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Abstract We show that a chemostat community of bacteria and bacterio-
phage in which bacteria compete for a single nutrient and for which the bi-
partite infection network is perfectly nested is permanent, a.k.a. uniformly
persistent, provided that bacteria that are superior competitors for nutrient
devote the least effort to defence against infection and the virus that are the
most efficient at infecting host have the smallest host range. This confirms
earlier work of Jover et al [7] who raised the issue of whether nested infection
networks are permanent. In addition, we provide sufficient conditions that a
bacteria-phage community of arbitrary size with nested infection network can
arise through a succession of permanent subcommunties each with a nested
infection network by the successive addition of one new population. The same
permanence results hold for the monogamous infection network considered by
Thingstad [15] but without the tradeoffs.

Keywords bacteriophage · competitive exclusion principle · ecological
succession · nested infection network · permanence · persistence · predator-
mediated coexistence

1 Introduction

This work is inspired by the recent paper of Jover, Cortez, and Weitz [7].
Noting that empirical studies strongly suggest that the bipartite infection net-
works observed in bacteria and virus communities tend to have a nested struc-
ture characterized by a hierarchy among both host and virus strains which
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constrains which virus may infect which host, they identify key tradeoffs be-
tween competitive ability of the bacteria hosts and defence against infection
and, on the part of virus, between virulence and transmissibility versus host
range such that a nested infection network can be maintained. They find that
“bacterial growth rate should decrease with increasing defence against infec-
tion” and that “the efficiency of viral infection should decrease with host
range”. Their mathematical analysis of a Lotka-Volterra model incorporat-
ing the above mentioned tradeoffs strongly suggests that the perfectly nested
community structure of n-host bacteria and n-virus is permanent, sometimes
also called persistent, or uniformly persistent [6,11,14]. Indeed, they establish
several necessary conditions for permanence: (1) a positive equilibrium for the
system with all host and virus populations at positive density exists, and (2)
every boundary equilibrium of the 2n-dimensional ordinary differential equa-
tions, where one or more population from the nested structure is missing, is
unstable to invasion by at least one of the missing populations. They also
note that while equilibrium dynamics are rare for such systems, invasability
of boundary equilibria can imply invasability of general boundary dynamics
provided permanence holds according to results of Hofbauer and Sigmund [6].
However, permanence of a perfectly nested infection network is not estab-
lished in [7]. The famous example of three-species competition described by
May and Leonard [9] shows that the necessary conditions mentioned above are
not sufficient for permanence.

Permanence of bacteriophage and bacteria in a chemostat has been estab-
lished for mathematical models of very simple communities consisting of a
single virus and one or two host bacteria in [12,4].

A nested infection network of three bacterial strains and three virus strains
has the structure described in the infection Table 1. An ‘x’ in the matrix means
that the host below is infected by the virus on the left while a blank entry
indicates no infection; for example, the second column of three x’s indicates
that bacteriaH1 is infected by virus V1, V2 and V3. HostH1 is the least resistant
to infection while H3 is the most resistant; virus V1 specializes on a single host
while V3 is a generalist, infecting all host.

Table 1 Nested Infection Table for bacteria Hi and virus Vj

V3 x x x
V2 x x
V1 x

H1 H2 H3

A community of bacterial populations and virus populations with infection
network as in Table 1 could evolve by the sequential addition of one new pop-
ulation starting from a single susceptible host and virus population. Following
a mutation or colonization event, a new bacterial population, resistant to the
virus, may appear. Subsequently, a mutational event may result in a new virus
population capable of infecting both bacterial populations. Clearly, alternat-
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ing the addition of a new bacterial population resistant to all existing virus
populations with the addition of a new virus population capable of infecting
all pre-existing bacterial populations leads to the community described above.

Just such a sequence of mutational or selection events is observed in chemo-
stat experiments starting from a single bacteria population and a single virus
population and leading to a nested infection network. Chao et al [2] describe
such a scenario in their experimental observations of E. Coli and phage T7. A
bacterial mutant resistant to the virus is observed to evolve first. Subsequently,
a viral mutant evolves which is able to infect both bacterial populations. In one
replicate, a second bacterial mutant arises which is resistant to both viruses.
Pairwise competition experiments between the phage-sensitive bacterial strain
and the resistant mutant strains in a virus-free chemostat showed that the re-
sistant mutants were inferior competitors relative to the susceptible strain.

