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ABSTRACT 

Asymmetry of bilateral mammographic tissue density and patterns is a potentially strong 

indicator of having or developing breast abnormalities or early cancers. The purpose of this study 

is to design and test the Global asymmetry features from bilateral mammograms to predict the 

near-term risk of women developing detectable high risk breast lesions or cancer in the next 

sequential screening mammography examination. The image dataset includes mammograms 

acquired from 90 women who underwent routine screening examinations, all interpreted as 

negative and not recalled by the radiologists during the original screening procedures. A 

computerized breast cancer risk analysis scheme using four image processing modules, including 

image preprocessing, suspicious region segmentation, image feature extraction, and classification 

was designed to detect and compute image feature asymmetry between the left and right breasts 

imaged on the mammograms. The highest computed area under curve (AUC) is 0.754±0.024 

when applying the new computerized aided diagnosis (CAD) scheme to our testing dataset. The 

positive predictive value and the negative predictive value were 0.58 and 0.80, respectively. 

Key Words: Breast cancer; mammogram; computerized breast cancer risk analysis; bilateral 

mammographic asymmetry feature; near-term breast cancer risk assessment.  



 

Page | 3 
 

I. Introduction 

Breast Cancer is the most common cancer and second leading cause of cancer deaths of 

women [1]. Scientific evidence has shown that early cancer detection is important to enhance the 

survival rates of the patients through more effective patient management and treatment [2, 3]. 

Since the majority of breast cancers are detected in women with no known risk factors defined in 

the existing epidemiology models [4-5], a uniform mammography screening program in the 

general population is currently applied and considered important [3]. However, due to the large 

variability in the depiction of breast abnormalities, the overlapping dense fibroglandular tissue 

on the projection images and the low cancer prevalence in the screening environment, both 

detection sensitivity and specificity of screening mammography are relatively low [6-8]. To help 

radiologists improve detection and diagnosis performances in reading and interpreting screening 

mammograms, a great amount of research has been conducted to develop CAD systems or 

schemes including our work on developing a variety of two-dimensional computerized image 

analysis algorithms optimized to enhance the performance of the traditional CAD systems during 

the last two decades (e.g., [9-13]). Currently, a number of commercialized CAD schemes, 

including the one originally developed in our group and then being licensed to Carestream 

Health, Inc [14, 15], are widely used in the clinical practice to assist radiologists in reading and 

interpreting mammograms to date. 

However, a number of recently reported studies made the debate related to the efficacy 

(risk-benefit and cost-benefit) of population-based screening mammography more controversial 

[16, 17]. Although reducing mammography screening interval (e.g., from annual screening to 

screening every two or more years) has the risk of missing early cancers, the currently frequent 

X-ray mammography screening and the associated high false-positive recall rates contribute to 
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higher cost as well as the unnecessary harms to many cancer-free women who routinely 

participate in the recommended mammography screening. As a result, since more scientists or 

researchers have realized the significance of establishing a more effective risk evaluation system 

to improve the accuracy of early breast cancer risk prediction, shifting the current population-

based breast cancer screening paradigm to a new and optimal personalized screening paradigm in 

which women should be screened differently (including both the screening interval and screening 

imaging methods) has been attracting wide research interest [18-22]. To realize this ultimate goal, 

it is required to develop and establish breast cancer risk prediction or stratification models that 

have significantly higher (clinically acceptable) discriminatory power or positive predictive 

value (PPV) to stratify women into high and low risk groups of having or developing breast 

cancer in the near-term (e.g., ≤ 5 years). Hence, a small group of high risk women should be 

more aggressively screened and monitored for the early detection of breast cancer, while the 

majority of low risk women can be screened in a longer interval to reduce the potential harm (i.e., 

false-positive [23] and added cancer or other health risk [24]) until their risk statuses are changed. 

