
Zheng et al. – APEN-D-14-05563R1 – Manuscript (no changes marked) – Page 1 of 23 

  

 

 

Smart households: Dispatch strategies and economic analysis of 
distributed energy storage for residential peak shaving 

Main manuscript 

 

Menglian Zhenga,*, Christoph J. Meinrenkena, and Klaus S. Lacknera,b 
 

 

  

  
  

  
  
  

a Lenfest Center for Sustainable Energy, Earth Institute 

Department of Earth and Environmental Engineering 

Columbia University 

500 W 120th Street, Mudd 918 

New York, NY 10027, USA 

 mz2321@columbia.edu 

 
b Center for Negative Carbon Emissions 

School of Sustainable Engineering and the Built Environment 

Ira A. Fulton Schools of Engineering  

Arizona State University 

 

*Revised Manuscript with No Changes Marked
Click here to download Revised Manuscript with No Changes Marked: Manuscript(no changes marked)_ZhengEtAl_APEN-D-14-0
Applied Energy 147 (2015), pages 246-257
AUTHOR'S FINAL COPY



Zheng et al. – APEN-D-14-05563R1 – Manuscript (no changes marked) – Page 2 of 23 

Highlights (3-5 bullets, max. 85 characters (incl. spaces) per bullet point) 

� Cost-effectiveness of building-based storage for peak shaving has hitherto not been well understood 

� Several existing storage technologies are shown to provide cost-effective peak shaving 

� Setting grid demand targets rather than hard demand limits improves economics 

� Accounting for seasonal demand variations in storage dispatch strategy improves economics further 

� Total-energy-throughput approach is used to determine storage lifetimes 

 

 

Abstract 

Meeting time-varying peak demand poses a key challenge to the U.S. electricity system. Building-based 

electricity storage – to enable demand response (DR) without curtailing actual appliance usage – offers 

potential benefits of lower electricity production cost, lower greenhouse gas footprint, and more 

flexibility to integrate renewables. DR tariffs are currently available in the U.S. but building-based 

storage is still underutilized due to insufficiently understood cost-effectiveness and dispatch strategies. 

Whether DR schemes can yield a profit for building operators (i.e., reduction in electricity bill that 

exceeds levelized storage cost) and which particular storage technology yields the highest profit is yet to 

be answered. This study aims to evaluate the economics of providing peak shaving DR under a realistic 

tariff (Con Edison, New York), using a range of storage technologies (conventional and advanced 

batteries, flywheel, magnetic storage, pumped hydro, compressed air, and capacitors). An agent-based 

stochastic model is used to randomly generate appliance-level demand profiles for an average U.S. 

household. We first introduce a levelized storage cost model which is based on a total-energy-throughput 

lifetime. We then develop a storage dispatch strategy which optimizes the storage capacity and the 

demand limit on the grid. We find that (i) several storage technologies provide profitable DR; (ii) annual 

profit from such DR can range from 1% to 39% of the household's non-DR electricity bill; (iii) allowing 

occasional breaches of the intended demand limit increases profit; and (iv) a dispatch strategy that 

accounts for demand variations across seasons increases profit further. We expect that a more advanced 

dispatch strategy with embedded weather forecasting could yield even higher profit. 

 

 

Keywords (max. 6) 

Demand response; Smartgrid; Electricity storage; Batteries; Peak shaving; Agent-based model 

  



Zheng et al. – APEN-D-14-05563R1 – Manuscript (no changes marked) – Page 3 of 23 

1 Introduction 

Meeting time-varying peak demand poses a key challenge to the U.S. electricity system [1]. This 

contributes to blackouts and brownouts that affect millions of consumers and cost American businesses 

more than US$ 150 billion in an average year [2, 3]. Peak demand is typically met by peak generators. 

This can lead to an overall increase in electricity production cost, through multiple mechanisms: Peak 

generators typically have higher marginal cost (e.g., older coal plants) or are based on technology with 

above-average operational flexibilities (e.g., gas, hydroelectric units) [3]. Low capacity utilization creates 

significant hurdles for peak generators to return a profit on capital investments [4]. Facing low returns 

from peak generators despite ever increasing peak demand, merchant generators are reluctant to build 

new peak generation facilities and instead delay the retirement of older, usually more inefficient, and 

hence costlier plants (e.g., [5]). As another disadvantage of peak generators, inefficient plants increase 

greenhouse gas (GHG) emissions and other air pollutant emissions per unit of electricity produced [2].  

As an alternative method to alleviate above problems, demand response (DR) lowers electricity use “at 
times of high wholesale market prices or when system reliability is jeopardized from the demand side”[6]. 

DR thus alleviates grid stress from the demand side. Over the past decades, economics and operating 

performance of electricity storage technologies have improved [3, 7-12]. DR with storage provides new 

opportunities to enable DR without curtailing actual appliance usage [13]. Compared with large-scale, 

grid-based storage, DR via small-scale, distributed storage in residential, commercial, or industrial 

settings provides more flexibilities [14] and will likely facilitate integration of building-based intermittent 

renewables(e.g., [15]). A variety of DR programs, such as load shifting, peak shaving, spinning reserve, 

frequency regulation, etc., have been discussed in extensive studies (e.g., [16, 17]). However, in the U.S., 

today's existing DR programs represent less than 25% of the total market potential for DR [18, 19]. 

Barriers still exist: The lack of in-depth understanding of the cost-effectiveness of storage and the lack of 

practical dispatch strategies delay wider adoption of DR [3, 20]. 

In prior work, based on the time-of-use (TOU) energy tariff available from Consolidated Edison 
Company of New York, Inc. (henceforth “Con Edison”), a dispatch strategy was developed to time-shift 

energy requirements (i.e., kWh) from peak periods to off peak periods [21], also referred to as 

loadshifting. In contrast to this earlier work, the focus of the present study is to use electricity storage with 

the focus on reducing peak power (i.e., kW) demands (e.g., [22]), thus smoothing demand profiles (Fig. 1). 

This is commonly referred to as peak shaving. Both studies focus on residential DR.  

