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a  b  s  t  r  a  c  t

Study  region:  43  rivers  in  Spain  with  measurement  stations  for air and  water  temperatures.
Study  focus:  River  water  temperatures  influence  aquatic  ecosystem  dynamics.  This  work
aims  to  develop  transferable  river  temperature  forecasting  models,  which  are  not  confined
to sites with  historical  measurements  of air and  water  temperatures.  For  that  purpose,  we
estimate  nonlinear  mixed  models  (NLMM),  which  are  based  on  site-specific  time-series
models  and account  for seasonality  and S-shaped  air-to-water  temperature  associations.
A detailed  evaluation  of  the  short-term  forecasting  performance  of both  NLMM  and  site-
specific models  is undertaken.  Measurements  from  31  measurement  sites  were  used to
estimate  model  parameters  whereas  data  from  12  additional  sites  were  used  solely for  the
evaluation  of NLMM.
New hydrological  insights  for  the region:  Mixed  models  achieve  levels  of accuracy  analogous
to linear  site-specific  time-series  regressions.  Nonlinear  site-specific  models  attain  1-day
ahead forecasting  accuracy  close  to  1 ◦C  in  terms  of  mean  absolute  error  (MAE)  and  root
mean square  error  (RMSE).  Our results  may  facilitate  adaptive  management  of  freshwater
resources  in  Spain  in accordance  with  European  water  policy  directives.
©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC

BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In rivers, variations in water temperature influence processes across all levels of organization, from individual organisms
to the ecosystem scale (Caissie, 2006). Temperature is associated with most physical and chemical properties of flowing
waters and regulates interactions among the compartments that constitute a lotic ecosystem. For example, river water
temperature impacts on dissolved oxygen concentration (Allan, 1995) and metabolic rates of various organisms (Brey, 2010).
Furthermore it affects growth, emergence and survivorship of invertebrates, predator-prey encounter rates, interaction
strengths (Rall et al., 2010), and the spatio-temporal patterns of invertebrate and fish assemblages (Gustafson, 2008).
Recent research has shown that some cold-water fishes are endangered by unsuitably warm temperatures in a way
that further warming would result in net habitat loss (Isaak et al., 2010; Wenger et al., 2011). In addition, changes in
thermal regimes present negative economic impacts in fisheries (Hague and Patterson, 2014). Understanding the dynamics
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f water temperatures in rivers and their association with climatic conditions, topography and human activities, will enhance
rediction of thermal shifts and will facilitate management of freshwater biodiversity (IPCC, 2013) in accordance with water
olicy directives such as the European Water Framework Directive (Directive 2000/60/EC of the European Parliament).

During the last 20 years, researchers have developed a wide variety of short-term forecasting models for stream water
emperatures. Models fall in two categories: (i) deterministic (Caissie et al., 2007; Benyahya et al., 2010), and (ii) statistical
Caissie et al., 1998; Caissie et al., 2001; Benyahya et al., 2007). Deterministic models quantify energy fluxes between the
iver and its surroundings (atmospheric and streambed) and calculate water temperature variability over specific time scales
sing a heat budget approach (Caissie, 2006). Once calibrated for a given region, such models can be applied to different
reas only if the ‘new’ physical characteristics are known. However, the large amount of data necessary, and the time and
xpense required to their development, hinders their wide use (Benyahya et al., 2007).

Statistical models are simple, require fewer input data and can be widely applied, given that air temperature sampling
tations are commonly available (Caissie et al., 1998; Caissie, 2006). Time-series models achieve short-term forecasting
ccuracy comparable to deterministic models (i.e., errors within 1–2 ◦C for daily time steps; Caissie, 2006). Moreover, such
odels have been used to forecast water temperatures in rivers based on meteorological scenarios derived from Global

limate Models (Stefan and Sinokrot, 1993; Mohseni et al., 2003; Mantua et al., 2010; Jeong et al., 2013). A drawback of the
tatistical approaches, emphasized by Caissie (2006), is lack of transferability: multiple site forecasts from statistical models
re carried out independently and are confined to locations with available historical data on air and water temperatures.