Unfortunately, all existing epidemiology based breast cancer risk models [5, 25] do not have 

clinically acceptable accuracy for this purpose [26]. As a result, much innovative research work 

is needed to develop the new near-term risk models that are potentially clinically useful or 

acceptable for breast cancer screening purpose. Among the different efforts, previous studies 

have shown bilateral mammographic image feature asymmetry, the difference of imaged breast 

size [27] and average density between the left and right breast [28]. This might be a strong risk 

indicator of developing breast cancer in the near-term (e.g., the next sequential screening 

examinations) because such image phenotype variation may associate with genotype abnormality 

to break human natural bilateral symmetry in the paired morphological traits, including breasts, 
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which may lead to cancer development. Instead of using registration or alignment techniques, 

[28] designed global features from the whole breast area as the measurement of bilateral 

mammogram asymmetry. Thus the potential misalignment and poor registration between 

bilateral mammograms results from the differences in breast compression or positioning and 

changes in breast itself [29] are avoided. However, to the best of our knowledge, all the global 

asymmetry features are constraint in spatial feature domain, no global morphological features or 

textural features of asymmetry measurement are discussed in existing literatures. 

In this study, the global morphological and textural asymmetry features are designed and 

we also investigate and test the possibility of converting and/or applying the traditional CAD 

schemes to breast cancer risk analysis schemes using the current negative mammograms (e.g., 

the negative mammograms acquired in the “prior” examinations) to predict the likelihood of 

women having high-risk breast lesions or cancers being detected in the near-term based on the 

computerized image feature analysis from the bilateral (left and right breast) mammograms. Our 

hypothesis is that the bilateral image feature difference computed from the left and right breasts 

should also provide useful information indicating the asymmetry of breast tissue structures that 

might be directly related to the development of high risk breast lesions.  

 

II. Materials and Method 

2.1. Database 

 From an established in-house full-field digital mammography (FFDM) image database, 

we randomly selected 90 pairs of bilateral mammograms, including 60 pairs of cranio-caudual 

(CC) view and 30 pairs of Mediolateral-oblique (MLO) view cases from 90 women who 
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underwent routine screening mammography examinations. The women’s ages range from 32 to 

64, with a mean age of 43.7 years and median age of 43.  Among the data, 4 cases, 28 cases, 49 

cases and 9 cases were respectively rated by radiologists as almost entire fatty (BIRADS I), 

scattered fibro-glandular (BIRADS II), heterogeneously dense (BIRADS III) and extremely 

dense (BIRADS IV). All of these mammograms (treated as “prior” mammograms in this study) 

were interpreted as screening normal (without recall) by the radiologists; however, in the next 

sequential (annual) FFDM screening examinations, 34 of these women were recalled by 

radiologists due to the highly suspicious findings depicted on the FFDM images. Through 

additional imaging examinations and/or biopsies, 20 women were diagnosed and confirmed 

having cancer. The rest of the 56 women remaining screened negative (not recalled) during the 

sequential FFDM examinations (as shown in Table 1). In this study, 90 pairs of left and right 

FFDM images acquired from the “prior” negative examinations were used and analyzed. The 

goal of this study is to develop a new computerized scheme to classify risk assessment between 

34 high risk women who developed abnormalities that were detectable by radiologists during the 

next sequential screening examinations and 56 low-risk women who remained cancer-free and 

were not recalled by radiologists in the next sequential screening.  

Table 1: Distribution of our testing dataset 

 

2.2. Breast Cancer Risk Analysis Scheme 

The proposed breast cancer risk analysis scheme was developed to detect the cases with 

high possibilities of having highly suspicious breast abnormalities detected in the next sequential 

screening examinations. Specifically, the scheme was divided into four primary image 

processing and data analysis modules, including (1) image preprocessing, (2) region 
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segmentation, (3) feature extraction and selection and (4) machine learning classification. Figure 

1 shows the flowchart of the proposed scheme. 

Figure 1: Flowchart of breast cancer risk analysis scheme using global asymmetry features from 

bilateral mammograms 

A. Preprocessing module: 

 In order to enhance image features and reduce image noise, we implemented the 

following three image preprocessing functions that could have impact on the following 

procedures as well as the final analysis results. These are (1) concurrent image enhancement; (2) 

concurrent multiorientation transform; and (3) concurrent multiresolution transform. 