Unlike loadshifting strategies, which normally cycle storage only once per day, peak shaving strategies 

under demand tariffs require more complex (dis-)charge patterns, for several reasons: Firstly, demand 

tariffs typically include a facility or anytime demand charge denominated in $ per kW. This charges 

maximum demand during a one-month billing period regardless of when the demand occurs, including at 

night when a loadshifting strategy would otherwise charge storage [17]. This facility demand charge is 

designed to reflect the cost of the capacity of the electricity infrastructure needed to generate, transmit, 

and distribute electric energy to consumers [17]. Secondly, demand tariffs typically have a separate 

energy charge (in $ per kWh) that comprise a significant portion (~25%) of the total tariff charge (Fig. 6). 

Therefore, an optimal dispatch strategy of the storage device will have to account for tradeoffs between 

two goals: (i) Lowering the demand charge by diverting peak demands of the building's appliances to the 

storage device; and (ii) the increased energy charge resulting from roundtrip (dis-)charge losses of the 
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storage device. Thirdly, again in contrast to a loadshifting strategy, the strategy must optimize not only 

the storage capacity but also the building's demand limit above which the control unit (Fig. 1) will attempt 

to use stored electricity in addition to grid electricity to satisfy appliance demand. Therefore, any 

optimization for maximum profit has to address both storage capacity and demand limit (2-dimensional 

rather than 1 dimensional optimization). Lastly, shaving multiple demand peaks per day requires multiple 

(dis-)charge cycles, which influences the storage lifetime and thus the levelized storage cost (LSC). 

For peak shaving DR applications, the present study advances previous studies that deal with some 

aspects of economically optimized DR: Dlamini et al. developed peak shaving strategies for residential 

consumers without using storage [23]. To reduce peak demand, some authors suggested interrupting 

appliance usage [22, 23], and Leadbetter and Swan proposed installing electricity storage devices in 

residential buildings. Leadbetter et al. sized the battery system by varying energy storage capacity, 

inverter size (power capability), and a grid demand limit, specific to a selection of residences in Canada. 

By limiting the failure (i.e., grid demand exceeding the demand limit) count to zero, authors suggested 

typical system sizes ranged from 5 kWh (2.6 kW) for low electricity consumption homes to 22 kWh 

(5.2 kW) for homes with electric space heating [24]. For industrial users, Oudalov and Cherkaoui utilized 

dynamic programming to optimize the dispatch strategy of storage with a set of inputs including demand 

profiles, storage (dis-)charge, battery parameters, and the value of the shaved power [25]. The 

optimization objective was to maximize the electricity bill reduction while accounting for battery system 

cost. Their results showed that for an industrial consumer with a maximum peak demand of ~1000 kW, 

the annual electricity bill was reduced by 4% (demand charge portion of bill by 8%) compared to a 

baseline without a battery storage system. Finally, beyond the DR tariffs used in these studies, other 

incentives for consumers include arbitrage savings from real time (e.g., [26]) or day-ahead markets (e.g., 

[27]), and payments from ancillary markets (e.g., [4, 28]). 

However, few studies provide detailed comparisons among the multitude of existing storage technologies 

(batteries, compressed, air, magnetic, etc.) and their different operating constraints (lifetime, maximum 

(dis-)charge rates, (dis-)charge losses, and healthy depth of discharge) and costs, although these affect the 

economic viability of storage-based DR schemes [21]. In this study, we determine the possible profit of a 

residential, storage-based peak shaving DR system for an average U.S. household under a currently 

available demand tariff (Con Edison) and across a range of different storage technologies (conventional 

and advanced batteries, flywheel, magnetic storage, pumped hydro, compressed air, and capacitors). 

Profit herein is defined as the tariff charge (i.e., electricity bill) reduction minus LSC over the lifetime of 

the storage system. The lifetime (and thus LSC) is modeled as varying with the particular dispatch 

strategy and storage operating constraints, based on a total-energy-throughput approach. The impact of 

uncertainties in storage parameters such as costs, round-trip efficiencies, etc. is illustrated via several 

sensitivity tests. The present study differs from the previous loadshifting study in a range of aspects as 

discussed above. Moreover, for peak shaving DR applications specifically, to the best of our knowledge, 

the present study is the first to apply an agent-based model and a total-energy-throughput lifetime model 

to evaluate real tariffs and commercially available storage technologies.  

2 Data and methods  

To assess the sizing, dispatch strategy, and profit of a storage system for peak shaving for an average U.S. 

household, a DR scheme similar to that proposed by Zheng et al. [14, 21] is used as a basic configuration 
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(Fig. 1). The control unit’s dispatch strategy aims to maximize profit – defined as tariff charge (i.e., 

electricity bill) reduction minus LSC over the storage lifetime – while accounting for storage operating 

constraints. 

We first introduce the specific TOU demand tariff used in this work (section 2.1). We then explain the 

agent-based, appliance-level demand model (section 2.2). Section 2.3 characterizes the dispatch strategy 

and the role of the demand limit (DL). We then describe the framework for LSC and the total annual cost 

to the household (TAC) (section 2.4), followed by the storage lifetime model (section 2.5). Finally, 

section 2.6 describes the simulation-based approach to maximize profit by optimizing storage capacity 

and DL. 

 

Fig.1. (a) Storage-based demand response (DR) scheme (open arrows indicate electricity flows): In charging mode, the control 

unit diverts electricity to the storage. In discharging mode, the control unit supplies appliances with electricity from storage and, 

when required, from the grid as well. (b) Illustrates the basic mechanism of peak shaving. Arrows indicate where peaks in 

appliance demand, regardless of when they occur, are smoothed by supplementing grid electricity with stored electricity. Storage 

is re-charged whenever appliance demand is lower than a preset demand limit (DL). Long-dashed line reflects a specific DL for a 

particular storage technology and season (section 2.3). (c) Illustrates basic loadshifting (for comparison only): Electricity usage is 

shifted from peak to off peak periods. Dashed grey line indicates appliance demand load while solid black line shows the actual 

load passed on to the grid (from storage and appliances combined). 

