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Abstract: It is essential for transportation management centers to equip and manage a 

network of fixed and mobile sensors in order to quickly detect traffic incidents and further 

monitor the related impact areas, especially for high-impact accidents with dramatic traffic 

congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have 

a more flexible regulation environment, it is critically important to fully explore the potential 

for of using UAVs for monitoring recurring and non-recurring traffic conditions and special 

events on transportation networks. This paper presents a space-time network- based 

modeling framework for integrated fixed and mobile sensor networks, in order to provide a 

rapid and systematic road traffic monitoring mechanism. By constructing a discretized 

space-time network to characterize not only the speed for UAVs but also the time-sensitive 

impact areas of traffic congestion, we formulate the problem as a linear integer programming 

model to minimize the detection delay cost and operational cost, subject to feasible flying 
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route constraints. A Lagrangian relaxation solution framework is developed to decompose 

the original complex problem into a series of computationally efficient time-dependent and 

least cost path finding sub-problems. Several examples are used to demonstrate the results 

of proposed models in UAVs’ route planning for small and medium-scale networks.  

Keywords: unmanned aerial vehicle; traffic sensor network; space-time network; lagrangian 

relaxation; route planning 

 

1. Introduction  

Reliable and timely traffic information is the foundation of network-wide traffic management and 

control systems. An advanced traffic sensor network needs to rapidly detect non-recurring traffic events 

and reliably estimate recurring traffic congestion along key freeway and arterial corridors. Most of 

commonly used traffic sensors are equipped at fixed locations, such as loop detectors, microwave 

detectors, video cameras, Automatic Vehicle Identification (AVI) readers, etc. Fixed traffic sensors can 

constantly monitor traffic dynamic characteristics of the specific location for a long time horizon, but 

they cannot provide a full spatial and temporal coverage in a network due to construction and 

maintenance budget constraints. With the use of movable or mobile traffic sensors, the next-generation 

transportation sensor network is expected to offer a more reliable and less costly approach to rapidly 

detect complex and dynamic state evolution in a transportation system. 

Our research will focus on how to integrate existing fixed and emerging mobile sensors into a 

dynamic traffic monitoring system that can significantly improve spatial coverage responsiveness to 

important events. Specifically, the new generation of small Unmanned Aerial Vehicles (UAVs) now 

offers outstanding flexibility as low-cost mobile sensors. UAVs can be launched quickly and exchange 

data with the control center in real time by using wireless transmission systems. While in the last decade 

UAVs have been widely used in the military field, UAVs are still facing some technical and institutional 

barriers in civilian applications, for instance, strict airspace and complicated route restrictions. Recently, 

many countries, such as the United States and China, have begun considering and evaluating flexible air 

traffic control rules that allow the low attitude space (lower than 1000 m) management for UAV-based 

civil engineering applications, such as, traffic detection, weather monitoring, disaster response and 

geological survey. This emerging trend presents a great opportunity for the transportation agencies and 

operators to explore the full potential of UAVs in road traffic network surveillance and traffic incident 

monitoring. The common equipped sensors on the UAVs can produce entire images of an investigation 

area or a special location, which can be further post-processed to monitor semi-continuous traffic state 

evolution. In this research, we are interested in developing computationally efficient optimization 

models for using UAVs to improve the effectiveness of traffic surveillance in conjunction with 

traditional fixed traffic sensors. 

To rapidly and reliably capture traffic formation and congestion on the traffic network, a dynamically 

configured sensor network should be able to recognize time-varying traffic flow propagation that 

expands to both space and time dimensions. In this research, we adopt a modeling approach from the  

time-geography field [1,2], in order to systematically take into account both geometry and topology of 
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the road network and time attributes of each event along UAV cruising routes. The particular area of 

interest for this UAV dynamic route planning application is how to rapidly enable road traffic and 

incident monitoring. Based on a linear programming model and a space-time network characterization, 

we develop an UAV routing/scheduling model which is integrated with existing fixed traffic monitoring 

sites for road segments with various frequencies of incidents. The goal of our model is to minimize the 

total cost in terms of the detection delay of spatially and temporally distributed incidents by both fixed 

sensors and UAVs. The total budget and UAVs’ feasible routing routes are also considered as practical 

constraints in our model. To address the computational efficiency issue for real-world large scale 

networks, a Lagrangian relaxation method is introduced for effective problem decomposition. 

The remainder of this paper is organized as follows: a literature review and problem statements are 

presented first in the next section. In Section 3, a space-time network-based UAV routing planning model 

is developed to integrate with existing fixed traffic detectors to maximize spatial and temporal coverage. 

Section 4 further presents the Lagrangian relaxation solution algorithmic framework, followed by 

several illustrative examples and numerical experiment results to demonstrate the effectiveness of the 

proposed models in Section 5.  

2. Literature Review  

2.1. Related Studies 

On-line applications of intelligent traffic network management call for the reliable detection, 

estimation and forecasting of dynamic flow states so that proactive, coordinated traffic information and 

route guidance instructions can be generated to network travelers for their pre-trip planning and  

en-route diversion. The problem of how to optimize traffic sensor locations to maximize the spatial 

coverage and information obtainable has been extensively studied by many researchers. Gentili and 

Mirchandani [3] offered a comprehensive review for three different sensor location optimization models 

(sensor type, available a-priori information and flows of interest), and classified them into two main 

problems: the observability problem and the flow-estimation problem. A partial observability problem 

is also studied by Viti et al. [4]. For origin-destination demand and estimation applications, many sensor 

location methods are based on the study by Yang and Zhou [5] which focuses on how to maximize the 

coverage measure in terms of geographical connectivity and OD flow demand volume. For travel time 

estimation, Sherali et al. [6] proposed a quadratic binary optimization model for locating AVI readers to 

capture travel time variability along specified trips. A dynamic programming formulation was developed 

by Ban et al. [7] to minimize link travel time estimation errors through locating point sensors along a 

corridor. In the reliable sensor location problem studied by Li and Ouyang [8], an integer programming 

model is developed to consider random sensor failure events. Based on a Kalman filtering framework, 