Similar evolutionary scenarios are noted in the review of Bohannan and
Lenski [1]. They note that bacterial resistance is often the result of a mutation
that affects a receptor used both for bacterial metabolism and as a target for
viral adsorption. The modified receptor confers resistance to virus adsorption
at the cost of inferior affinity for a resource. Bohannan and Lenski stress that
the persistence of a resistant bacterial mutant does not cause extinction of the
sensitive bacteria and phage provided that (i) the resistant mutant has reduced
competitive ability relative to the sensitive bacteria, and (ii) resistance to the
virus is absolute.

Thingstad [15] considered an infection network that we call monogamous
where each virus specializes on a single host in his study of mechanisms that
control the abundance of bacteria and virus in aquatic systems. See the infec-
tion Table 2. A monogamous network might arise simply as an assembly of
distantly related or unrelated bacteria populations each with its own specialist
virus parasite.

Table 2 Monogamous Infection Table

V3 x
V2 x
V1 x

H1 H2 H3

Our goal in this paper is to show that a nested infection network consisting
of n bacterial host and n lytic virus is permanent given the trade-offs identified
in [7]. Recall that permanence means that there is a positive threshold, inde-
pendent of positive initial conditions of all populations, which every bacteria
and virus density ultimately exceeds. We also show that permanence holds for
the monogamous network without trade-offs.

However, we replace the Lotka-Volterra model used by Jover et al [7] by
a chemostat-based model where bacterial populations compete for nutrient
and virus populations compete for hosts as in [2,6,12,17,15], although we
ignore latency of virus infection. Aside from the additional realism of including
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competition for nutrient, our model avoids the non-generic bacterial dynamics
of the Lotka-Volterra model which possesses an n− 1-dimensional simplex of
virus-free equilibria.

Chemostat-based models of microbial competition for a single nutrient are
known to induce a ranking of competitive ability among the microbes deter-
mined by their break-even nutrient concentrations for growth, here denoted
by λ but often by R∗ in the ecological literature. The competitive exclusion
principle applies: a single microbial population, the one with smallest λ, drives
all others to extinction [16,13] in the absence of virus. In our model of a nested
infection network, this host can be infected by every virus strain and as the λ
value of host strains increases (i.e., it becomes less competitive for nutrient) it
is subject to infection by fewer virus strains. Virus populations are ranked by
their efficiency at infecting host. The most infection-efficient strain specializes
on the host with smallest λ and as infection efficiency decreases host range
increases so that the virus strain of rank k infects the k most competitive host
strains.

Our permanence result is a dramatic example of predator-mediated coex-
istence. In the absence of phage, only a single bacterial strain can survive.
However, the addition of an equal number of phage to our microbial commu-
nity where the infection network is either monogamous or nested and if the
latter, with the trade-offs noted above, leads to the coexistence of all popula-
tions. Predator-mediated coexistence was also noted by Thingstad [15] for a
Lotka-Volterra model with monogamous infection network.

In fact, we will show that the n-bacteria, n-virus community can arise
through a succession of permanent sub-communities starting with an ances-
tral community of one susceptible bacterial host and one virus, proceeding
by the successive addition of one new species, first a bacteria, then a virus.
Law and Morgan [8] refer to community assembly, one species at a time, as
“community iteration”, and we will follow the spirit of their ideas in this work.
Table 3 describes the community iteration leading to the community of Ta-
ble 1. It is important that the sub-community at each stage of the iteration
be permanent because it ensures that the intermediate communities are suf-
ficiently stable so as to persist until a fortuitous mutational or colonization
event allows further progression. Permanence is not a guarantee of long term
persistence since environmental stochasticity may intervene to cause an ex-
tinction event, especially when a population is in a low part of its cycle. See
Figure 1 below. However, our permanence result implies that should an ex-
tinction event occur, the resulting community is likely to be a permanent one
and therefore recovery is possible.

We also show that time averages of species densities are asymptotic to
appropriate equilibrium levels. Solutions of our chemostat-based model are
highly oscillatory, apparently aperiodic, just as those observed for the Lotka-
Volterra system of Jover et al [7]. See Figure 1.