 First, the image enhancement eliminates noise and artifacts by using adaptive tree-

structured nonlinear filtering (TSF). In order to maximize the effect of TSF, the standardization 

method was used to convert the mammogram to match our algorithm [30]. Then we apply central 

weighted median filter (CWMF) method and eight different variable filter windows to match 

different edge signals related to the breast tissues [31]. Compared to the preprocessing module in 

the single-view system, using either the right side mammogram or the left side mammogram, we 

need to process each pair of bilateral images at the same time and make sure each pair of 

corresponding parameters is the same. The CMWF and variable filter windows are able to 

decrease or suppress noise and increase details of breast tissues. Then, the TSF architecture 

integrate the designed symmetric filters and variable shape windows into a three-stage system 

[32]. This is a symmetric multistage filter which combines the advantages of central weighted 

median filters, linear and curved windows, and multistage operations that sequentially compare 

filtered and raw image data with the objective of obtaining more robust characteristics for noise 
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suppression and detail preservation. These steps resulted in spatial feature domain images of both 

left and right breasts for later use in bilateral spatial feature extraction. 

 Second, directional wavelet transform (DWT) is used for concurrent multiorientation 

signal decomposition. The input bilateral images are decomposed by the directional wavelet 

transform and each image yields two output images. Every case (bilateral mammograms) 

resulted in another four images: two are directional texture images (textural domain) which are 

used for directional feature extraction, and the other two are smoothed versions of the original 

images (morphological images), with directional information removed [33]. The importance of 

this step has already been shown in our previous breast cancer detection research, and even more 

necessary for this new application because (1) the directional feature is a good indicator of early 

cancer risk analysis in which the subtle abnormalities in early stage might be difficult to detect in 

early stages, and (2) the processed resulting image makes it possible to quantitatively analyze 

spiculations for potential abnormalities. 

 Third, the tree structured wavelet transform (TSWT) function is designed as an efficient 

concurrent multi-resolution enhancement method. A two-channel tree-structured wavelet 

transform is used here as a highly efficient multi-resolution representation method, as opposed to 

single-scale region-based image enhancement approach for suspicious areas. It combines the 

advantages of lower resolution characteristics, which are useful for localization of suspicious 

areas, with the advantages of higher resolution which is essential for details [33]. 

 After applying this image preprocessing module, the proposed scheme generates 3 

images for each mammogram including spatial image, texture image and morphology image [34].  



 

Page | 9 
 

Figure 2: An example of original image and other three images obtained from preprocessing 

module. a) original mammogram, b) spatial image, c) texture image and d) morphology image. 

B. Segmentation module: 

 In this module, morphology images and texture images were processed with the purpose 

being to detect and segment the suspicious areas depicted on each image. We designed a spatial 

fuzzy C-means (FCM) clustering algorithm that works by grouping similar pixels into clusters in 

the feature domain. Having applied the filters, ROIs (region of interest) containing suspicious 

tissue structures or high-risk breast lesions were extracted from the preprocessed images, and the 

number of clusters were chosen by the filter results. 

 Compared to conventional fuzzy clustering method, we integrated the spatial information 

in our approach. As the pixels on the images are highly correlated, the spatial information is of 

great importance to be considered in the process of clustering. We sum the intensity membership 

value of each pixel in a 5 by 5 sized window as a spatial function, with the spatial function is 

defined as  

2/ij ij

n n

h u n


  , 

where 
iju  is the membership value of each pixel. The value will be relatively larger if the 

majority of its neighborhood belongs to the same cluster [35]. By incorporate the spatial function 

into the membership function we get: 
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where p and q are the weights of the membership function and spatial function. 

Our clustering loop contains two steps namely cluster assignment step and move centroid step. In 

order to avoid local optimum, the fuzzy C-means algorithm runs iteratively to calculate the cost 

function each time so that the best clustering can gradually emerge and be selected. Then, an 

AND rule in fuzzy logic is used to combine intensity membership and spatial membership 

together. The reduced resolution image was used in the FCM method, since lower resolution 

images usually contain more homogenous regions. After the clusters in lower resolution images 

are labeled, the clusters with the same labels were then merge into high resolution images. As a 

result, the smoothed regions and detailed edges can be segmented and acquired at the same time. 