Xing et al. [9] extended an information-theoretic modeling approach from Zhou and List [10] for 

designing heterogeneous sensor networks in travel time estimation and prediction applications. It should 

be noted that, the water network sensor placement problem is also closely related to the problem of 

traffic sensor network design, as many studies such as that of Berry et al. [11] focus on how to  

improve spatial coverage and event detectability for water pollution sources, by adapting p-median 

location models.  
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UAV systems have been used as emerging mobile monitoring tools to conduct different tasks by loading 

various sensors, such as high-resolution camera, radar, and infrared camera. There are a wide range of 

UAVs studies for different transportation domain applications. For instance, by using high-resolution 

images from UAVs, the Utah Department of Transportation examined how to improve their highway 

construction GIS databases [12]. The Florida Department of Transportation studied the feasibility of using 

surveillance video from UAVs for traffic control and incident management [13]. Recently, Hart and 

Gharaibeh [14] examined the use of UAVs for roadside condition surveys. 

It is also widely recognized that, there are still a number of limitations for using UAVs in civilian 

transportation applications. First, the accuracy of traffic information collection depends on weather 

conditions and specific types of sensors carried by UAV. The maximum flight distance or flight time of 

UAV is constrained by the fuel weight and number of battery units. If the number of available UAVs is 

given, it is important to optimize the cruise route plan of UAVs in order to cover more roads of interest 

under the UAV capacity constraints. Ryan et al. [15] considered this UAV routing problem as a multiple 

Travel Salesman Problem (TSP) with the objective of maximizing expected target coverage and solved it 

by applying a Reactive Tabu Search. In the study by Hutchison [16], the monitored roads are divided into 

several sub-areas first, and then all the selected roads in each sub-area is covered by one UAV, equipped 

with a simulated annealing algorithm. Yan et al. [17] also considered the UAVs routing problem as a  

multi-vehicle TSP and introduced a generic algorithm to design close-to-optimal routes to consider 

different flight paths between two target roads. 

In the area of collaborative UAV route planning, the method proposed by Ousingsawat and  

Campbell [18] first finds the shortest path between two points, and then solves the corresponding task 

assignment problem. Tian et al. [19] introduced the time window requirement of reconnaissance mission 

for each target road, and considered the constraints of maximum travel time of each UAV through a 

Genetic Algorithm. In the study by Wang et al. [20], a multi-objective ant colony system algorithm is used 

for UAV route planning in military application with both route length and danger exposure being 

minimized in the cost functions. The multi-objective optimization model by Liu et al. [21] aims to 

minimize the total distance and maximize the total number of monitored points subject to the available 

number of UAVs and maximum cruise distance constraints. The model is solved by the genetic algorithm 

to search for satisfactory UAV routes. The studies by Liu et al. [22] and Liu et al. [23] introduce a time 

window constraint and examine UAV route planning methods without and with flight distance constraints. 

They used a K-means clustering algorithm to decompose the UAV cursing area into a number of sub-areas, 

and further applied a simulated annealing-based solution algorithm. The multi-objective optimization 

model proposed by Liu et al. [24] aims to minimize UAV cruise distance and minimize the number of 

UAVs being used. 

Mersheeva and Friedrich [25] adopted a metaheuristic variable neighborhood search algorithm, and 

Sundar and Rathinam [26] presented a mixed integer programming model for UAV route planning with 

refueling depot constraints. A recent study by Ning et al. [27] specifically considers the mobility 

constraints of traffic sensors, and a measure of traffic information acquisition benefits was used to evaluate 

the surveillance performance. Their proposed hybrid two-stage heuristic algorithms include both particle 

swarm optimization and ant colony optimization components. Table 1 offers a systematic comparison for 

the literature reviewed in Section 2.1. 
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Table 1. Summary of existing UAV route planning studies. 

Paper Model and Formulation Solution Algorithm 
Factors under 

Consideration 

Ryan et al. (1998) [15] 
Multi-vehicle Traveling 

Salesman Problem 

Reactive tabu search heuristic 

within a discrete event simulation 

Target coverage,  

time window 

Hutchison (2002) [16] 

Two-stage model for 

problem decomposition and 

single-vehicle TSP problem 

Simulated annealing method 
Target coverage,  

UAV flight distance 

Yan et al. (2010) [17] Multi-vehicle TSP problems  Genetic algorithm 
Flying direction on  

each link  

Ousingsawat and Campbell 

(2004) [18] 

Cooperative  

reconnaissance problem  
A* search and binary decision 

Maximum time  

duration, target  

coverage, UAV conflicts 

Tian et al. (2006) [19] 
Cooperative reconnaissance 

mission planning problem 
Genetic algorithm 

Maximum time  

duration , UAV  

conflict, time window 

Wang et al. (2008) [20] 
Multi-objective  

optimization model 
Ant colony system algorithm 

Minimum length and threat 

intensity of the path 

Liu, Peng, Zhang (2012) [21] 
Multi-objective  

optimization model 

Non-dominated sorting  

genetic algorithm 
Number of UVAs  

Liu, Peng, Chang, and Zhang, 

(2012) [22] 

Multi-objective  

optimization model 

Multi-objective evolutionary 

algorithm 
Time window 

Liu, Chang, and Wang  

(2012) [23] 
Traveling Salesman Problem Simulated annealing method 

Target coverage,  

number of UAVs 

Liu, Guan, Song, Chen,  

(2014) [24] 

Multi-objective  

optimization model 

Evolutionary algorithm based on 

Pareto optimality technique 

UAV flight distance, 

number of UAVs 

Mersheeva and  

Friedrich (2012) [25] 

Mixed-integer  

programming model 
Variable neighborhood Search 

Target coverage, UAV 

flying time 

Sundar and Rathinam (2012) [26] 
Single-vehicle UAV  

routing problem 
mixed integer, linear programming 

Target coverage,  

refuel depot 

This paper by Zhang et al.  