Perhaps it is interesting to note that the mathematical justification used
to establish our results exploits the evolutionary successional sequence noted
above by way of the principle of mathematical induction, establishing perma-
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Table 3 Assembly path for community in Table 1

Iteration τ Community members Community with infection network
0 H1;V1 H1 ← V1

1 H1, H2;V1 H1 ← V1, H2

2 H1, H2;V1, V2 H1 ← V1, V2, H2 ← V2

3 H1, H2, H3;V1, V2 H1 ← V1, V2, H2 ← V2, H3

4 H1, H2, H3;V1, V2, V3 H1 ← V1, V2, V3, H2 ← V2, V3, H3 ← V3

nence in a given sub-community in the successional sequence by appealing to
the permanence hypothesis of its predecessor in the sequence.

The competitive exclusion principle is critical to our approach. We will
show that two virus strains cannot share the same set of bacterial hosts (i.e.
cannot have the same host range) since one of the virus will be more efficient
at exploiting the host and drive the other to extinction. Similarly, two bacte-
rial strains cannot suffer infection by the same set of virus because the weaker
competitor for nutrient will eventually be excluded. Therefore, the competi-
tive exclusion principle drives the evolution of communities towards a nested
infection structure.

As noted in [7], perfectly nested infection networks are generally only ob-
served for very small host-virus communities. Because natural host-virus com-
munities have strong tendency to be approximately nested in their infection
structure, it is worth while to consider how the idealized nested network may
have evolved. Mathematical modeling is especially useful for exploring these
idealized scenarios. Furthermore, permanence, or persistence in mathematical
models is known to be robust to model perturbations under appropriate con-
ditions [10,3,5] and therefore it should continue to hold for small deviations
from a nested infection structure.

2 A Chemostat-based Host-Virus Model

The standard chemostat model of microbial competition for a single limiting
nutrient [13] is modified by adding lytic virus. Our model is a special case of
general host-virus models formulated in [2] which include viral latency. Let
R denote the nutrient which supports the growth of bacteria strains Hi; it is
supplied at concentration R0 from the feed. Vi denote the various virus strains
that parasitize the bacteria. Bacteria strain Hi is characterized by its specific
growth rate fi(R) and its yield γi. For simplicity, we assume that the yield is
the same for all bacterial strains: γi = γ is independent of i. At this point,
we assume only that the specific growth rates fi are increasing functions of
nutrient R, vanishing when R = 0. Following [7], we assume that virus strain
Vi is characterized by its adsorption rate ϕi and its burst size βi, both of which
are assumed to be independent of which host strain it infects. D denotes the
dilution rate of the chemostat.

Let Ii denote the host range of virus Vi:

Ii = {j : Vi infects host Hj},
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assumed to be nonempty for each i. Later, we will consider two special cases
but for now we keep things general.

Our model is described by the following differential equations:

R′ = D(R0 −R)−
∑
j

1

γ
fj(R)Hj

H ′
i = Hi(fi(R)−D)−Hi

∑
j:i∈Ij

ϕjVj (1)

V ′
i = βiϕiVi

∑
j∈Ii

Hj −DVi, 1 ≤ i ≤ n.

Note that decay rates of virus and mortality of bacteria are ignored in (1). This
is a crucial simplification for our results as it allows a reduction in dimension
to be described below.

Non-dimensional quantities are identified below:

N =
R

R0
, Bi =

Hi

γR0
, DPi = ϕiVi, τ = Dt, si =

D

βiϕiγR0
, gi(N) =

fi(R0N)

D
.

Again using prime for derivative with respect to τ , we have the equations

N ′ = 1−N −
∑
j

gj(N)Bj

B′
i = Bi(gi(N)− 1)−Bi

∑
j:i∈Ij

Pj (2)

P ′
i = s−1

i Pi

∑
j∈Ii

Bj − si

 , 1 ≤ i ≤ n.

Each virus strain is characterized by a single parameter si which reflects
its burst size βi and its adsorption rate ϕi. Smaller si translates to stronger
ability at exploiting host.

Assume that the specific growth rate gi is a strictly increasing function of
nutrient concentration and that there exists the break-even nutrient concen-
tration λi < 1 for strain Bi defined by the balance of growth and dilution:
gi(λi) = 1. We assume that the bacterial species are ordered such that

0 < λ1 < λ2 < · · · < λn < 1. (3)

This implies that in the absence of virus, Bi dominates Bj if i < j but that
each bacteria is viable in the absence of the others. Indeed, classical chemostat
theory [13,16] implies that B1 would eliminate all Bj , j > 1 in the absence of
the virus.

System (2) enjoys the usual chemostat conservation principle, namely that
the total nutrient content of bacteria and virus plus free nutrient T = N +∑
iBi+

∑
i siPi must come into balance with the input of nutrient: T ′ = 1−T .