2.1 Demand tariff 

Demand tariffs for residential consumers are available from Con Edison (Service classification (SC) No.8; 

Page 435 – 447 in [29]): Consumers are charged according to their highest power demand at any point 

during a one month billing period (demand charge, charged in $ per kW, where kW are 30 min averages, 

determined by specific metering equipment by Con Edison as actual kWh consumed over 30 min 

intervals). Note that demand tariffs also have a separate, additional charge for energy, charged in $ per 

kWh which amount to ~25% of the total tariff charge for an average U.S. household (Fig. 6). We base our 

peak shaving application on one specific TOU demand tariff (SC8, Rate III; henceforth “TOU tariff” 

unless stated otherwise). For summer months, the demand charge is assessed each month based on the 

maximum load that occurs during three time periods (three peaks): (i) Monday to Friday, 8 am-6 pm; (ii) 

Monday to Friday, 8 am-10 pm; (iii) all hours of all days. For the remaining months of the year, the tariff 

records only two peaks: Monday to Friday, 8 am-10 pm and all hours of all days. Different peaks are 

assessed at different charge rates, and the monthly demand charge is the summation of these three (two) 

demand charges. The energy charge portion charges different rates per kWh for peak periods (Monday to 
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Friday, 10 am-10 pm) and off-peak periods (all other hours). Both energy charge rates and demand charge 

rates further differ between summer months (June to September) and other months. Finally, there are 

fixed monthly charges for metering services. Charge rates used in our model are based on 2012 prices 

with details given in Supplementary Data (SD).  

2.2 Appliance-level demand model 

Residential demand profiles used in this work are simulated by an agent-based, appliance-level demand 

model in the time domain [30-34], details of which are described in [21]. Briefly, the model aggregates 

stochastically generated individual appliance demand profiles to generate an aggregate household demand 

profile at one minute resolution. The appliance demand profiles are calibrated to switch-on probabilities 

based on surveys (American Time Use Survey [35]). The model was shown to faithfully reproduce 

electricity consumption features of an average U.S. household, on both the individual appliance level and 

the aggregate household level, and including systematic variations across seasons due to air conditioning 

and electric space heating [21]. The simulated household consumes 31 kWh electricity per day (average 

across seasons), with an average monthly peak demand of 6.5 kW (averaged on 30 minutes) for summer 

months and 5.7 kW for the remaining months. 

2.3 Dispatch strategy 

We first define a target DL on the grid. DL is either set constant throughout the year (constant DL) or set 

to three different values, one for summer, one for winter, and one for spring/fall (seasonal DLs; Results). 

Whenever the aggregate demand from appliances is above the set limit, the control unit discharges the 

storage to meet the incremental demand beyond the DL. For example, with storage being discharged (Fig. 

2b), the demand on the grid is reduced from ~9.2 kW (e.g., Point A in Fig. 2a) to 2.5 kW (e.g., Point B in 

Fig. 2d). In contrast, if the aggregate appliances demand is below DL, storage (if not already full) is 

charged at the dynamically calculated charge rate. This charge rate is calculated such that the total power 

draw from the grid for appliances, storage charging, and power conversion losses combined will not 

exceed DL. Furthermore, to prevent early degradation of the storage equipment (details, see section 2.5), 

storage is never discharged beyond the healthy depth of discharge ηDoD and never (dis-)charged above its 

maximum (dis-)charge power Pmax (Eq. 1), as shown in Fig. 2b and c. ηDoD and Pmax, which vary by 

storage technology, were inferred from various vendor data and literature (same as in [21]).  

Note that on occasion, the power demand passed on to the grid may indeed exceed DL (e.g., Point D in 

Fig.2d), namely when the appliance demand minus Pmax surpasses DL (or when storage is empty, i.e., 

state of charge (SoC) at (1-ηDoD); e.g., Point C in Fig. 2c). As such, DL must be interpreted as a demand 

target, rather than a hard limit. This leads to lower TAC, by essentially trading off lower LSC against 

higher occasional demand charges, an effect that will be addressed as part of finding optimum storage 

capacity and DL (Results). 
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Fig. 2. Illustration of storage dispatch strategy via three examples: One random day in summer (light grey), one in winter (dark 

grey) and one in spring/fall months (black), with ZnMnO2 batteries installed (10 kWh effective capacity, 90% healthy depth of 

discharge (ηDoD) and 2.5 kW demand limit (DL)). (a) Appliances demand simulated by the demand model. Dashed line indicates 

DL of 2.5 kW for all three days. (b) Storage dispatch: Dotted lines indicate the maximum (dis-)charge power (Pmax). (c) State of 

charge (SoC). (d) Power draw from the grid: Dotted lines show actual demands, from both appliances and storage (incl. charging 

and power conversion losses). Solid lines reflect the same demand, but filtered for a 30 minutes average which is the basis for the 

tariff. 
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Where Pstorage(t) denotes the storage (dis-)charge power (negative, if the storage is being 

discharged) at time step t, 
Papppliances (t) denotes the power draw required by appliances at time step t, 

 

 SoC(t) denotes storage state of charge at time step t,  

 ηDoD denotes the healthy depth of discharge of storage, 

ηin  denotes the ratio of electricity stored to electricity drawn from the grid by storage, 

ηout denotes the efficiency of converting energy stored to electricity being supplied to 

appliances (ηin and ηout are equal in value), 

 

 Pgrid(t) denotes the power draw from the grid at time step t,  

 Pmax denotes the maximum (dis-)charge power (specified to storage technologies) as 

defined in [21].  

 

 

2.4 Levelized cost: LSC and TAC 

A variety of electricity storage technologies are applied in our analysis. LSC follows the same 

methodology as described in [14, 21], however, with an additional sub-model that determines storage 

lifetime (section 2.5). LSC consists of constant annual payments (principal repayment and 10% 

annualized interest) for the storage equipment (Eq. 2). This equipment cost is broken down into two parts: 

(i) A US$ 2,000 fixed cost ([21], Discussion) reflects installation parts & labor; (ii) a size-dependent cost 

(for the storage, power conversion, and control unit combined system) scales proportionally to the storage 

nominal capacity (NC, kWh). NC is adjusted for efficiencies based on the electricity flow illustrated in 

Fig. 2 of [21]: The metric of effective capacity (EC), which reflects the maximum amount of electricity 

stored that can be withdrawn and used by appliances after (dis-)charge and power conversion losses, is 

used throughout this paper (Eq. 3).  
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(3) 

Where LSC denotes the levelized cost of storage equipment (annualized), 

Cpurchase denotes the purchase cost of the storage, power conversion, and control unit 

combined system (excl. installation), per kWh nominal capacity, 

EC denotes the effective capacity of storage, 

NC denotes the nominal capacity of storage, 

Cinstallation denotes the installation cost (one-time parts and labor, excl. storage itself), 

ξ denotes the levelization multiplier (similar to a capital recovery factor) (Eq. 4). 