Linear integer programming 

model within space-time 

network  

Problem decomposition through 

Lagrangian relaxation and least  

cost shortest path algorithm  

for subproblems 

Detecting recurring,  

non-recurring traffic 

conditions and  

special events 

While a large number of studies have been devoted to the UAV route planning problem with general 

spatial coverage measures, the potential benefits of utilizing UAVs to capture traffic propagation in both 

space and time dimensions have not been adequately exploited, especially for cases with stochastic non-

recurring traffic incidents with large impacts on traveler delay and route choice. Most of the existing 

research only focuses on the static monitoring coverage measure, while it is critically needed to adopt a 

systematic space-time coverage measure for the integrated sensor network design problem with both 

fixed and mobile sensors. For the VRP problem focusing on UAV routing in a traffic network, the 

corresponding theoretical and algorithmic aspects along this line are still relatively undeveloped, and 

these challenging questions calls for flexible and systematic modeling methodologies and efficient 

solution algorithms for large-scale network applications. 



Sensors 2015, 15 13879 

 

 

2.2. Illustrations of Conceptual Framework for Space-Time Networks 

In this paper, a time geography based modeling approach is adopted for the traffic sensor network design 

problem. This theory is introduced by Hagerstrand [1] to specifically use space-time paths and space-time 

prisms in accessibility assessment. A space-time path represents the path taken by an individual agent in a 

continuous space, with a travel time budget constraint. A space-time prism is the set of all points that can 

be reached by an individual, given a maximum possible speed from a starting point and an ending point in 

space-time [2,28]. A simple space-time path example is illustrated in Figure 1.  

The agent (i.e., UAV in our research) starts from location x1 (as an UAV depot) at time t1 and departs 

from x1 to x2 (e.g., incident site) at t2; at time t3, the agent arrives at x2 and stays at x2 until t4  

(to monitor the traffic delay), then the agent moves towards location x3 and arrives there at time t5. The 

different slopes represent different flying speeds in our example.  

 

Figure 1. Illustration of a space-time path. 

A space-time prism is an important concept for analyzing travelers’ accessibility on the transportation 

network and it is used in many transportation planning studies. Utilizing this space-time prism concept in 

the UAV routing planning application, we can also clearly examine the relationship between geographic 

space and time horizon. The accessibility or reachability by an UAV sensor can be represented by the 

prism volumes. In order to consider more spatial constraints within a real-world road network, such as 

connectivity, speed range, and geometry, a network-space prism concept can be used. Figure 2 from 

Kuijpers and Othman [28] shows a network time prism in network-time space (shown in red regions) and 

its potential paths’ projection to road networks (shown in green). The green projection on the physical 

network represents individual’s potential traveling routes from the origin to the destination. 

Figure 3 shows an UAV trajectory in the context of network-time paths. With regards to the admissible 

air space and flying speed considerations, the feasible UAV’s routes could be predefined along the physical 

road network and possible air space discretized in both space and time. In Figure 3, the blue lines are the 

physical network links; black lines are the UAV route on physical links; purple dash line is the UAV route 

on admissible air space. 

Geographical
Space
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Figure 2. Constrained space–time prism (red) on road networks (green and black) and its 

spatial projection (green). Adapted from [28]. 

With a discretized space-time network construct, one of the remaining challenging issues is how to 

maximize the traffic information obtainable at strategically critical locations and time-sensitive durations 

within the UAV traveling budget constraint in conjunction with the existing fixed sensor detection 

infrastructure. We assume that there are probabilistic traffic incident event data, obtainable from historical 

data or observed directly from a real time environment. With the time as the horizontal axis, Figure 4a 

shows the space-time feature of traffic incident, where the congestion due to the traffic incident is 

propagated and dissipated along the corridor as the time advances. Accordingly, one can define a space-
time vertex set denoted as , for each incident event a at a location. The road segments with very low 

incident rates typically need to be patrolled once or twice a day in order to find soft time windows with 

low priority for the UAVs. To better consider the UAV speed and altitude restrictions in further research, 

one can create a multi-dimensional model, where each vertex is characterized by the longitude, latitude 

and altitude at different time stamps, and accordingly limit the feasible route search space by considering 

the vertexes satisfying altitude restrictions and the arcs satisfying speed requirements.  

Ideally the entire space-time vertex in a set should be fully observed by either fixed traffic sensors or 

UAVs at any given time, which means that the incident and its impact area are fully detected. Without loss 

of generality, this paper assumes that, if a fixed traffic sensor is located on a site inside the vertex set of 
, then this sensor can cover all the space-time vertex on this location at all time. If an UAV flies to 

site i at time t + 1, as shown in Figure 4b then the space-time vertex (i, t + 1) is marked as covered, if it 

stays at this site for five time periods, then all six out of the seven total space-time vertexes on site i are 

observed with 1 time unit of detection delay. 

Time 

Space

Space
Origin

Destination

( )aφ

( )aφ
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Figure 3. UAV routing path in a discretized space-time network. 

 
(a) 

Figure 4. Cont. 