On the exponentially attracting invariant set T = 1 we can drop the equation
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for N from (2) and replace N by 1 −
∑
iBi −

∑
i siPi. We observe that this

reduction in dimension afforded by the conservation principle, crucial for our
analysis, is lost if viral decay and/or bacterial death rates are included in the
model.

As a final model simplification, linear specific growth rates for bacteria

gi(N) = riN

are assumed where, by (3), we must have

1 < rn < rn−1 < · · · < r2 < r1. (4)

Then λi = 1/ri. The result is the system with Lotka-Volterra structure

B′
i = riBi

1− 1

ri
−
∑
j

(Bj + sjPj)

−Bi
∑
j:i∈Ij

Pj (5)

P ′
i = s−1

i Pi

∑
j∈Ii

Bj − si

 , 1 ≤ i ≤ n.

In the absence of virus and in view of (3), there are only single-population
bacterial equilibria for (5). Let Ei = (1 − λi)ei denote the equilibrium where
only host strain Bi is present. Here, ei is the unit vector with all compo-
nents zero except the ith which is one. In the absence of virus, E1 attracts all
solutions with B1(0) > 0 [13,16].

We consider two special cases for the bipartite infection network in this
paper. The nested infection network (NIM), so named by Jover et al [7], is
characterized by Ii = {j : j ≤ i}. Virus strain Vi infects all host strains
Hj for j ≤ i. Thus, strain V1 specializes on host H1 while strain Vn is a
generalist, infecting all host strains. As i increases, virus strain Vi becomes
more generalist, less of a specialist; the index i is indicative of the number of
host strains Vi infects. In particular, the superiority rank of a bacterial strain
is inversely related to the number of virus strains that infect it. Strain B1 is the
best competitor in virus-free competition for nutrient but it can be infected
by all the virus strains, while strain Bn is the worst competitor for nutrient
but can be infected only by virus strain Pn.

Also considered is the monogamous infection network (MIN) Ii = {i}
where there is a one-to-one relation between virus and host. In this case, virus
are highly selective of whom they may infect. This model was considered by
Thingstad [15].

3 Nested Infection Network

The model equations in this case are:

B′
i = riBi

1− 1

ri
−

∑
j

(Bj + sjPj)

−Bi
∑
j≥i

Pj (6)
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P ′
i = s−1

i Pi

∑
j≤i

Bj − si

 1 ≤ i ≤ n.

Next we consider equilibria where all or nearly all host and virus are
present. Only the equilibria which play a role in our results will be mentioned.

There exists an equilibrium E∗ with Bi and Pi positive for all i if and only
if

s1 < s2 < s3 < · · · < sn (7)

and
rn

1 +Qn
> 1 (8)

hold, where Q1 = r1s1 and Qn =
∑n
i=1 si(ri − ri+1), n > 1, where rn+1 = 0.

In fact,

B∗
1 = s1, B

∗
j = sj − sj−1, j > 1, (9)

P ∗
j =

rj − rj+1

1 +Qn
, j < n, P ∗

n =
rn

1 +Qn
− 1.

The positive equilibrium E∗ is unique. On rearranging the sum, we find that
Qn =

∑n
i=1 riB

∗
i .

(7) and (8) also imply the existence of a unique equilibrium E† with all
components positive except for Pn = 0. In fact,

B†
j = B∗

j , 1 ≤ j < n,

B†
n = B∗

n + (1− 1 +Qn
rn

), (10)

P †
j = P ∗

j

(
1 +Qn
rn

)
, j < n, P †

n = 0.

As the existence of a positive equilibrium is a necessary condition for per-
manence, it is instructive to elaborate on the implications of the result above.
We may obviously view the inequalities (4) as simply a convenient way to
order the microbes but then we must explain the inequalities (7) as they are
necessary for the existence of a positive equilibrium and therefore, for perma-
nence of the bacteria-virus community with nested infection network. Since
the si are inversely related to virus efficiency at exploiting host, (7) requires
that virus that are efficient at exploiting bacteria have smaller host range. In
addition, inequality (8) must be satisfied. In terms of the unscaled parameters
it becomes

r1 − r2
ϕ1β1

+
r2 − r3
ϕ2β2

+ · · ·+ rn−1 − rn
ϕn−1βn−1

+
rn
ϕnβn

< (rn − 1)
γR0

D
, (11)

This may be viewed as a restriction in many different ways as it involves both
biological and physical parameters. For example, it holds automatically if suffi-
cient nutrient is provided to the chemostat or if the flow rate is sufficiently low.
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Otherwise, it may be viewed as a restriction on the size 2n of the community,
or on the efficiency of the virus βiϕi.