The final clustering is achieved iteratively by calculating cost function that is dependent on the 

distance of the pixels to the cluster centers in the feature domain [35]. The flowchart is shown in 

Figure 3, and Figure 4 shows the segmentation results marked on original images based on our 

spatial fuzzy C-means method.  

Figure 3: Flowchart of a spatial fuzzy C-means method 

Figure 4: The segmentation result using spatial fuzzy C-means method. For better illustration, 

the segmentation example is implemented on the mammogram with malignant mass tissue (a) 

original image (b) enhanced image (c) segmentation result  

 

C. Feature computation and analysis 

 The third module of the proposed breast cancer risk analysis scheme computes and 

analyzes the related image features. We divided the features into two groups, one with unilateral 
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features (based on single breast mammogram), and the other with concurrent features (based on 

both breast mammograms). For convenience, all the features and their groups are presented in 

Appendix. Unilateral features depict the information of every single breast mammogram, and 

concurrent features describe the relationship of the bilateral mammograms.  

a) Unilateral Features 

For unilateral feature analysis, the proposed scheme computed the following groups of 

features including (1) morphological features: circularity, normalized deviation of radial length, 

the area of the extracted region in pixels, boundary irregularity factor; (2) textural features: the 

number of spiculations, the average spiculation length. The description of these features can be 

found in our previous papers [11-13]. 

 In addition, we also investigated and used three texture features [36, 37]. These features 

were computed from the images generated by our modified multi-orientation transform using the 

following approaches.  

1) Gabor Energy Feature. This feature combines the outputs of symmetric and anti-

symmetric kernel filter together and defined as: 

     2 2

,Θ ,Θ,0 1
,Θ,

2

, , ,e x y r x y r x y 
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responses of the linear symmetric and anti-symmetric Gabor filters, respectively.  And 

these are standard formulas of Gabor filters:  
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2) Complex Moments Feature. This feature provides the information about the presence or 

absence of dominant texture orientations by using real and imaginary parts of the 

complex moments of the local power spectrum. 

       ,, ,
m n

mn u vC x y u iv u iv p x y dudv   , ,m n N  

where 
1

cosΘu


 , 
1

sinΘv


 ,  , ,Θ, ( , )u vp x y p x y . It is proven that a complex 

moment of even order m+n is able to discriminate textures with (m+n)/2 dominant 

orientations [36]. 

3) Grating Cell Operator Feature. As discussed in [36, 37], grating cell operator contains 

two steps. The first step is to respond at any position to a set of three parallel bars with 

appropriate periodicity, orientation and position. The second step integrates the responses 

of a given preferred orientation and periodicity within a certain area to compute the 

response of a grating cell.  

Alone with the morphological and textural features, a set of 9 spatial image features were 

also computed as unilateral features: (1) energy, (2) entropy, (3) inertial, (4) mean value, 

(5) standard deviation, (6) skewness, (7) kurtosis, (8) smoothness and (9) mean gradient.  

b) Concurrent Features 

The concurrent features represent the degree of bilateral mammogram asymmetry. In this 

step no alignment or registration between two bilateral breast images is required, as all the 

features we designed and used here are global features. Hence, for concurrent feature analysis, 

the features were acquired by calculating the absolute different ratios of certain measurements 

using features from each corresponding bilateral mammogram. Then using the measurements 
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listed below, we computed the following bilateral asymmetric features from each paired 

mammograms. In brief, based on the gray level histogram of the entirely segmented breast area 

six features (1 – 6) are computed:  (1) the ratio between the number of pixels with the maximum 

gray value in the histogram and the total number of pixels of the whole breast; (2) the ratio 

between the number of pixels with a gray value larger than the average value of the histogram 

and the total number of pixels of the breast; (3) the average difference of two adjacent values in 