Start point
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Time t

Space Y
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Space-time 
Path
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without underlying physical road
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(b) 

Figure 4. (a) Sets of space-time vertexes affected by different events a1, and a2; (b) Set of 

space-time vertexes detected by fixed sensor and UAV. 

3. Model Description 

3.1. Notations  

We first introduce some key notations used in the UAV routing planning problem. 

Parameters are shown in Table 2: 

Table 2. Subscripts and parameters used in mathematical formulations. 

Symbol Definition 

 set of traffic accidents/events 

 set of nodes in transportation network 

 set of space-time vertexes 

 set of space-time traveling arcs that UAV can select 

 set of UAVs , ′ indices of traffic accidents/events, , ′ ∈  ,  indices of candidate sensor locations or possible UAV locations, , ∈  ,  indices of time stamps ( , ), ( , ) indices of space-time vertexes ( , , , ) index of space time traveling arc, ( , , , ) ∈  

 index of unmanned plane, ∈  ,  indices of origin and destination locations of UAV  ,  earliest departure time and latest arriving time of UAV  ( ) start time of event  ( ) 
set of space-time vertexes which can represent the space-time impact 

area of event  
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Table 2. Cont. 

Symbol Definition ( ) subset of time-space vertex set ( )  which excludes the space time 

vertexes covered by the fixed detectors.  

, , ,  cost for UAVs to travel between location  and location , on time period 

between time t and time s 

 cost for constructing a fixed sensor at location i , ( ) fail-to-detect cost of event  at location  and time t 

 total budget for constructing fixed sensors ( ) total distance budget for operating UAV f 

Variables are shown in Table 3: 

Table 3. Decision variables used in mathematical formulations. 

Symbol Definition , ( ) event detected variable (= 1, if event  is detected at location , time ; otherwise = 0) 

, ( ) 
event virtually detected variable (= 1, if event  is virtually detected at location , time ; 
otherwise = 0) 

 fixed sensor construction variable (= 1, if fixed sensor is allocated at location ; otherwise = 0) , , , ( ) UAV routing variable (= 1, if space-time arc ( , , , ) is selected by UAV ; otherwise = 0) 

In this paper, we do not assume a constant cruising speed of UAVs between a node pair (i, j).  

Instead, we allow different travel times (denoted as time t to time s) between a link (i, j) to reflect different 

flying speed, corresponding to various degrees of fuel consumptions. UAV can also stay at the node for an 

extended time period within the regulation constraints, denoted as a staying arc (i, i, t, t + 1) at the same 

node i. In addition, the virtual sensors are introduced in our model to capture the cost loss of non-coverage. 

Thus, we assume that every point at a vertex set within the incident impact area could be monitored by 

either fixed sensors, UAVs or virtual sensors. Accordingly, one should predefine a much higher monitoring 

cost for virtual sensors compared to fixed sensors UAVs to encourage the physical coverage as much as 
possible. The parameter , ( ) is used to represent the fail-to-detect cost of event a at location i and time 

t, which could cover generalized cost factors such as (i) response delay in detecting incidents; and  

(ii) time-dependent traffic incident impacts for different events and (iii) the time duration spent to monitor 

the traffic impact area. 

We also assume the preferred departure time and arrival times of UAVs are given without loss of 

generality. The finial optimization goal in our model is to minimize the monitoring cost of all incidents by 

using fixed sensors or UAVs in the space-time network, subject to a number of essential constraints such 

as flow balance constraints for each flight trajectory, budget constraints for both fixed sensors and UAV 

routing costs.  

3.2. Space-Time Network Construction 

The concept of space-time network (STN) is widely used in both transportation geography and 

transportation network modeling literature and it aims to integrate physical transportation networks with 

( ) ( )' a aφ φ⊆
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individual time-dependent movements or trajectories. For more detail about conceptual model of STN, 

please see the references on Hagerstrand [1], Miller [2] and Kuijpers and Othman [28]. In this paper, we 

have created the UAV flying trajectory based on STN. 

Given node set N (with a set of incidents A) and physical link set G, the next task is to build the STN 

structure that can model the network-based UAV trajectory. The steps for building a space-time network 

for an UAV flying trajectory is shown below: 

Step 1: Build space-time vertex V  

Add vertex ( , ) to  for ∈  and each t. 

Step 2: Build space-time arc set E 

Step 2.1: Add space-time traveling arc ( , ), ( , + ( , , )) to , for physical link( , ) ∈ , 

where ( , , ) is the link travel time from node i to node j starting at time t. 

Step 2.2: Add a set of space-time staying/waiting arcs for a pair of vertexes ( , ), ( , + 1) to 

E, for each time t. 

A hypothetic 3-node network is created with time-invariant link travel time in order to illustrate the 

concept of space-time network construction and reasonable UAV flying trajectory. The detailed 

information of this hypothetic 3-node network is shown in Table 4. 

Table 4. Flying time in hypothetic 3-node network. 

Link Travel Time ( , ), ( , ) 2 ( , ), ( , ) 3 

 

Figure 5. An illustration of flying trajectory space-time network building.  

Two cases are shown in Figure 5: (a) two incidents with time-window requirements; and (b) one 

incident with time-window requirement and one incident without (tight) time-window requirement. Table 

5 lists the detailed parameters of incidents for case (a) and case (b), respectively.  
  

Physical 
network

d 2
d 1

+1 t0 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 

Physical LinkSpace-time Traveling Arc

Origin Incident with time-window Incident without time-window

Waiting Arc

o

Physical 
network

d 2
d 1

+1 t0 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 

(a) (b)

o
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Table 5. Description of incidents on Figure 5. 

