthermore, the number of indicators
interacted with covariate effect size in reducing low CRP bias such
that using more indicators could partly compensate for a small
covariate effect size.

Our results demonstrate that, at least under conditions simi-
lar to the ones studied here, researchers have no reason to avoid
adding more indicators in an attempt to prevent data sparseness2.

2Note that increased data sparseness due to a larger number of indicators may
still cause issues with model fit assessment (e.g., Langeheine et al., 1996) that
were not studied here.

In fact, we found that adding more indicators decreased the like-
lihood of boundary parameter estimates, which often arise from
data sparseness.

Note that the conditions with the lowest number of indicators
(i.e., the 4- and 5-indicator models) were very problematic, with
most frequent boundary parameter estimates and often the high-
est parameter bias. Many of the low quality 4- and 5-indicator
conditions were ultimately excluded from the analysis because
of high levels of non-convergence and incorrigibility. This could
be because the particular population class profiles chosen for
these models resulted in a larger number of empirically under-
identified solutions. Replications may have passed the Mplus
criterion for (under)identification while in fact, they were close
to empirically underidentified. Further research should examine
whether 4- and 5-indicator models are generally problematic, or
whether they perform better with different class profiles. In addi-
tion, further studies should examine whether there is a point at
which adding more indicators causes problems. Based on our
findings, we recommend avoiding designs with fewer than 5
indicators.
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FIGURE 6 | Mean high conditional response probability relative bias by number of indicators, indicator quality, covariate effect size, and sample size.

INDICATOR QUALITY
We also examined whether higher quality indicators are always
better, and if indicator quality can compensate for a small sample
size. The answer here is for the most part yes—increasing indica-
tor quality almost always improved outcomes, even beyond just
parameter recovery (Collins and Wugalter, 1992).

Higher indicator quality had a small to moderate effect on
decreasing incorrigibility and a large effect on improving conver-
gence rates. Improving indicator quality also had a small effect
on decreasing class proportion, covariate, and high CRP bias.
Furthermore, the impact of indicator quality interacted with the
impact of adding a covariate on decreasing incorrigibility, such
that higher quality indicators could partly compensate for a low
covariate effect size. Indicator quality also interacted with the
number of indicators such that higher quality indicators could
compensate for a low number of indicators in reducing low CRP
bias.

The only outcome for which high quality indicators performed
poorly was the prevalence of boundary parameter estimates, most

likely because CRPs of 0.9 or 0.1 are very close to one or zero
and so are most easily estimated at the boundary, especially in
smaller samples due to increased sampling error (Galindo-Garre
and Vermunt, 2006). However, boundary parameter estimates did
occur in low and moderate indicator quality conditions as well,
suggesting that high quality indicators are not the only factor that
causes boundary estimates. Furthermore, the “negative impact”
of high quality indicators on boundary estimates decreased as the
number of indicators increased. As discussed previously, this may
indicate that using too few indicators of any quality may result in
unstable estimation and frequent boundary parameter estimates.

This discussion, of course, is predicated on the idea
that boundary parameter estimates are inherently problematic.
Although they still may present interpretational difficulties, there
were many conditions with high boundary parameter prevalence
that did not show any other negative outcomes. Moreover, we
included boundary parameter estimates in our calculation of CRP
bias and found that in many conditions, the bias was still accept-
ably low. This suggests that boundary parameter estimates may
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FIGURE 7 | Mean low conditional response probability relative bias by number of indicators, indicator quality, covariate effect size, and sample size.

not be problematic in general, although further research on this
matter is clearly needed. Taken together, our results suggest that
higher quality indicators should be used whenever possible, with
the understanding that boundary estimates may be more likely to
occur if the number of indicators is small to modest.

USE OF A COVARIATE
Our results indicate that adding a covariate with a larger effect
size to predict class membership in the model may also be bene-
ficial to LCA model estimation in general. We found covariates to
have a moderate impact on decreasing incorrigibility. The covari-
ate effect size factor had a small effect on decreasing boundary
parameter estimates and low CRP and covariate bias. Covariate
effect size also interacted with indicator quality in decreasing
incorrigibility such that a large covariate effect size could to some
extent compensate for using low-quality indicators. Covariate
effect size also interacted with the number of indicators such that
having a larger covariate effect size could compensate for using
few indicators in reducing low CRP bias.

This extends upon previous findings according to which it is
beneficial to add a covariate to a mixture model (Muthén, 2004;
Vermunt and Magidson, 2005). In particular, the moderate effect
of covariate size on decreasing number of incorrigible replica-
tions follows the findings by Lubke and Muthén (2007) who
showed that adding a covariate increases proper class assignment.
These findings provide further support for the recommendation
that including significant covariates of class membership in an
LCA model is generally beneficial and can in fact offset other
suboptimal conditions, because the covariate provides additional
information that can be used in the estimation process.

Note, however, that a larger covariate effect size had a mod-
erate effect on increasing non-convergence in our study. This
mainly occurred in small sample size conditions (N = 70 to N =
200) with few (4–5) indicators. Still, these conditions were prob-
lematic even without a covariate—perhaps adding a covariate
to an already unstable model created an untenable estimation
burden that caused the model to fail. Even then, with at least
N = 100, non-convergence rates rarely surpassed 15% in general.
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FIGURE 8 | Mean covariate relative bias by indicator quality, covariate effect size, and sample size.