the histogram; (4) the average value of the histogram; (5) the standard deviation of the  

histogram; and (6) the uniformity of intensity in the histogram. The rest of the seven features 

were computed to mimic the density BIRADS rated by radiologists based on threshold 

computation. Features (7-9) are the ratios between the average value of pixels under thresholds 

of 25%, 50%, and 75% of the maximum pixel value and the average pixel value of the whole 

breast area. Features (10-12) are the ratios between the number of pixels under each threshold 

and the total number of pixels of the entire segmented breast area. Feature 13 is the ratio between 

subtraction of the average value of pixels under 75% threshold minus average value of whole 

breast area and subtraction of average value of whole breast area minus average value of pixels 

under 25% threshold. Finally, feature 14 is the ratio of difference between number of pixels 

under 75% threshold and total number of pixels of whole breast area and subtraction of whole 

pixel number minus number of pixels under 25% threshold. 

 Besides computing image features from spatial domain, we also designed and computed 

bilateral asymmetry features in the textural domain and morphological domain. To our 

knowledge, no publication has discussed global bilateral textural and morphological features. 

However, from our research we found that some benign cases in “prior” examination also have 

certain suspicious dense areas, like lobular hyperplasia or benign masses, and the asymmetry of 
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these areas might also provide useful information for risk cancer development. If no suspicious 

areas can be found in the mammogram, the dense areas will be extracted. All these areas 

mentioned above were called suspicious areas in this study. Unlike the suspicious region defined 

by radiologists (on average much less than one per typical mammogram), the suspicious areas 

defined here indicate the regions identified in initial processing steps, which is as many as 839 

from all the 90 pairs of cases. Instead of struggling to avoid misalignment of bilateral 

corresponding areas, we treat the entire segmented suspicious areas depicted on one image as a 

whole, and the average suspicious region measurement of each bilateral mammogram was used 

in our study. Listed below are the global features we designed in this study: 

1. Ratio of total number of suspicious areas in each mammogram, 

2. Ratio of total areas of extracted ROIs  in pixels in each mammogram, 

3. Ratio of average boundary irregularity factor of ROIs in each mammogram, 

4. Ratio of average circularity of ROIs in each mammogram, 

5. Ratio of average rectangularity of ROIs in each mammogram, 

6. Ratio of number of spiculations in each mammogram, 

7. Ratio of the average spiculation length in each mammogram, 

8. Ratio of Gabor energy feature in each mammogram, 

9. Ratio of complex moments feature in each mammogram, 

10. Ratio of cell operator feature in each mammogram, 

11. Ratio of entropy of suspicious areas in each mammogram, 

12. Ratio of the standard deviations of spiculations in each mammogram. 

D. Feature selection and classification: 
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 After computing these features in different image feature domains, we analyzed the 

correlations among these features, deleting redundant features and building an optimal feature set. 

Based on Darwin’s theory of evolution, all living things are based on the rule of “survival of 

fittest”, by translating this into algorithms we search for the solutions in a more natural way, 

using the Genetic Algorithms (GA). GA search from a broad spectrum of possible solutions to 

find the optimal feature set [38]. It is a search technique that evaluates each individual’s fitness 

through a fitness function. In this study, the fitness function for every chromosome is

( ) ( ) / 2000fitness m Az N m  , where Az is the performance from previous selected feature pool 

and N(m) is the number of selected features in chromosome m. We first calculated the fitness 

value with initial population, and then selected the individuals with relatively high values for 

mutation to produce the next generation. The crossover probability and mutation probability is 

0.9 and 0.001 respectively. The process ended when the final condition satisfied. In order to 

solve the problem that the elimination of one feature will affect the elimination of the next 

feature, a global search technique was applied in our study [39]. The best set of features to be 

used in classification was selected by testing every possible combination of candidate features. 

To achieve this goal we started with a random population that converged when all members in 

the population had approximately the same fitness. 