This work aims to address the aforementioned drawback by examining the generalization capability of a new model class
n river temperature forecasting, namely nonlinear mixed models (NLMM), in regions with insufficient data for site-specific

odels. The adopted methodology focuses on short-term forecasting and is not site-specific. The dynamics of water temper-
tures in a set of measurement sites are described by a general model with parameters that may  depend on environmental
nd geographical factors such as maximum or minimum annual temperature and elevation. Guillemette et al. (2009) and
aigle et al. (2010) also presented models that collectively analyze river temperatures from multiple measurement sites. The
bovementioned works were based on different statistical tools (kriging and multivariate regressions, respectively) relative
o the ones presented herein, and provided forecasts at the monthly level.

Mixed models have been applied in a wide variety of disciplines; they are useful in settings where repeated measurements
re made on the same statistical units. In this article, NLMM were based on nonlinear site-specific models, similar to the
nes proposed by Mohseni et al. (1998), Caissie et al. (2001), Larnier et al. (2010) and Hague and Patterson, (2014). Prior
o NLMM development, the short-term forecasting performance of alternative site-specific models was evaluated and the
ependence of their parameters on environmental and geographical factors was examined. This research focuses on the

berian Peninsula, a region with a high biodiversity threatened by climate change (Thuiller et al., 2011). Our analyses used
aily measurements from 43 temperature stations, each station located at a different river.

. Methods

.1. Study area

The Iberian Peninsula is located between the Atlantic Ocean and the Mediterranean Sea, and bridges the African and
uropean continents (Fig. 1). This unique position, combined with a complex orography, explains its important climatic
iversity (MIMAM,  2004). In general, the northern Iberian Peninsula shows mild winters and summers with annual rainfall
etween 800 and 1500 mm,  average temperatures of 9 ◦C in winter and 18 ◦C in summer. The southern part has mild winters
nd hot summers (annual rainfall between 250 and 600 mm and average temperatures of 11 ◦C in winter and 23 ◦C in
ummer), and the central areas experience cold winters and hot summers (annual rainfall typically above 400 mm and
verage temperatures of 4 ◦C in winter and 24 ◦C in summer). The region can be roughly divided into humid (>750 mm/year),
ry (∼350–750 mm/year), and arid areas (<350 mm/year). The humid area is found in the north part of the peninsula and in
igh-elevation ranges. The dry area is the largest, including the Guadalquivir and Ebro depressions, both Central Plateaus
nd most part of the Mediterranean coast. The arid zone is relatively small and constrained to the southeast.

Iberian rivers can be grouped in those flowing into the Atlantic Ocean and those flowing into the Mediterranean Sea. Five
ut of the main eight rivers of Spain flow directly into the Atlantic Ocean (Miño, Duero, Tajo, Guadiana and Guadalquivir)
hereas three flow into the Mediterranean Sea (Ebro, Júcar and Segura). The orography of the territory determines the length

nd characteristics of the rivers, with Atlantic rivers being longer than Mediterranean rivers (MIMAM,  2004). The latter are
ypically torrential and highly irregular in terms of flow. Rivers flowing to the Cantabric Sea (north of the Iberian Peninsula)
re short but carry large amounts of water because of strong and frequent rainfalls. Water from the Pyrenees feeds the

bro River in the northeast, whereas water from the Baetic Range feeds the Guadalquivir River in the south part of Spain.
n summary, climatic, geological, geomorphological, lithological and historical diversity provide with heterogeneity and
ecognizable particularities the hydrography of Spain, which can be considered one of the most varied in Europe (MIMAM,
004).
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Fig. 1. (A) Location of the Iberian Peninsula in Europe. (B) SAICA measurement locations in the Iberian Peninsula. Triangles denote sites used both to
calibrate and validate (CV) location-specific and mixed models and dots denote sites used solely to validate (V) the predictive power of mixed models.
2.2. Stream water and air temperature datasets

Water temperature time series (Tw) were obtained from 43 SAICA stations (Water Quality Automatic Information System,
Spanish Environmental Department), whereas air temperature time series (Ta) were obtained from 43 AEMET stations
(Spanish Meteorological Agency). Pairs of SAICA and AEMET stations were selected following a set of restrictive rules: (1) all
SAICA stations had to be located at least 30 km downstream of large dams, large cities or fuel/nuclear power stations; (2) all
AEMET stations had to be located less than 20 km of the corresponding SAICA stations (the average distance is 5.4 km with
a standard deviation of 3.9 km)  and (3) the altitudinal difference between pairs of stations had to be minimal (the average
altitudinal difference is 35 m)  with no mountain range separating them.