Although we found the inclusion of covariates to be beneficial
for the LCA estimation in general, the logistic regression (β1c)
coefficients that reflect the covariate effects themselves showed
relatively high biases unless the sample sizes were very large and
covariate effects were at least moderate in size. A more detailed
analysis of the Monte Carlo sampling distributions of the β1c coef-
ficients revealed that these parameters had a larger variability and
more outliers than the other types of LCA parameters examined
here. This shows that the point estimates of the β1c coefficients
need to be interpreted somewhat cautiously in practice, at least
in small samples and when covariate effects are only small or
moderate in size.

PLANNING AN LCA STUDY
Our results provide evidence that the use of a larger number of
high-quality indicators and the inclusion of at least one strong
covariate positively affect LCA model estimation, and that these
factors can sometimes compensate for other suboptimal condi-
tions (e.g., a relatively small sample size). When planning an LCA
study, researchers can draw upon these findings to use LCA most
efficiently. Note that we are not suggesting that researchers should
add indicators or covariates to an LCA without a theoretical basis.
Instead, we have found that researchers often wish to conduct

LCA with a set of theoretically relevant variables, but do not
know if using a partial or full set of variables is more desirable.
Researchers often worry that using their full set of indicators with
a small sample size may lead to data sparseness and other estima-
tion problems. These concerns may also apply to those researchers
who are interested in a covariate’s effect on latent class mem-
bership and who may be concerned that the extra parameters
will negatively affect outcomes, such as parameter bias and con-
vergence. Under the conditions examined here, we suggest that
researchers can in general feel comfortable using a larger set of
indicators and adding theoretically meaningful covariates to the
model.

Not surprisingly, using a larger sample size will usually result
in better model estimation. However, large sample sizes are
not always available. Instead, the careful choice of (a possibly
large number of) high quality indicators and strong covari-
ates of class membership can—in part—offset the detrimental
effects of a limited sample size, although caution needs to be
applied in interpreting covariate effects with smaller sample sizes.
The acceptable minimum N depends of course on the spe-
cific conditions in the application at hand—rarely will actual
data characteristics exactly match the simulation conditions
examined here.
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On the other hand, the combination of small sample size
and low-quality indicators resulted in a high proportion of
non-converged or incorrigible solutions in our simulation. Even
though it may be possible to estimate an LCA model with
N < 100, our simulation study suggests that such solutions
should be interpreted with great caution, given the high preva-
lence of “messy” solutions. Given that we correctly specified all
models and provided good starting values, non-convergence in
these conditions is probably due to empirical underidentification,
which generally includes highly unstable parameter estimates.
Incorrigibility was assessed based on class assignment accuracy:
poor class assignment accuracy is also associated with prob-
lems like non-convergence or non-positive definite latent variable
matrices (Tueller et al., 2011). Conditions with high proportions
of models that did not converge or had poor class assignment
accuracy suggest that parameter estimates in these conditions are
likely unstable. Unstable parameters are difficult to reproduce in
a different sample, so results based on these unstable parame-
ters should not be generalized to a larger population or other
subsample.

Although our findings provide a good starting point, we rec-
ommend that researchers who are uncertain about the minimum
feasible sample size conduct their own application-oriented sim-
ulation study as described in Muthén and Muthén (2002). In
addition, it may be useful for researchers to conduct pilot stud-
ies to identify the best latent class indicators and covariates from
a larger set of variables before conducting the actual study.

LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH
There are ways in which every simulation study is limited. In par-
ticular, the results of simulation studies may not generalize to
conditions beyond the ones examined in the study. The simulated
data were specified so that within each model, there were only two
values of CRPs. Also, the number of classes (2 or 3) and relative
class proportions were confounded with the class profiles. The
results of this study may not apply to models with more classes,
much smaller classes, or models with classes that are equal in size.

Similarly, only 2- and 3-class models were studied here, and
the results, particularly with regard to sample size, likely do not
generalize to models with more classes. As each additional class is
added to a model, the number of parameters estimated as well as
the number of cells in the data contingency table (and thus data
sparseness) increases. For models with more classes, there may be
a minimum sample size for which adding more indicators is bene-
ficial, and this should be studied in future research. Furthermore,
our method of refilling cells with converged, corrigible repli-
cations may have resulted in overly optimistic estimations of
parameter bias. Different bias may have been seen if the bias
could have been calculated from the excluded replications as well.
Nonetheless, refilling cells to maintain a balanced design is com-
mon practice in simulation research. In addition, additional bias
may have resulted from analyzing only the subset of initially
completed replications, so this problem cannot be easily resolved.

Although a wide variety of conditions were examined here,
there still remain many other factors. In particular, in practice
researchers rarely use a set of indicators with equal CRPs as
done in the present study. Future research should consider mixed

indicator quality conditions. Also, we only studied binary indi-
cators. Future research should examine whether the results hold
for polytomous and continuous indicators as well. A preliminary
simulation conducted by our group with continuous indicators
(i.e., latent profile analysis) showed similar findings regarding the
beneficial aspects of using many high quality indicators and a
strong covariate. Furthermore, we only studied models with a sin-
gle covariate. Future research should study the effects of including
multiple (and potentially correlated) covariates in LCA.
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