 

 Having selected the features, the Support Vector Machine (SVM) method was used to 

classify and/or predict the likelihood of the test cases developing high risk breast lesions 

detectable in the next sequential FFDM screening examinations in our database. Compared with 

many other machine learning classifiers, SVM uses unique characteristics. Alone with faster 

training time, it uses large margin classifiers allowing the SVM to maximize the distance of the 
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training examples to the decision boundaries. Using a well optimized SVM training software 

package [40], the global minimum or optimal result could be determined relatively easy and 

reliably while substantially reducing the risk or the possibility of being trapped inside the local 

minimum. Limited by our dataset size, a 10-folder cross-validation method was used to train and 

test our SVM. We used nine folds as training data and the remaining one fold as the validation 

data. This process was iteratively repeated 10 times until each fold was used once as the 

validation data. This 10-fold cross-validation method made our data set more efficient as every 

mammogram can be used for both training and validation. 

 After obtaining the SVM classification results for all testing cases, we applied receiver 

operating characteristic (ROC) data analysis methods to assess CAD performance in predicting 

the probabilities of each case developing high risk breast lesions in the next sequential 

examinations. The area under the ROC curve computed using the ROCKIT program (ROCKIT, 

http://www-radiology.uchicago.edu/krl/) was used as the performance evaluation index. In 

addition, by maximizing the margin length from SVM classification, the dataset was divided into 

two subgroups of positive and negative cases. The positive and negative predictive value were 

also assessed and reported. All testing results were tabulated for comparison. 

III. Results 

To evaluate the efficiency of our proposed features, we applied each of the 12 global bilateral 

symmetric features to classify the cases in our dataset into two groups of positive and negative 

for development of breast abnormalities or early cancer. The average performance level 

measured by AUC is 0.5933 ranging from 0.5316 ±0.0303 to 0.6904 ±0.0231 (Figure 5). All 

twelve of our proposed global asymmetry features yielded an AUC more than the chance 

(AUC=0.5), including 5 of them achieving AUC more than 0.6. This means all these features 

http://www-radiology.uchicago.edu/krl/
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have certain ability to assess the bilateral breast asymmetry and hence identify a fraction of 

positive cases. 

Figure 5: The distribution of the performance levels (the areas under receiver operating 

characteristic (ROC) curves and the standard deviations) when applying each of the proposed 12 

features to classify 90 cases into the two groups of positive and negative for developing breast 

abnormalities or cancer. 

All the features mentioned in Section C (including all the existing features and newly designed 

12 global features) were used for GA feature selection, the following features were selected to 

build the classifier used in our CAD scheme: (1) the standard deviation of single pixel values of 

breast area; (2) the skewness of pixel values of single breast area; (3) the ratio between the 

number of pixels with the maximum gray value in the histogram and the total number of pixels 

of the whole breast; (4) the standard deviation of the  histogram; (5) the ratio of average 

boundary irregularity factor; (6) the ratio of average circularity; (7) the ratio of number of 

spiculations. The formulations of the selected features are presented in Table 2. Due to the 

relatively low correlations among these seven features (Table 3), by combining these features the 

SVM yielded a significantly improved classification performance with AUC = 0.754±0.024 

(P<.001). The statistical analyses were performed using SAS software (SAS Institute, Cary, NC). 

Table 2: The formulations of selected features 

Table 3: The correlation coefficients of the selected seven features 

To compare the performance of CC view mammograms and MLO view mammograms, we 

applied our algorithm to CC view data and MLO view data respectively and with AUC values 

(SVM selected as the classifier) being 0.762±0.027 (CC view) and 0.7380±0.026 (MLO view). 
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The ROC curves are shown in Figure 6. The truth files were acquired from the diagnostic results 

of the next sequential FFDM examinations and/or the biopsy (for the recalled and positive cases). 

Table 4 shows that among 34 positive high risk cases (from the truth file), 25 (73.5%) were 

classified or predicted as having high risk of developing detectable cancer breast lesions in the 

next sequential screening examinations among 56 benign cases, 38 (67.9%) were classified as 

low risk cases of developing detectable cancers in the next sequential screening examinations, 

which means that more than two thirds of the cases, 70.0% (63 out of 90 cases), were predicted 

correctly. In this dataset, the positive predictive value (PPV) and the negative predictive value 

(NPV) were 0.58 and 0.80, respectively.  