Incident Num. Location of Vertex Start Time 

Case (a)-1   3 
Case (a)-2  7 
Case (b)-1  8 
Case (b)- 2  / 

First, space-time traveling arcs are constructed only when their corresponding physical links or 

admissible airspace exist, and the planning time horizon is assumed as 12 time units. We can illustrate how 

a feasible tour is generated in the space-time network. In case (a) of Figure 5, an UAV first uses waiting 

arc( , , , + 1), then uses traveling arc ( , , + 1, + 3) to reach  and detect no.1 incident. It 

then uses waiting arc ( , , + 3, + 4) on  to wait until time + 4, then it will fly to  through 

arc ( , , + 4, + 7) to detect incident no. 2. This is followed by a return trip to the departure node 

o through ( , ) and ( , ). 

In case (b) of Figure 5, incident 1 occurs at time  + 8 , and incident 2 is a minor roadside or  

non-blocking incident without a specific visiting time requirement. An UAV first travels to  at + 5, 

then it finishes the monitoring task for no. 1 incident through travelling arc ( , , + 5, + 8). The 

UAV will go back to the departure node o through ( , ) and arrive o at time t + 10. 

3.3. Model Description  

We now describe the formal problem statement as follows. The general objectives for the route 

optimization problem could include information processing cost, operational cost, construction cost. Our 

model specifically aims to maximize the spatial and temporal coverage for the incident road segments, 

given the total construction budget of fixed sensors and the UAV operational cost constraints. Thus, the 

equivalent objective function is to minimize the non-detecting cost.  

Model: 

Obj. 
( ) ( )

,
,

,
,

( ) ( )
i t

F F
i t i t

A aa

min c a x a
∈φ∈

 ×   
(1)

Subject to: 

Event detection constraint: an event must be detected/virtually detected exactly once. 

( ) ( ) ( ) ( ), , 1 ,F
i t i tx a x a i t a+ = ∀ ∈φ  (2)

In Equation (2), for the incidents with time windows, if it is detected by fixed sensors or UAVs, then 
( ), =1i tx a  and ( ), 0F

i tx a = ; otherwise, it is covered by the virtual sensors where ( ), =0i tx a  and ( ), 1F
i tx a = . 

Event detection and sensors coupling constraint: an event can be detected at certain space-time vertex, 

if this vertex is covered by a fixed sensor or UAVs. 

( ) ( ) ( ) ( ), , , ,
, j,s

,  ,i t i i j t s
f F

x a y w f forall a A i,t a
∈

≤ + ∈ ∈φ  
(3)

It should be remarked that in Equation (3), xi,t(a) is a variable to represent whether the space time vertex 

(i, t) in event a is detected by an UAV or fixed sensor. If xi,t(a) = 1, then this space time vertex (i, t) is 
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detected by an UAV or fixed sensor, that is, ( ), , ,
, j,s

 1i j t s
f F

w f
∈

=  or yi = 1. Otherwise, xi,t(a) = 0 indicates  

yi = 0 and ( ), , ,
, j,s

 0i j t s
f F

w f
∈

= .  

Flow balance constraint: to depict a time-dependent UAV tour in the space-time network, a set of flow 

balance constraints is formulated below. This model permits more than one depots exist in the network, 

and also permits more than one UAVs to execute the mission. We define a super origin vertex and super 

sink vertex for every UAV, and all vertexes follow the flow balance constraints strictly. 

( )
( )

( )
( ), , , , , ,

, , , , , ,

1 ,

1 ,

0

f f

f f
i j t s j i s t

i j t s V i j t s V

i o t EDT

w f w f i d t LAT or all f F

otherw se

f

i∈ ∈

 = =
− = − = = ∈



    (4)

UAVs’ conflict-free constraint: each vertex at a specific time can only pass one UAV. 

( ), , ,
, j,s

1 ( , )i j t s
f F

w f i t
∈

≤ ∀  
(5)

It should be remarked that UAV should satisfy this conflict-free constraint for all the space-time vertex 

(i, t).  

Fixed sensor budget constraint: the total budget should include fix sensor construction cost.  

i i
i

y d B≤  (6)

UAV operational constraint: the maximum fly distance or flying time constraint for each UAV. 

( )
( ), , , , , ,

, , ,

( )i j t s i j t s
i j t s E

d w f K f f F
∈

× ≤ ∀ ∈  
(7)

Without the loss of generality, our paper considers the total flying time. In Equation (7), i, j,t,sd  is fixed 

for each road segment. There are also binary definitional constraints for variables  , ( ) , ( ) ,  and , , , ( ).  

, ( ) ∈ 0,1  , for all ∈ , ∈  ∈ 0,1 , for all ∈ , ∈  ∈ 0,1  , for all ∈  , , , ( ) ∈ 0,1 , for all( , , , ) ∈ , ∈  

3.4. Model Simplification 

To derive a simple form of the model, we first substitute Equation (2) into the objective function and 

obtain the following objective function in Equation (8).  

( ) ( )
, ,

, ,

min ( ) (1 ( ))F
i t i t

i aA ta

c a x a
∈ ∈φ

 × −   
(8)

In practice, after years of incident detection system construction, fixed sensors have been equipped at 

important locations in highway networks. Accordingly, in our model the location of fixed sensors are 

assumed in advance, and the corresponding variable yi equals to 1 at location i where a fixed sensor is 

, ( )F
i tx a
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allocated. Then ( ),i tx a  = 1 for yi = 1, so we can construct ( )' aφ  to exclude the space time vertexes covered 

by the fixed detectors. 

Without loss of generality, we use the time unit (min) as the generalized cost unit so that we can 

minimize the monitoring cost of all incidents. One can further use the value of time as the coefficient to 

convert the different degree of non-detection to generalized monetary costs, in conjunction with the other 

system costs involving fixed sensor operations and UAV energy costs typically expressed as a function of 

UAV flight distance and speed. 