Notice that Qn = Qn−1 + rnB
∗
n which together with (4) implies that

rk
1+Qk

> rn
1+Qn

for 1 ≤ k < n. Therefore, (7) and (8) imply the existence
of a unique family of equilibria E∗

k with Bj , Pj = 0, j > k described by

(9) but with Qk replacing Qn. Another family of equilibria, E†
k, exists with

Bj = 0, j > k and Pj = 0, j ≥ k described by (10) but with Qk replacing Qn.
Not surprisingly, the density of Bi at the positive equilibrium E∗ is less

then the density of Bi at its equilibrium Ei. Also we note that P †
j < P ∗

j ,

B†
j = B∗

j for j < n and B†
n > B∗

n.

Free nutrient levels at E∗ and E† are revealing. At E†, the (scaled) free
nutrient level is given by λn = 1/rn, the same as at En where only bacteria
strain Bn is present with no virus. At E∗, the nutrient level is greater than at
E†. It is given by 1

1+Qn
, thus the ratio of the nutrient levels is precisely (8).

Chao et al [2] refer to E∗ as a “phage-limited” community while E† is referred
to as a “nutrient-limited” one when k = 1.

The inequality (8) implies that E† is unstable to invasion by Pn since

snP
′
n

Pn
|E† =

(
1− 1 +Qn

rn

)
> 0.

Computer simulations of (6) provide additional insight. We adopted param-
eter values from Table 2 of Bohannan and Lenski [1] from which we computed
ri and sj using our scaled variables. The Monod growth rates for bacteria

used in [1] were linearized to obtain our ri; for example, r1 = ψAR0

KAD
= 26.64.

For parameter r2, we replaced ψA = 0.7726h−1 by ψB = 0.7027h−1 but we
retained KA = 0.0727µg ml−1 for the half saturation constant. As for r3, since
there is no counterpart in [1], we replaced ψA by 0.6326h−1 to maintain an
equal decrement as from ψA to ψB , and we retained KA. We used βi = 100 for
all i and chose adsorption rates ϕ1 = 2×10−7ml h−1, ϕ2 = 1×10−7ml h−1 as
in [1] and ϕ3 = 0.5 × 10−7mlh−1 was taken to maintain an equal decrement.
The results appear in Table 4

Table 4 Parameter values used in simulations

Parameter value

r1 26.6
r2 24.2
r3 21.8
s1 0.04
s2 0.08
s3 0.16

Figure 1 provides illuminating simulations of (6) for the case n = 3. All
simulations were performed in MATLAB using solver ode45. See Table 4 for
a list of parameter values. Initial data, if nonzero, are taken to be B1(0) =
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s1, Bi(0) = si − si−1, i > 1, and Pi(0) = 0.1. For the top row, all initial
population densities are nonzero. Observe that free nutrient level is high in this
case because P3, the dominant virus, keeps B3 at low density. The bacterial
community is ”phage limited” in this case. In the second row, initial data are
positive except P3(0) = 0. Observe that free nutrient levels are much lower
than for the top row because B3 is free to consume it. The bacterial community
is ”nutrient limited” in this case. In the third row has initial data are positive
except for B3(0) = P3(0) = 0.

Viewing Figure 1 from bottom to top as a successional sequence, we see
that it is driven by a sequence of opportunities. In the bottom row host-
phage community, nutrient is plentiful providing an opportunity for a suitable
bacterial invasion. In the middle row, the invading bacteria B2 is at high levels
providing and opportunity for a suitable virus.

Figure 2 depicts the invasion of the B1 − P1 equilibrium by B2 followed
by the introduction of P2. B2 is introduced at T = 20 at the level B1(T =
20)/100 mimicking a mutational event; similarly, P2 is introduced at T = 40
in the concentration P1(T = 40)/100. Each time unit is equivalent to 5 hours.
Note the sharp exponential decline of P1 following the introduction of B2 and
the rapid decline of B2 following the introduction of P2. The extent of these
declines is remarkable.