 

Table 4: Summary of using our CAD scheme to stratify our testing cases into the positive (high 

risk) and negative (low risk) groups based on analysis of all features except our newly designed 

features (traditional features) and all combined features (traditional features and new features) 

Figure 6: Comparison of three ROC curves generated by only MLO view cases, only CC view 

cases and both view cases 

 By removing all global asymmetry morphological and textural features (i.e. the 12 

features we proposed in this paper) from the feature pool, we reselected the features and rebuilt 

the SVM in the same way using the spatial features only. The performance measured by the 

computed AUC goes down to 0.701 with standard deviation of 0.029 and 95% confidence 

interval of [0.672, 0.730]. The classification results are summarized in Table 5. The PPV and 

NPV when using spatial image feature asymmetry resulted in 0.50 and 0.74, respectively. The 

comparison in Table 4 shows that using our CAD scheme by adding morphological and textural 
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feature asymmetry computed from two bilateral mammograms could improve the performance 

of the scheme by increasing both PPV and NPV rate. 

 

IV. Discussion 

 In this study we investigated and presented a new application value of the CAD schemes 

of mammograms, which aims to identify a fraction of women with high risk of having or 

developing detectable breast cancer. Computerized asymmetrical image feature analysis of two 

bilateral (left and right) mammograms is made available in the near-term after the negative 

screening examination of interest. This study has a number of unique characteristics. First, 

subtracting the registered bilateral mammograms to identify suspicious abnormalities based on 

image feature difference. This has been investigated and tested in early CAD development 

without much success because these CAD schemes typically yield substantially high false-

positive detection rates and often unreliable results [42-45]. Hence, the biggest obstacle to 

compute and analyze the image feature differences on the two bilateral mammograms using 

CAD scheme is that the accurate image alignments or registration is required, which has been 

proven to be very difficult and not robust leading to the high false positive detection rates. Due to 

the complexity of breast cancers, misalignment is almost unavoidable. In this study, we adopted 

a different approach that did not require image registration while extracting asymmetry features 

from bilateral mammograms. Our scheme directly compared the differences of image features 

that were separately computed from two bilateral images.    

Second, although using computerized global spatial or statistical image feature difference 

from two bilateral images to predict near-term breast cancer risk has been previously tested and 
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reported [28, 46], the disadvantage of these studies is that only the spatial features were used to 

analyze the cases while ignoring morphological features and texture features. In this study, we 

tested a new method that utilized features extracted from three domains to try to enhance 

performance. This work also aimed to add a new function to an existing CAD scheme to allow 

for not only detect the suspicious lesions in the positive cases but also predict the near-term risk 

of the negative cases. Our research showed that adding the morphological and texture features 

currently used to classify the suspicious lesions or regions to the process of risk prediction could 

increase prediction performance (as comparison shown in Tables 4). An increase of 0.053 in Az 

value, 0.08 in PPV rate, and 0.06 in NPV rate were observed after adding our proposed features 

to the scheme. Hence, in this approach the well-developed image feature analysis methods used 

in current CAD schemes can be applied to the dual tasks of detecting suspicious breast lesions 

and predicting future cancer risk. In this study, as we deliberately selected some features in 

morphological and texture domains and mixed them with other features computed from the 

spatial feature domain, our scheme was able to correctly predict 73.5% of cases that would have 

detectable cancer in the next sequential screening examinations. To the best of our knowledge, 

no similar studies have been reported to date.  

Third, breast cancers occur in women with variety of image characteristics. Although 

current CAD performance depends on the case difficulty (e.g., breast density) [45], our approach 

is largely independent from these case difficult factors or varying image characteristics based on 

the assumption that two breasts of negative cases are relatively symmetrical. Similar to the most 

existing CAD schemes, our scheme is also likely to detect more suspicious regions on both left 

and right dense breasts and few suspicious regions in two fatty tissue dominated breasts. It is the 

tissue asymmetry that determines the risk of a woman having or developing breast cancer. Hence, 



 

Page | 21 
 

this approach should be more robust than the current CAD schemes in detecting suspicious 

breast abnormalities based on single images.   