According to Equation (5), any two UAVs cannot arrive at a same space-time vertex (i, t) to avoid 
conflicts, which means that ( ), , ,

, j,s
i j t s

f F

w f
∈
  can only equal to 1 or 0. In this case, if ( ), , ,

, j,s
i j t s

f F

w f
∈
  = 1 at 

space-time vertex (i,t), then ( ),i tx a  = 1; otherwise, if ( ), , ,
, j,s

i j t s
f F

w f
∈
  = 0, ( ),i tx a  = 0. Thus, we can derive 

Equation (9) as:  

( ) ( ) ( ) ( ), , , ,
, j,s

  , , 0i t i j t s i
f F

x a w f for all a A i,t a y
∈

= ∈ ∈φ =  
(9)

and then obtain the simplified model with optimization function Equation (10): 

( )
( ) ( )

, , ,
, '

,
, , ,

min ( ) i j t
F
i t s

i t a f F jA sa

w fc a
φ∈ ∈ ∈

  − × 
  

  (10)

Subject to, Equations (4), (5) and (7) and the binary variable definitional constraints. 

4. Lagrangian Relaxation-Based Solution Algorithms 

The Lagrangian relaxation technique is commonly used for solving optimization problems  

that contain “hard” constraints. Compared to the primal problem, the relaxation problem can often be 

diverted/decomposed to classic or easy-to-solve sub-problems. 

4.1. Lagrangian Function 

As constraints in Equations (5) and (7) are considered as hard constraints, they are further relaxed by 
introducing two sets of multipliers, namely, non-conflict multiplier ,tiβ  and UAV budget multiplier ( ).fμ  

The Lagrangian relaxation function ( )w fL  can be defined in Equation (11) subject to the flow balance 

constraint (4). For each UAV, the problem can simplified as time-dependent least-cost path sub-problem: 

( )
( ) ( )

( )
( ) ( )

( )
( )

, , ,
, '

, , , , , , , ,

( ) ,
, ,

, ,
, ,, , ,

, , , , , , ,
,, , ,

( ) ( ) 1

' (

(

(

)

) )

i j t s
i t a

i j t s i j t s i t i j t s
i t j si j t s E

i j t s i j t s i t
i ti j t

F
w f i t

a A j s

f

fs E

w f

f d w f K f w f

c w f f K f

L c a
∈φ

∈

∈

∈

    
μ × × − + β × −    

      
 = × − μ × − β 

 
= − × 

 

+

 





 



 (11) 
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where, the generalized cost term , , ,'i j t sc = { }, , ,, , , ( )( ) a F
i t i ti j t s i t

a

f ad c+ β − θ ×μ ×  . Parameter ,
a
i tθ  = 1, if ( , )i t  

is included in event set a. , , ,( ) i j t sf dμ ×  reflects the use of fuel, and if the total energy is insufficient, then 

( )fμ  has to be increased to penalize fuel-inefficient routes. 

,i tβ  reflects the potential conflict between flights. If there are more than 2 flights at the same  

space-time vertex, then ,i tβ  needs to be increased to prevent the conflict. 

Overall, { }, , ,( ) ( )a F
i t i t i t

a

c a c a θ × −   reflects the benefit collected by flight routing plan, e.g., early 

detection and complete space-time coverage for the entire event, as well as potential loss due to  

non-detected space-time points. 

4.2. Solution Procedure 

In this section, we further explain the optimization algorithm for solving Lagrangian  
relaxation-based problem ( )w fL .  

Step 1. Initialization 

Set iteration number m = 0; 
Choose positive values to initialize the set of Lagrangian multipliers ( )fμ , ,i tβ ; 

Step 2. Solve simplified problems 

Solve subproblem ( )w fL  using a standard time-dependent least cost path algorithm and find a path 

solution for each UAV f. 
Calculate primal, and gap values of ( )w fL ; 

Step 3. Update Lagrangian multipliers  

Update Lagrangian multipliers ( )fμ , ,i tβ  using subgradient method; 

Step 4. Termination condition 

If m is larger than a predetermined maximum iteration value, or the gap is smaller than a previously 

given toleration gap, terminate the algorithm, otherwise m = m + 1 and one must go back to Step 2. 

To generate the upper bound feasible solutions, one can also use a Lagrangian heuristic algorithm by 

iteratively fixing the feasible routing solution for individual vehicles, while the adjusted multipliers from 

the lower bound solutions can be used to guide the iterative refinement of the generalized cost for the UAV 

routing problem. For detailed procedures on time-dependent shortest path algorithms and sub-gradient 

updating rules in a Lagrangian relaxation solution framework, we refer interested readers to the study by 

Meng and Zhou [29] for train routing and scheduling applications. 

5. Numerical Experiments 

This section evaluates the results of the UAV route planning under different conditions, which aims to 

demonstrate the effectiveness of the proposed method in the context of real-world networks.  
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5.1. Simple Illustrative Example 

Using the simple demonstrative network in Figure 6, we want to illustrate how the proposed model can 

effectively plan UAV routes.  

 

Figure 6. Demonstration of UAV cruise route.  

In this example, the UAV depot is located at node 1 and the fixed sensor is installed at node 6. The 

flying time of UAV for every two successive nodes are 1 time unit and the total allowed flying time 

duration is 16 time unit. The UAV can be deployed after time 1. 

Assume there is only one UAV and two incidents on this network. No. 1 incident on node 2 starts at 

time 6 and ends at time 8, and it also propagates to node 3 at time 7. No. 2 incident affects node 5, 6 and 7 

and the duration for each nodes are time 3 to time 8.5, time 4 to time 7 and time 6 respectively. The  

space-time influence area of these two incidents is shown below in Figure 7. 