 

 
Equipment costs, total available cycles, and other parameters (i.e., storage (dis-)charge efficiency, ηDoD, 
and power conversion efficiency) obtained from vendors are used as in [21]. We use the geometric mean 
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of lowest and highest purchase costs in the literature and arithmetic means for all other parameters in our 
study (discussed in [21]). Levelization multipliers are calculated as follows: 
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Where r denotes the interest rate, 
k denotes the storage lifetime (e.g., for a lifetime of 5.2 years, k = 5.2). 

 

 
Total annual cost (TAC per household, Eq. 5) equals the sum of LSC and the annual tariff charge under 

the TOU tariff with peak shaving applied. The profit is defined as the difference between TAC and the 

non-DR tariff charge under the same tariff (Eq. 6). Tariff charges (Eq. 7) are determined by combining 

the simulation-determined energy (kWh) and demand (kW) characteristics of the household with the 

respective tariff rates from Con Edison, as outlined in section 2.1 and tariff parameters as in SD. 

 

TACCPr
CLSCTAC
	�

��

DR no tariff,

DR with tariff,
 

(5) 
 

(6) 
Where Pr denotes the annual profit (tariff charge reduction from DR minus LSC), 

TAC denotes the total household annual cost, 
Ctariff, with DR denotes the annual tariff charge under the TOU tariff with DR, 
Ctariff, no DR denotes the annual tariff charge under the TOU tariff without DR. 
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Where Ctariff, metering denotes the monthly metering service charge [US$], 
Ci,j

tariff, energy denotes the energy charge rate during month i in time period j [US$/kWh], 
Ci,j

tariff, demand denotes the demand charge rate during month i in time period j [US$/kW], 
Ui,j

energy denotes the energy usage during month i in time period j [kWh], 
Ui,j

demand denotes the 30-min average maximum demand during month i in time period j 
[kW].  

 

 

2.5 Variable storage lifetime 

In loadshifting applications, storage is typically charged and discharged once a day and to its full 

available capacity (i.e., ηDoD). Therefore, such work usually approximates the storage lifetime based on 

storage lifetime-available full cycles (e.g., 3650 cycles would correspond to 10-year lifetime [21]). In 

contrast, as illustrated in Fig.1, the peak shaving strategy in the present work typically charges and 

discharges the storage several times daily in order to shave multiple peaks per day while keeping required 

storage capacity low. Alternatively, one may use larger EC, but this would increase LSC unless there were 

no interest payments and installation cost. Since peak magnitudes change stochastically and the storage 

SoC varies throughout the day, each (dis-)charge event changes SoC to varying degrees (between (1-ηDoD) 
and 100%), not always to full cycles. This adds further complexities to determining the optimum DL (i.e., 

the one resulting in lowest TAC) because for most storage technologies, lifetime (and thus LSC) depends 

on number and depth of each (dis-)charge cycles. This necessitates a more complex storage lifetime 

model that is not merely based on the number of cycles. 
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Lifetime prediction models vary with different battery technologies [36-40]. Typically, two battery 

lifetime metrics are given by the manufacturers: cycling lifetime and calendar lifetime. Calendar aging is 

due to, for example, parasitic reactions that gradually consume active materials [41] or aging of non-

active components. These can occur whether the battery is actually in use or not. In contrast, cycling 

aging is more associated with degradation due to reactions of active materials with electrolytes during 

actual use [42].  

To quantify the cycling lifetime of batteries, we use a total-energy-throughput model that assumes that a 

fixed amount of energy (kWh) can be cycled through a battery before it requires replacement [43]. This 

method has been shown to closely approximate real storage lifetime at standard operating conditions, i.e., 

not exceeding ηDoD and Pmax (and at standard temperature) [37]. For example, for a specific type of 

Lithium ion battery, Peterson et al. showed that the cumulative energy that could be cycled throughout the 

battery’s life was statistically independent of the actual SoC in each cycle (i.e., partial or full cycles) [44]. 

However, some other studies showed that the total energy that can be cycled may indeed vary as a 

function of SoC, temperature, and (dis-)charge rate (e.g., [45, 46]).  Usually higher energy-throughput 

was achieved when batteries were cycled only at higher SoC, in other words avoiding full cycles (e.g., 

[47]). Therefore, to remain conservative (i.e., short lifetime and thus high LSC), we use the total-energy-

throughput (at standard operating conditions) that is calibrated to full battery cycles as specified by the 

storage vendors/literature (Eq. 8), even if many of the actual cycles were indeed partial rather than full 

cycles and therefore a disproportionally higher number of cycles may have been possible until 

replacement became necessary. The cycling lifetime is thus calculated by dividing the total-energy-

throughput by the simulated annual energy that is cycled through storage (Eq. 9). For storage technologies 

other than batteries, the same total-energy-throughput model is used. Parameter details for full cycle 

equivalent, ηDoD, efficiencies, and total-energy-throughput per one kWh EC are provided in Table 1. 

Actual lifetime (k in Eq. 4) of each storage technology follows a hybrid approach of above cycling 

lifetime and calendar lifetime (20 years, [21]), namely by setting k to the smaller of the two measures. 
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Where ETtot denotes the total-energy-throughput, 
ETsim denotes the simulated annual energy-throughput,  

 

 n denotes the number of lifetime available full cycles as specified by vendors, 
other parameters as above. 

 
 

2.6 Optimization through iterative simulation 

To optimize the system for maximum profit, we vary EC and DL separately and calculate each resulting 

TAC. EC is varied from zero to the average daily electricity consumption (20% stepwise increases). DL is 

varied from zero to 5.7 kW (10% stepwise increases). For the seasonal DLs method, we determine TAC 

for 3 separate DLs for each EC: Summer, winter, and spring/fall. Optimal results are then determined 

based on which EC and DL(s) yield lowest TAC. 
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The peak shaving simulation model was developed in Microsoft Visual Basic. Simulations of one-year 

demand profiles at one minute resolution, dispatch of storage, and the resulting TAC take about 8 minutes 

on a computer with 2.5 GHz Intel Core i5-2520M CPU and 4 GB RAM. 