 Despite these encouraging results, this was a preliminary study with a number of 

limitations. In particular, our testing dataset was very small, which was not sufficient to represent 

the general screening population seen in clinical practice. Thus, the robustness and 

generalizability of the reported results need to be further tested in future studies.  

 

 In summary, developing new near-term breast cancer risk assessment models that enables 

the stratification of women into two groups of high and low risk. The high discriminatory power 

(the clinically acceptable positive and negative predictive values) is extremely important to help 

develop and establish an optimal personalized breast cancer screening paradigm. In this study we 

tested a new approach that analyzes the bilateral mammographic image feature differences in 

three feature domains without image registration or alignment. This allows us to predict the 

likelihood of a woman developing breast cancer in near-term after a negative screening 

examination of interest. The results showed that it is feasible to apply our modified CAD scheme 

to predict the near-term breast cancer risk in a relatively large fraction of high risk cases. If 

successful, the prediction results from this or other similar new CAD-based breast cancer risk 

models may be used to raise a warning flag. Proper use of these methods assist radiologists in 

reducing the possibility of missing or overlooking these cases in the next sequential 

examinations or advise the women being more aggressively screened (e.g., using a short 

screening interval and other more sensitive imaging modalities) to increase the likelihood of the 

cancer being detected in an early stage.   
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Appendix: The feature groups and descriptions are presented below:

Feature descriptions

ratio between the number of pixels with the maximum gray value in the histogram and the 

total number of pixels of the whole breast

ratio between the number of pixels with a gray value larger than the average value of the 

histogram and the total number of pixels of the breast

average difference of two adjacent values in histogram;

average value of histogram

standard deviation of the  histogram

uniformity of intensity in the histogram

ratio between the average value of pixels under threshold of 25% of the maximum pixel 

value and the average pixel value of the whole breast area

ratio between the average value of pixels under threshold of 50% of the maximum pixel 

value and the average pixel value of the whole breast area

ratio between the average value of pixels under threshold of 75% of the maximum pixel 

value and the average pixel value of the whole breast area

ratio between the number of pixels under 25% threshold and the total number of pixels of 

the entire segmented breast area

ratio between the number of pixels under 50% threshold and the total number of pixels of 

the entire segmented breast area

ratios between the number of pixels under 75% threshold and the total number of pixels of 

the entire segmented breast area

ratio between subtraction of average value of pixels under 75% threshold minus average 

value of whole breast area and subtraction of average value of whole breast area minus 

average value of pixels under 25% threshold

ratio of difference between number of pixels under 75% threshold and total number of 

pixels of whole breast area and subtraction of whole pixel number minus number of pixels 

under 25% threshold.

ratio of total number of suspicious areas in each mammogram

ratio of total areas of extracted ROIs  in pixels in each mammogram;

ratio of average boundary irregularity factor of ROIs in each mammogram

ratio of average circularity of ROIs in each mammogram

ratio of average rectangularity of ROIs in each mammogram

ratio of number of spiculations in each mammogram

ratio of the average spiculation length in each mammogram

ratio of Gabor energy feature in each mammogram

ratio of complex moments feature in each mammogram

ratio of cell operator feature in each mammogram

ratio of entropy of suspicious areas in each mammogram

ratio of the standard deviations of spiculations in each mammogram

Groups

Unilateral 

Features

Morphological 

features

Textural 

features

Spatial features

Concurrent 

Features

Spatial features

Textural and 

morphological 

features

circularity, normalized deviation of radial length, the area of the extracted region in pixels, 

boundary irregularity factor

number of spiculations, the average spiculation length, Gabor energy feature, complex 

moments feature, grating cell operator feature

energy, entropy, inertial, mean value, standard deviation, skewness, kurtosis, smoothness, 

mean gradient. 
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