 

Figure 7. Space-time impact area of these two incidents with first time window of 6–8 and 

second time window of 3–8.5. 

The UAV’s route planning problem is implemented and solved by a commercial solution solver, 

General Algebraic Modeling System (GAMS) using the model we developed in previous sections. The 

optimal routing plan of UAV is shown in Figure 8, where the vertical axis shows the space dimension with 

the horizontal axis for the time dimension. Given the total flying time constraint of 15 time units, the 

optimal route of UAV for this example is: node 1 (time 1) → node 2 (time 2) →  node 3 (time 3) →   

node 4 (time 4) →  node 5 (time 5–time 8) →  node 4 (time 9) →  node 3 (time 10) →  node 2  
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(time 11) →  node 1 (time 12–time 16). Due to the flying time constraint, the optimal solution cannot cover 

No. 1 incident, and the UAV arrives at node 5 after time 2, since No. 2 incident start and it does not reach 

to node 6 and node 7, while node 6 is covered by the fixed sensor. 

 

Figure 8. Optimal route of UAV from GAMS with a total flying time constraint of 15 time units.  

5.2. Medium-Scale Experiments 

A simplified Sioux Falls network consisting of 24 nodes and 76 directional links is shown in  

Figure 9. We assume the depot of UAV is located at node 16, and fixed sensors are installed at nodes 6, 

22 and 24. There is one available UAV for this network and the total allowed flying time duration is  

500 min. The flying time durations of the UAV on each road are shown in Table 6. The optimization model 

is solved on a personal computer with an Intel i7-3630 QM 2.4GHz CPU and 16 GB RAM. 

Four incidents are assume to occur on this network on nodes 2, 12, 15 and 23. The detailed propagation 

and duration time for each incident are listed in Table 7. 

There are a total of 161 space-time vertexes covered by these four incidents. Since there are fixed 

sensors on nodes 6, 22 and 24, thus 46 space-time vertexes of incidents can be detected by fixed sensors. 

The other 161 − 46 = 115 space-time vertexes of incidents will be considered to be covered by UAV routes. 

The optimal UAV route is shown in Figure 10. 

The optimal UAV cruise route is: node 16 (Depot, 1–76 min) →  node 8 (86 min) →  node 6 (90 min) 

→  node 2 (incident 1, 100–112 min) →  node 1 (124 min) →  node 3 (132 min) →  node 12 (incident 2,  

140–166 min) →  node 13 (172 min) →  node 24 (180 min) →  node 23 (incident 4, 185–212 min) →  

node 14 (220 min) →  node 15 (incident 3, 230–245 min) → node 19 (251 min) → node 17 (255 min) →  

node 16 (depot, 259–500 min). In this optimal UAV route, 83 space-time vertexes are detected by the 

UAV, while the others are undetected.  
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Figure 9. Simplified Sioux Falls network. 

Table 6. UAV flying time on all links. 

From 

Node 

To 

Node 

Flying  

Time (min) 

From 

Node 

To 

Node 

Flying 

Time (min) 

From 

Node 

To 

Node 

Flying Time 

(min) 

From 

Node 

To 

Node 

Flying 

Time (min) 

1 2 12 8 7 6 13 24 8 19 17 4 

1 3 8 8 9 20 14 11 8 19 20 8 

2 1 12 8 16 10 14 15 10 20 18 8 

2 6 10 9 5 10 14 23 8 20 19 8 

3 1 8 9 8 20 15 10 12 20 21 12 

3 4 8 9 10 6 15 14 10 20 22 10 

3 12 8 10 9 6 15 19 6 21 20 12 

4 3 8 10 11 10 15 22 6 21 22 4 

4 5 4 10 15 12 16 8 10 21 24 6 

4 11 12 10 16 8 16 10 8 22 15 6 

5 4 4 10 17 16 16 17 4 22 20 10 

5 6 8 11 4 12 16 18 6 22 21 4 

5 9 10 11 10 10 17 10 16 22 23 8 

6 2 10 11 12 12 17 16 4 23 14 8 

6 5 8 11 14 8 17 19 4 23 22 8 

6 8 4 12 3 8 18 7 4 23 24 4 

7 8 6 12 11 12 18 16 6 24 13 8 

7 18 4 12 13 6 18 20 8 24 21 6 

8 6 4 13 12 6 19 15 6 24 23 4 
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Table 7. Incidents information. 

 Incident 1 Incident 2 Incident 3 Incident 4 

Start node 2 12 15 23 
Start time (min) 100 140 230 185 

Space-time impact area 
(node, duration) 

2, (100–125) 
6, (121–130) 

12, (140–165) 
13, (160–165) 

15, (230–245) 
22, (238–247) 
21, (245–249) 

23, (185–212) 
24, (200–225) 
21, (222–225) 

 

Figure 10. Optimal UAV cruise route. 

A quick sensitivity analysis has been also performed by varying the UAV airbase locations on different 

nodes. The total cost are used as the evaluation index, and the results shown in Figure 11 indicates that the 

locations at nodes 12, 15, and 23 are more advantageous. As those locations are coincident with the 

presumed incident locations, so the observations from Figure 11 are expected for this medium scale 

network. However, the results also indicate that we need to select the UAV depot location more carefully 

and systematically to minimize the total unexpected cost. The objective value in Figure 11 corresponds to 

the total penalty cost for undetected space-time vertexes (by the fixed sensors or UAVs). Without loss of 

generality, we use the time unit (min) as the generalized cost unit. One can further use the value of time as 

the coefficient to convert the degree of non-detection to generalized monetary costs, in conjunction with 

the other system costs involving operations and energy costs. 
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Figure 11. Sensitivity analysis of different UAV’s depots. 