Table 1: Cycles, healthy depth of discharge, (dis-)charge efficiency, and total-energy-throughput of each storage technology† 

  
  Lifetime 

available full 
cycles  

Healthy 
depth of 

discharge  

(Dis-
)charge 

efficiency  

Total-energy-
throughput 

[MWh] per one 
kWh EC 

 n ηDoD ηin = ηout ETtot 
Flywheel 30,000 88% 90% 33.3 

Conventional 
batteries 

Metal air 800 100% 64% 1.3 

Lead-acid (Pb-acid) 2,350 75% 84% 2.8 

Nickel-cadmium (NiCd) 2,000 75% 83% 2.4 

Advanced 
batteries 
  

Lithium-ion (Li-ion) 5,500 80% 89% 6.2 

Sodium sulfur (NaS) 3,250 80% 86% 3.8 

Sodium nickel chloride (NaNiCl ZEBRA) 2,500 80% 90% 2.8 

Flow batteries 
  
  

Zinc bromine (ZnBr) 6,000 100% 78% 7.7 

Vanadium redox (VRB) 10,000 100% 82% 12.2 

Nickel zinc (NiZn) 7,000 90% 85% 8.3 

Zinc manganese dioxide (ZnMnO2) 4,000 90% 85% 4.7 

Super capacitor 5E+07 100% 93% 5.4E+4 

Compressed Air Energy Storage (CAES) 12,500 70% 70% 17.7 

Pumped Hydro Storage (PHS) 35,000 100% 85% 41.2 

Superconducting Magnetic Energy Storage (SMES) 55,000 100% 93% 59.4 
†Average of lowest and highest literature values [21] 

3 Results 

To analyze the various effects and tradeoffs that affect TAC, we first explore each effect in isolation: 

Section 3.1 shows how smaller DL (to reduce demand charges) requires higher EC, and how this varies 

across seasons. In principle, installations with smaller EC will lead to smaller LSC. However, smaller EC 

will tend to increase the energy-throughput usage per day (as fraction of NC), therefore decreasing storage 

lifetime which in turn will increase or decrease LSC depending on the interest rate and the installation 

cost (section 3.2). Therefore, in section 3.3 we analyze the combined effects of DL and EC on TAC. We 

then analyze the TAC breakdown in demand versus energy charge, including seasonal effects and LSC 

(section 3.4). Finally, accounting for all above effects simultaneously, and for each storage technology 

separately, we determine pairings of EC and constant or seasonal DL(s) that provide lowest overall TAC 

and thus maximum profit for the household (section 3.5). 

3.1 Impact of DL on EC 

To explore the interactions between DL and EC and their potential impact on TAC, Fig. 3 plots EC that is 

required such that demand on the grid will never exceed DL. A ZnMnO2 battery system is used as an 

example to illustrate the impact. Fig. 3 shows that smaller DL (to reduce the demand charge) requires at 

first moderately and then steeply increasing EC. For example, in summer months, to reduce the DL from 

4.7 kW to 3.5 kW (1.2 kW reduction) requires only 1.7 kWh additional EC, while a 20 kWh EC 

increment is needed to decrease DL by a further 1.1 kW to 2.4 kW. In this example, incremental peak 

reductions are nearly the same but additional EC and thus LSC increase twelve-fold. This suggests the 

diminishing economic incentive for decreasing TAC as DL decreases and EC increases. 
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For same DL, required EC varies by season. In winter, a DL of 2 kW would require more than twice the 

EC as that required in spring/fall months. In summer, with air conditioning raising monthly electricity 

usage and monthly peak demand, households would require more electricity storage to reduce peaks to 

the same DL as in other months. However, storage equipment typically lasts significantly longer than 1 or 

2 seasons. This makes adjusting EC across seasons un-economical. However, despite constant EC across 

seasons, DL and thus the demand charge in non-summer months could be reduced compared to summer 

months, thus lowering year round TAC. In a variation of the dispatch strategy, we thus allow DL to 

assume different values for different seasons (seasonal DLs). 

Finally, we recognize that an EC large enough to ensure that demand on the grid will never exceed DL 
may in fact not be the optimal strategy with respect to lowest TAC. Instead, smaller EC may be cost-

optimal, because the associated smaller LSC may more than offset the increased tariff charge from 

occasional breaches of the DL (i.e., demand on grid is occasionally higher than DL target). Therefore, in 

sections 3.3-3.5, EC is not set as a function of DL, but rather set to whichever value yields lowest TAC. 

 
Fig. 3. Relationship between demand limit (DL) and effective capacity (EC) required such that grid demand never exceeds DL 
(example of ZnMnO2 battery). Error bars indicate standard error of the mean from the stochastic simulations.  

3.2 Impact of DL and EC on storage lifetime 

Fig. 4 shows the impact of EC and DL on storage lifetime, thus also impacting LSC and in turn TAC 

(example of ZnMnO2 battery). The simulated lifetime generally decreases with decreasing EC and 

decreasing DL. With smaller EC, the total-energy-throughput is smaller (Eq. 8), resulting in a shorter 

cycling lifetime. This may increase or decrease LSC, depending on the interest rate and the installation 

cost. More importantly however, with smaller DL, appliance demand will exceed DL more frequently. In 

turn, the dispatch strategy in the simulation will (dis-)charge storage more frequently and to a larger depth, 

thus further shortening the storage lifetime. For any given EC, aiming for small LSC will thus favor high 

DL. But, small EC and high DL will generally lead to more frequent, high demands on the grid, thus 

increasing the tariff charge and TAC. This tradeoff will be optimized in the analyses in the following 

sections. 

 

 



Zheng et al. – APEN-D-14-05563R1 – Manuscript (no changes marked) – Page 13 of 23 

 
Fig. 4. Storage lifetime as a function of effective capacity (EC) and demand limit (DL) (example of ZnMnO2 battery). Lifetime is 

capped at the calendar lifetime of the hardware (20 years, Eq. 9). 

3.3 Combined effects of non-seasonal DL and EC on TAC  

Fig. 5 shows the above trade-offs and their impact on TAC quantitatively (example of ZnMnO2 battery). 

With decreasing DL, TAC at first decreases due to lower tariff charge but then increases due to larger LSC. 