Fig. 1 Nested Infection Network with n = 3. Top: positive initial data; Middle: P3 = 0;
Bottom: P3 = B3 = 0.
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Fig. 2 B2 invades B1 − P1 equilibrium at T = 20 (left). Subsequently, P2 invades at
T = 40 (right).
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4 Monogamous Infection Network

The model equations in this case are:

B′
i = riBi

1− 1

ri
−
∑
j

(Bj + sjPj)

−BiPi (12)

P ′
i = s−1

i Pi (Bi − si) 1 ≤ i ≤ n.

The principal equilibria for a monogamous infection network are now de-
scribed. There exists an equilibrium E∗ with Bi and Pi positive for all i if and
only if

rn

1 + Q̃n
> 1, Q̃n =

∑
i

risi. (13)

In fact,

B∗
j = sj , j ≥ 1, (14)

P ∗
j =

rj

1 + Q̃n
− 1, j ≥ 1.

The positive equilibrium E∗ is unique.
(13) also implies the existence of a unique equilibrium E† with all compo-

nents positive except for Pn = 0. In fact,

B†
j = B∗

j , 1 ≤ j < n,

rnB
†
n = rn − (1 +

∑
i<n

siri), (15)

P †
j =

rj
rn

− 1, j < n, P †
n = 0.

In contrast to the case of NIN, the existence of a positive equilibrium in case
MIN, a necessary condition for permanence, does not place order restrictions
on the si as in (7). However, the requirement that (13) holds, together with
(4), implies that 0 < si < 1 for all i. Inequality (13) is a stronger restriction
than (8), as can be seen by comparing (11) with its counterpart for MIN:

r1
ϕ1β1

+
r2
ϕ2β2

+ · · ·+ rn−1

ϕn−1βn−1
+

rn
ϕnβn

< (rn − 1)
γR0

D
(16)

We may conclude that given n bacterial strains and n virus strains, more
nutrient R0 must be supplied to the chemostat to support an MIN community
than to support a NIN community, though in case of NIN (7) must be satisfied.

Equilibrium E† is unstable to invasion of Pn if (13) holds since

rnsnP
′
n

Pn
|E† = rnB

†
n − rnsn = rn − (1 + Q̃n) > 0.

In the same way as for the case NIN, (14) implies the existence of a unique

family of equilibria E∗
k and E†

k. E
∗
k is characterized by Bi > 0 and Pi > 0 if
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and only if i ≤ k while E†
k is as for E∗

k except Bi > 0 if and only if i < k. We
have no need for a complete list of equilibria.

Free nutrient levels at E∗ and E† have the same relation as for the case
NIN. At E†, the (scaled) free nutrient level is given by λn = 1/rn, the same
as at En where only bacteria strain Bn is present with no virus. At E∗, the
nutrient level is given by 1

1+Q̃n
, thus the ratio of the nutrient level at E∗ to

that at E† is precisely (13).
Figure 3 provides illuminating simulations of (12) for the case n = 3. See

Table 4 for a list of parameter values. Initial data, if nonzero, are taken to be
Bi(0) = si and Pi(0) = 0.1. For the top row, all initial population densities
are nonzero. As in Figure 1 for the case NIN, free nutrient level is high in this
case because P3, the dominant virus, keeps B3 at low density. The bacterial
community is ”phage limited” in this case. In the second row, initial data are
positive except P3(0) = 0. Observe that free nutrient levels are slightly lower
than for the top row because B3 is free to consume it. In the third row, the
initial data satisfies B3(0) = P3(0) = 0, the others being positive.

Fig. 3 Monogamous Infection Network with n = 3. Top: positive initial data; Middle:
P3 = 0; Bottom: P3 = B3 = 0.
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5 Permanence for Nested and Monogamous Networks

Our main result follows. It applies to both cases. We use the notation (B,P) =
(B1, B2, · · · , Bn, P1, · · · , Pn) for a solution of (6) or of (12). A detailed proof is
given in Supplementary Materials.

Theorem 1 Let 1 ≤ k ≤ n. Assume (7) and (8) in case of NIN and assume
(13) in case MIN.

(a) There exists ϵk > 0 such that if (B,P) is a solution satisfying

Bi(0) > 0, 1 ≤ i ≤ k, Pj(0) > 0, 1 ≤ j ≤ k − 1,

then there exists T > 0 such that for all t > T :

Bi(t) ≥ ϵk, 1 ≤ i ≤ k and Pj(t) ≥ ϵk, 1 ≤ j ≤ k − 1.