5.3. Chicago Networks 

The above results are provided from a standard optimization solver, which has difficulties in  

solving large-scale instances on real-world regional networks. Obviously, if we can implement the  

time-dependent least cost shortest path algorithm directly in high-performance programming languages 

such as C++ or Fortran, then the proposed Lagrangian relaxation solution procedure can better handle the 

most computational consuming step for large-scale applications. To this end, we implemented the proposed 

Lagrangian relaxation algorithm in C++, and test the computational performance of the proposed algorithm 

on the large-scale Chicago sketch network with 933 nodes, shown in the left plot of Figure 12. In this 

example, we consider 2 h as the planning horizon (i.e., 120 time intervals with 1 min as temporal 

resolution), and then randomly generate incident locations. The impact of incidents is simulated through 

an open-source dynamic traffic assignment simulator [30], DTALite using the time-dependent traffic 

origin-destination demand tables with reduced capacity due to incidents.  

The right plot of Figure 12 demonstrates a sample UAV routing with four UAVs, which could help 

readers understand the complexity of the problem solved. First, we consider 20 randomly generated 

incident sites with four UAVs to be scheduled. Figure 13 shows the evolution of lower bound (LB) and 

upper bound (UB) values in the first 100 iterations, which converges to a significantly small relative 

solution gap of 5.09%, defined as (UB-LB)/UB. We also observe that, the solution quality gap between 

upper bound and lower bound starts to reduce steadily after the first 10–15 iterations, as the subgradient 

algorithm needs to take a few iterations to approximate Lagrangian multipliers with reasonable values. The 

slow converging pattern afterwards can be explained by the relatively small step size used in the subgradient 

algorithm when iterative algorithm further proceeds.  

Figure 14 further shows the relative solution gap for different numbers of randomly generated incidents, 

namely 10, 20, 30 and 40 for the same given four UAVs. A small case of 10 incidents converges the 

optimal solution with the gap of 0% within 20 iterations. When there are a large number of locations to be 

covered, the algorithm results in larger solution gaps with a slower converging pace. Specifically, 30 and 

40 incidents lead to relative solution gaps of 9.7% and 19.4%, respectively, and there are about 8 out of 30 
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and 19 out of 40 incidents which cannot be covered by UAVs at all. When the number of locations to be 

covered increases but still with limited UAV resources, the proposed approximation algorithm has to 

handle the complexity in determining the trade-off of visiting different sites with constrained space-time 

prism. Overall, the large solution gap is introduced by additional complexity introduced by the number of 

space-time locations and corresponding LR multipliers. On the other hand, we need to still recognize both 

theoretical and practical value of the Lagrangian solution algorithm, as it can produce results with exact 

guarantee on solution accuracy (say 5% or 20%), and the generated upper and lower bound solutions 

further provide the guidance and benchmark for heuristic algorithms to find close-to-optimal solutions 

within computational budget. 

 

Figure 12. Left: Chicago sketch network with 933 nodes and 2950 links; right: Sameple 

UAV routing map in the subarea with circles representing incident sites and color lines 

representing flight routes for four different UAVs. 

 

Figure 13. Evolution of Lagrangian relaxation-based upper and lower bound series in the 

Chicago sketch network with four UAVs and 20 incidents; the lower bound value is 

generated using Equation (11) and the upper bound is generated by converting possibly 

infeasible routing solution to satisfy all constraints. 
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Figure 14. Convering patterns of relative solution gap for four UAVs with different numbers 

of incidents in Chicago sketch network. 

 

Figure 15. Computaional time with different numbers of incidents in Chicago sketch network. 

The computational time of the proposed solution increases almost linearly with an increase of incident 

numbers, shown in Figure 15. In general, when there are many incidents to be covered, the number of 

Lagrangian multipliers in Equation (11) also increases, which could require a significant amount of 

additional computational time for the time-dependent least cost shortest path algorithm to find the optimal 

solutions in the proposed space-time network. The whole search process with 100 iterations typically takes 

an average of 1 to 10 CPU min under different numbers of incidents, while the a single iteration of the  

LR-based lower bound and upper bound generation uses an average of 28.19 milliseconds for the case of 

20 incidents. As expected, the most significant amount of time has been spent for constructing a  

space-time path in the test network with 2950 links and 120 time intervals. 
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6. Conclusions and Future Research Plan 

The fixed sensor-oriented traffic sensor network design problem has been widely studied. With UAVs 

as a special type of mobile sensors, this paper aims to develop a practically useful and computationally 

efficient mobile sensor routing model for non-recurring and recurring traffic state detection. Based on the 

time geography perspective, we present a linear integer programming model to maximize spatial and 

temporal coverage of traffic state detection under various UAV speed, admissible airspace and operational 

budget constraints. A Lagrangian relaxation solution framework is developed to effectively simplify the 

original complex problem into standard time-dependent least cost path problems. Using a number of 

illustrative and real-world networks, our proposed model offers a unified fixed and mobile sensor network 

framework and efficient routing/scheduling algorithms for improving road network observability.  

With special focus on mobile sensors on daily operations, this paper considers the fixed sensor locations 

as predefined parameters. In our future research, we will jointly optimize the fixed sensor locations and 

UAV’s route planning under a large number of random traffic conditions, within a stochastic optimization 

modeling framework. By doing so, it would be interesting to analyze the cost-benefit between mobile and 

fixed sensors in order to establish a mutually complementary and fully integrated sensor network.  

Our further research will be also focused on the efficient exact and heuristics algorithms for real-time UAV 

routing algorithms with unknown or predicted traffic conditions.  
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