Likewise, with decreasing EC, TAC first decreases due to lower LSC but then increases due to higher 

tariff charge (more frequent and higher peak demands passed on to the grid). Optimal EC and DL are 

identified by the lowest point (EC = 12.7 kWh, DL = 2.9 kW for the example in Fig. 5).  

 
Fig. 5.  Total household annual cost (TAC) as a function of effective capacity (EC) and demand limit (DL) (example of ZnMnO2 

battery). TAC includes levelized storage cost (LSC) and annual tariff charge.  

3.4 TAC breakdowns 

We investigated the composition of the tariff charge and associated seasonal effects by breaking down 

TAC into eight parts (example of ZnMnO2 battery). The eight parts are: 1) Demand charge in summer; 2) 

energy charge in summer; 3) demand charge in winter; 4) energy charge in winter; 5) demand charge in 

the remaining months (i.e., in spring/fall months); 6) energy charge in the remaining months; 7) metering 

service charge; 8) LSC. 
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The second and third columns in Fig. 6 show the source of profit by utilizing the proposed dispatch 

strategy using either constant or seasonal DL(s). Using DR, although it moderately increases the energy 

charges by US$ 43, constant DL results in a ~US$ 650 reduction in the demand charge in summer months. 

The reduction for both winter and spring/fall months is ~US$ 350. The reductions are partly offset by the 

LSC of ~US$ 510 per year for this specific example, resulting in a ~US$ 790 profit. By applying different 

DLs for different seasons, the strategy reduces TAC by further US$ 300 beyond that with constant DL. 

~US$ 250 of this reduction stems from the demand charge in spring/fall months. The summer demand 

charge increases by US$ 30, while the winter demand charge decreases by US$ 75. The smaller optimal 

EC further decreases LSC by US$ 13. Finally, the metering service charge of US$ 142 is the same for in 

all three columns.  

 

Fig. 6. Breakdown of total household annual cost (TAC; example of ZnMnO2 battery). First column shows non-demand response 

(DR) annual tariff charge. Second column shows TAC under constant demand limit (DL), with 12.7 kWh effective capacity (EC) 

battery installed and 2.9 kW DL. The last column shows TAC under seasonal DLs, with 12.1 kWh EC battery installed, 3.0 kW 

summer DL, 2.2 kW winter DL, and 1.3 kW spring/fall DL. Profit is defined as the difference between TAC with peak shaving 

(inclusive of the levelized storage cost (LSC)) and the charge under the same tariff, however without storage and peak shaving. 

3.5 Optimization and economic viability 

Table 2 summarizes maximum annual profit for all storage technologies and constant versus seasonal 

DL(s), using base case parameters as well as conservative parameters (Discussion). Base case profits 

range from as low as US$ 51 for nickel cadmium battery (1% of the non-DR annual tariff charge) to 

US$ 1,376 for pumped hydro storage (PHS) (39%). All investigated storage technologies are 

economically viable when using seasonal DLs except for flywheel and superconducting magnetic energy 

storage (SMES). The annual loss is US$ 37 and US$ 216 for flywheel and SMES, respectively. Storage 
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technologies with high purchase cost per EC, i.e., NiCd and lithium-ion (Li-ion) batteries (also used in 

household-connected electric vehicles [48]), flywheel, and SMES, are not economically viable with 

constant DL. Storage lifetimes range from 11 to 20 years. Flow batteries last 20 years as shown in Table 2. 

Due to their smaller total-energy-throughputs, metal air, lead-acid (Pb-acid), NiCd, sodium sulfur (NaS), 

and sodium nickel chloride (ZEBRA) batteries have lifetimes of less than 20 years in both methods. Non-

battery storage technologies all last 20 years (lifetimes capped at 20 years to account for non-use 

dependent aging of the equipment). 

Table 2: Optimized total household annual cost (TAC), profit, and storage lifetime, under either constant or seasonal DL(s). 

Negative profits indicate that the storage technology is not economically viable† 
    Base case  

TAC (US$ /yr) 
Base case  

Profit (US$ /yr) 
Base case  

Lifetime (yr) 
Sensitivity test 
(conservative 
parameters††;  
seasonal DLs) 

    Constant 
DL 

Seasonal 
DLs 

Constant 
DL 

Seasonal 
DLs 

Constant 
DL 

Seasonal 
DLs 

TAC  
(US $ /yr) 

Profit 
(US$ /yr) 

Flywheel  3,836 3,579 -294 -37 20 20 3,946 -404 

Con- 
ventional 
batteries 

Metal air 3,016 2,714 526 828 12 13 3,308 234 

Pb-acid 3,276 3,051 266 491 17 11 3,952 -410 

NiCd 3,618 3,491 -76 51 16 14 3,876 -334 

Advanced 
batteries 
  

Li-ion 3,572 3,242 -30 300 20 20 3,973 -431 

NaS 3,371 3,130 171 412 19 15 3,923 -381 

ZEBRA 2,783 2,509 759 1,033 19 15 2,641 901 

Flow 
batteries 
  
  

ZnBr 3,194 2,805 348 737 20 20 3,576 -34 

VRB 3,085 2,694 457 848 20 20 3,202 340 

NiZn 3,242 2,853 300 689 20 20 2,860 682 

ZnMnO2 2,784 2,445 758 1,097 20 20 2,555 987 

Super capacitor 3,124 2,740 418 802 20 20 2,892 650 

Compressed air (CAES) 2,746 2,430 796 1,112 20 20 3,099 443 

PHS 2,435 2,166 1,107 1,376 20 20 2,402 1,140 

SMES 3,885 3,758 -343 -216 20 20 3,981 -439 

†Standard errors of the means due to the stochastic simulations range from US$ 5 to 25 for TAC. 

††Conservative parameters use highest cost and lowest efficiencies in the literature (same as in [21]). 