(b) There exists ϵk > 0 such that if (B,P) is a solution satisfying

Bi(0) > 0, Pi(0) > 0, 1 ≤ i ≤ k,

then there exists T > 0 such that for all t > T :

Bi(t) ≥ ϵk, Pi(t) ≥ ϵk, 1 ≤ i ≤ k.

Observe that in both cases (a) and (b) we require only certain prescribed
components of the initial data to be positive but we make no restrictions
on the other components except, of course, that they are nonnegative. This
means that a community consisting of only a single virus population and a
single bacteria population that is susceptible to infection by the virus is per-
manent. Furthermore, the addition of a new bacterial population, say through
a mutation or a colonization event, results in a permanent community as well
provided that the newcomer is resistant to infection. And the subsequent ad-
dition of a new virus population, capable of infecting the new bacteria and
perhaps the original one as well, results in a permanent community, and so
on.

Theorem 5.2.3 in [6] together with the previous result implies for every
solution of (6) or of (12) starting with all components positive, we have that

1

t

∫ t

0

Bi(s)ds→ B∗
i ,

1

t

∫ t

0

Pi(s)ds→ P ∗
i (17)

where B∗
i , P

∗
i are as in (9) or (14).

For every solution of (6) or of (12) starting with all components positive
except Pn(0) = 0, we have that

1

t

∫ t

0

Bi(s)ds→ B†
i ,

1

t

∫ t

0

Pi(s)ds→ P †
i (18)

where B†
i , P

†
i are as in (10) or (15).
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6 Discussion

We have shown that a community consisting of an equal number of bacteria
and bacteriophage populations in a chemostat in which bacteria compete for
a single nutrient and for which the infection network is perfectly nested is
permanent provided that (1) the bacteria that are superior competitors for
nutrient devote the least effort to defence against infection, (2) the virus that
are the most efficient at infecting host have the smallest host range, and (3)
sufficient nutrient is input to the chemostat. Jover et al [7] raised the issue of
whether nested infection networks with the tradeoffs described above result in
permanence for their comparable Lotka-Volterra model.

The same permanence result is shown to hold for a monogamous infection
network without the tradeoffs (1) and (2). However, a larger community size
2n, namely n bacterial strains and n virus strains, can be supported for a given
nutrient concentration in the feed to the chemostat if the infection network is
nested than if it is monogamous.

For both types of infection networks I = MIN or I = NIN , we show
that starting with a single bacterial population, a community consisting of n
bacterial populations and n (or n − 1) virus populations with infection net-
work of type I can arise through a succession of permanent sub-communities,
each with infection network of type I, by the successive addition of one new
population, first a virus, then a new bacteria, alternating in this fashion. This
is important because it ensures that the intermediate communities are suf-
ficiently stable so as to persist until a fortuitous mutational or colonization
event allows further progression. Permanence is not a guarantee of long term
persistence since environmental stochasticity may intervene to cause an ex-
tinction event, especially when a population is at a low part of its cycle. See
Figure 1 and Figure 2. However, our permanence result implies that should an
extinction event occur, the resulting community is likely to be a permanent
one and therefore recovery is possible.

As noted by Bohannan and Lenski [1], a successional sequence arises in the
setting of a chemostat, starting with a single bacteria population, provided
sufficient nutrient is input to the chemostat. The bacteria are capable of con-
verting much of the nutrient to bacterial biomass providing an opportunity
for a virus. Once a host-virus community is established, nutrient levels rise
providing a niche for another bacterial population, even one which is an infe-
rior competitor for nutrient provided it is resistant to infection. If it is fully
resistant to infection, the new bacteria population can dominate the original
one so now there is an opportunity for a mutant (or rare variant) virus that
can infect the new host.

Of course, natural communities of bacteria and virus will have complicated
infection networks that are not perfectly nested or monogamous. Jover et al [7]
show that observed infection networks have a tendency to be approximately
nested. Furthermore, the assumptions made in our mathematical model, the
same ones made in [7], are quite special. For example, it was assumed that
virus adsorption rates and burst sizes are independent of the host bacteria
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and that yield constants are identical for all bacterial populations. Specific
growth rates of bacteria are assumed to be linear in nutrient concentration and
bacterial mortality is ignored. Virus latency and viral decay has been ignored
in our model. Therefore, our results for these idealized special cases can at
best suggest that large communities of bacteria and virus with complicated
infection networks can evolve by the sequential addition of new populations.
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