Table 3: Optimal effective capacity (EC) and optimal constant or seasonal DL(s) † 

  Constant DL throughout the year Seasonal DLs 
    

EC (kWh) DL (kW) EC (kWh) 
Summer DL 

(kW) 
Winter DL 

(kW) 
Spring/fall DL 

(kW) 

Flywheel   1.5 4.0 3.1 4.0 2.9 1.9 

Conventional 
batteries 

Metal air 30.8 3.1 28.5 3.9 2.2 1.5 

Pb-acid 4.0 3.9 3.8 4.3 3.1 2.0 

NiCd 2.8 4.3 2.5 5.1 4.0 3.0 

Advanced 
batteries 

Li-ion 2.9 3.8 3.2 4.1 3.0 1.9 

NaS 3.2 3.9 3.6 4.3 3.1 2.0 

ZEBRA 14.4 2.8 13.4 2.9 2.2 1.3 

Flow batteries 
  
  

ZnBr 3.5 3.9 3.8 3.9 2.9 1.9 

VRB 4.4 3.7 4.0 3.9 2.8 1.9 

NiZn 3.2 3.8 3.8 3.9 2.8 1.9 

ZnMnO2 12.7 2.9 12.1 3.0 2.2 1.3 

Super capacitor 3.6 3.7 4.0 3.7 2.7 1.7 

CAES 18.4 3.0 12.5 3.2 2.4 1.4 

PHS 26.8 2.6 25.0 2.7 1.9 1.2 

SMES 0.4 4.1 1.9 4.7 3.9 2.8 

†Standard errors of the means due to the stochastic simulations range from 0.02 to 2.4 kWh for optimal ECs, from 0.1 to 0.3 kW 

for optimal DLs. 
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Table 3 summarizes the optimal ECs and DLs for all studied storage technologies. Optimal ECs span a 

wide range depending on the storage technology: 0.4 kWh – 30.8 kWh for constant DL and 1.9 kWh – 

28.5 kWh for seasonal DLs. Optimal DLs range from 2.6 kW to 4.3 kW for constant DL. By lowering the 

DLs in non-summer months, seasonal DLs yields higher profit than constant DL. 

4 Discussion 

4.1 Demand tariffs versus energy tariffs 

For residential consumers, Con Edison offers both energy tariffs (SC 1; Page 387-389 in [29]) and 

demand tariffs. Energy tariffs charge households only according to their kWh drawn from the grid while 

demand tariffs combine charges for a household’s energy (kWh) and demand (kW). Arbitrage savings by 

storage-enabled DR can be achieved under both tariffs: Consumers shift electricity consumption from 

peak hours to off peak hours (loadshifting under energy tariffs; [21]) or smoothen peak demands (peak 

shaving under demand tariffs; present study). But which of the two tariffs allow for higher profits?  

Table 4 shows comparisons between achievable profits with storage-based DR under these two tariffs 

(using the same appliance demand model and same storage parameters such as purchase cost, ηDoD, Pmax, 

etc.). Note that there is no monthly metering service charge (Fig. 6; SD) under the energy tariff but 

instead a monthly basic service charge of US $24.30 per month [21]. However, the monthly charges for 

both tariffs are insignificant in comparison to the actual usage charges. For peak shaving (seasonal DLs), 

the highest annual profit is US$ 1,376, or 39% of the non-DR annual tariff charge under the same tariff 

(using PHS technology). For loadshifting, the highest profit is previously found to be US$ 883, or 28% of 

the non-DR tariff charge under the basic TOU energy tariff (using PHS technology). We find that lower 

TAC and smaller optimum storage size are achieved by implementing the peak shaving strategy for all 

storage technologies except for CAES and PHS. As shown in Table 4, the peak shaving strategy (seasonal 

DLs) renders more storage technologies economically viable (defined as reduced tariff charge higher than 

LSC). Only ZnMnO2 battery, CAES, and PHS are economically viable under both tariffs.  

Table 4: Economic comparison between the peak shaving strategy under the demand tariff (seasonal DLs) and the loadshifting 

strategy under the energy tariff ([21])  

  Minimum TAC (US$ /yr) Optimal EC (kWh) Economically viable 
    Energy tariff  Demand tariff  Energy tariff† Demand tariff  Energy tariff  Demand tariff  

Flywheel   3,847 3,579 - 3.1 No No 

Conventional 
batteries 

Metal air 3,121 2,714 29.6 28.5 No Yes 

Pb-acid 3,590 3,051 - 3.8 No Yes 

NiCd 3,805 3,491 - 2.5 No Yes 

Advanced 
batteries 
  

Li-ion 3,729 3,242 - 3.2 No Yes 

NaS 3,707 3,130 - 3.6 No Yes 

ZEBRA 2,704 2,509 27.9 13.4 No Yes 

Flow 
batteries 
  
  

ZnBr 3,476 2,805 - 3.8 No Yes 

VRB 3,261 2,694 10.4 4.0 No Yes 

NiZn 3,513 2,853 - 3.8 No Yes 

ZnMnO2 2,510 2,445 29.6 12.1 Yes Yes 

Super capacitor 3,412 2,740 7.0 4.0 No Yes 

CAES 2,292 2,430 33.1 12.5 Yes Yes 

PHS 1,818 2,166 34.8 25.0 Yes Yes 

SMES 3,974 3,758 - 1.9 No No 
†“-“ indicates that optimal storage size is zero. 
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4.2 Sensitivity tests for storage cost and performance parameters 

Although they have existed for decades, energy storage technologies are still experiencing relatively rapid 

improvements in cost and performance (e.g., [49]). As such, storage cost and performance parameters 

carry significant uncertainties whose impact on the overall profitability of the proposed peak shaving 

scheme is evaluated in several sensitivity tests below.  

The U.S. Department of Energy’s Office of Electricity Delivery & Energy Reliability Energy Storage 
Program defined a storage capital cost target of US$ 250 per kWh for NaS, Pb-acid, Li-ion, and flow 

batteries [49]. In our study, the average capital cost (i.e., purchase cost) for NaS, Pb-acid, Li-ion, and flow 

batteries ranges from US$ 141 per kWh (ZnMnO2 battery) to US$ 1,342 per kWh (Li-ion battery). If the 

target of US$ 250 per kWh could be achieved in the future for Li-ion batteries (81% reduction versus 

current), the annual profit per average U.S. household could be increased by US$ 676, or 225% (seasonal 

DLs). Performance improvements of storage technologies are also underway (e.g., [50]), which would 

lead to higher annual profits for storage technologies. For example, for metal-air batteries, a doubling of 

roundtrip efficiency from 45% to 90% (achievable in the future [51]) would increase the annual profit by 

US$ 295, or 36% (seasonal DLs). 

By the same token, near term installations may not achieve the exact cost and performance parameters 

that represent the base case in this study, but rather storage costs may be higher and round-trip 

efficiencies may be lower. We therefore tested whether our conclusions remain valid with such more 

conservative parameters. Results are provided in Table 2. Assuming highest cost and lowest efficiencies 

in the literature (conservative parameters; same parameters in [21]), Pb-acid, NiCd, Li-ion, NaS, ZnBr 

batteries, and short-term storage technologies (i.e., SMES and flywheel) would not be economically 

viable even when employing seasonal DLs. Annual losses range from US$ 34 to US$ 439 (~1% to 12% 

of the non-DR annual tariff charge). The highest profit is still achieved by PHS, which is 32% of the non-

DR annual tariff charge. Note however that PHS at household-level, while not impossible, must be 

considered less practical [21]. 

Finally, we analyzed the sensitivity of our results to the installation cost and the interest rate. In Results, a 

US$ 2,000 one-time fixed installation cost and a 10% interest rate were assumed (basecase), resulting in a 

US$ 235 fixed LSC payment per year (20 years lifetime). If the installation cost were zero, flywheel and 

SMES would become economically viable (seasonal DLs). A more conservative assumption of the 

interest rate, such as 15%, would increase LSC (US$ 2,000 installation cost included) by 36% (20 years 

lifetime). In contrast, an interest rate of 5% would lead to 32% lower LSC, thus enabling higher annual 

profits. Storage technologies with relatively higher costs and/or lifetimes are more sensitive to the interest 

rate. For example, if a lower interest rate of 5% were assumed, annual profit for PHS would change from 

the basecase of 39% of the non-DR annual tariff charge to 42% (seasonal DLs). But for Li-ion battery, the 

figures would change from 8% to 16%.  

In summary, we find that conservative assumptions reduce economic incentives, but many storage 

technologies still yield a profit (up to 32% of the non-DR annual tariff charge). In the future, expected 

technology improvement may enable much higher economic incentives for households.  
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4.3 Future work 

This study evaluates storage technologies only in terms of economic advantages for households. The 

benefits in terms of GHG emissions abatement [52-57] or air pollution reduction are not yet quantified. 

Emission impact analyses would be worthwhile to investigate in the future, in order to compare the 

emission impact incurred by different storage dispatch strategies and varying storage technologies. 

Furthermore, some research has developed and optimized storage dispatch strategies at the community 

level [58] and for multiple-unit apartments buildings [59]. Similarly, the present work may be extended to 

such settings as well. With regards to hardware parameters, for recent storage technologies with limited 

operational field experience, such as flow batteries, it is difficult to obtain accurate cost values from 

current literature. A best-case scenario reflecting future performance improvements (e.g., roundtrip 

efficiency, lifetime) and future cost reductions may be included in future work. 

5 Conclusions 

Our economic results show significant financial incentives to motivate residential consumers to install 

storage to shave peaks under a TOU demand tariff, using the proposed dispatch strategy. Using the same 

appliance demand model and storage parameters, the present peak shaving DR results in smaller optimum 

storage size and renders more storage technologies economically viable compared with the specific 

loadshifting DR as used in [21]. Annual profit without seasonal DLs ranges from -10% to 31% of the 

regular electricity bill (same tariff but without DR). With seasonal DLs, annual profits range from -6% to 

39%. By utilizing a given storage capacity more efficiently, varying DL across seasons makes storage-

based DR generally more profitable, even rendering some technologies from unprofitable to profitable 

(NiCd and Li-Ion batteries). Only flywheel and SMES remain unprofitable even with seasonal DLs. 

Assuming conservative parameters, annual profits remain achievable but are reduced, ranging from  -12% 

to 32% of the non-DR electricity bill (seasonal DLs).  

Note results in this study are only valid for the demand profiles of an average U.S. household (to which 

the agent-based demand model was calibrated) and the specific Con Edison tariff. Different demand 

profiles and/or tariff selections will affect achievable profits. TOU demand tariffs such as the one 

investigated in this study are not (yet) available in all U.S. States. Based on our results, we predict that 

electricity grids and household owners in other states may benefit from similar tariffs. 

As shown by Hong et al. [60], weather has a significant impact on both the peak demand and energy 

consumption of electricity. We therefore predict that a more intelligent dispatch strategy, such as one with 

embedded weather forecasting capability, may result in yet higher profit. 
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Nomenclature  

CAES Compressed Air Energy Storage 
DR Demand Response 
GHG Green House Gas 
PHS Pumped Hydro Storage 
SC Service Classification 
SD Supplementary Data 
SMES Superconducting Magnetic Energy Storage 
TOU  Time of use 
VRB Vanadium Redox Battery 
ZEBRA Sodium nickel chloride battery 
  
Cinstallation Installation cost (one-time parts and labor, excl. storage itself) 
Cpurchase Purchase cost of the storage, power conversion, and control unit combined system (excl. 

installation), per kWh nominal capacity  
Ctariff  Annual tariff charge 
Ctariff, metering Monthly metering service charge 
Ci,j

tariff, energy Energy charge rate during month i in time period j 
Ci,j

tariff Demand charge rate during month i in time period j 
Ctariff, with DR Annual tariff charge under the TOU tariff with DR 
Ctariff, no DR Annual tariff charge under the TOU tariff without DR 
DL Demand limit 
EC Effective capacity of storage 
ETtot Total-energy-throughput  
ETsim Simulated annual energy-throughput 
LSC Levelized cost of storage equipment (annualized) 
Pappliances (t) Power draw required by appliances at time step t 
Pgrid(t) Power draw from grid at time step t 
Pstorage(t) Storage (dis-)charge power (negative, if storage is discharged) at time step t 
Pmax Maximum (dis-)charge power (specified to storage technologies) 
NC Nominal capacity of storage 
Pr Annual profit (tariff charge reduction from DR minus LSC) 
SoC(t) St77orage state of charge at time step t 
TAC Total annual cost to household 
Ui,j

energy Energy usage during month i in time period j 
Ui,j

demand 30-min average maximum demand during month i in time period j 
ηin Ratio of electricity stored to electricity drawn from the grid by the storage 
ηout Efficiency of converting energy stored to electricity being supplied to appliances 
ηDoD Healthy depth of discharge of storage 

� Levelization multiplier (similar to a capital recovery rate) 

r Interest rate 
k System lifetime 
n Number of lifetime available full cycles as specified by manufactures or vendors 
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