Our analysis was divided in three stages which used different sets of data. In the first stage forecasting models for 31
measurement sites, located in different rivers, were calibrated using daily data from three annual periods and validated on a
1-year period. Specifically, for each site, data from 2002 to 2008 were available; the 3 years with the most observations were
used for model calibration. Annual periods with less than 300 daily measurements, which correspond to 82% of the annual
data, were excluded to avoid estimation bias related to non-random patterns of missing data. Forecasting performance in
each site was evaluated using data from the year with the 4th largest number (typically > 300) of daily measurements.

In stage 2, model parameters from stage 1 were associated with site-specific geographical and environmental factors.
Finally, in the third stage, the dataset used for model estimation in stage 1 and the findings from stage 2, were used in
the model building procedure of NLMM.  Mixed models were validated on measurements collected from 12 rivers, different
to the ones used in the first stage (the available data for these 12 sites were not sufficient to conduct analysis of the type
performed in the first stage). This evaluation used data that correspond to the 1-year period with the largest number of
measurements (typically > 300) per site.

Fig. 1 depicts locations of the 31 pairs of stations used for calibration and validation of site-specific models and NLMM
(calibration/validation group, denoted by CV) as well as the 12 stations used solely to validate NLMM (validation group,
denoted by V). Table 1 shows information on the European Water Framework Directive (WFD) ecological type of each
water body (this explanatory variable is based on geographic, climatic, and other fundamental physical features), distances
between pairs of water and air temperature measurement sites, and elevations of measurement sites. Table 1 also depicts
which sites were used solely to validate the generalization ability of mixed models. Table 2 reports calibration and validation
periods per site and summary statistics for air and water temperatures. Maximum water temperatures were greater than
20 ◦C in 41 measurement sites and exceeded 30 ◦C in 11 sites. In contrast with air temperatures, observed minimum water
temperatures remained positive.
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Table  1
Basic topographic characteristics of stream temperature measurement locations: river names, Water Framework Directive ecological types (WFD), River
Basin  name, distances (DIST) between measurement stations and elevations of stream (ELw) and water (ELA) temperature measurement stations. Group
CV  denotes locations for which both model calibration and validation were performed; measurements taken from sites in Group V were used solely for
validation of NLMM.

GROUP RIVER WFD  BASIN DIST [km] ELW [m] ELA [m]

CV Narcea 128 Norte 3.82 79 85
CV  Asón 129 Norte 3.71 38 80
CV  Miño 128 Norte 0.68 406 440
CV  Bidasoa 129 Norte 3.86 15 35
CV  Oria 129 Norte 2.87 63 75
CV  Miera 132 Norte 3.77 14 34
CV  Eo 128 Norte 6.98 68 340
CV  Neira 128 Norte 3.63 354 400
CV  Pisuerga 115 Duero 5.42 698 700
CV  Duero 117 Duero 7.04 676 735
CV  Tormes 117 Duero 18.61 740 816
CV  Carrión 115 Duero 4.86 737 760
CV  Arlanzón 112 Duero 8.02 800 831
CV  Órbigo 115 Duero 7.42 810 844
CV  Manzanares 115 Tajo 1.94 536 530
CV  Henares 116 Tajo 1.29 599 610
CV  Tajo 117 Tajo 11.28 366 380
CV  Jarama 115 Tajo 7.08 553 582
CV  Zújar 117 Guadiana 6.12 257 302
CV  Guadajira 101 Guadiana 12.47 189 260
CV  Guadiana 101 Guadiana 12.47 188 260
CV  Guadaira 102 Guadalquivir 9.05 23 35
CV  Túria 118 Júcar 5.15 75 30
CV  Júcar 116 Júcar 2.46 414 400
CV  Arga 115 Ebro 0.83 394 387
CV  Ebro 115 Ebro 5.35 450 479
CV  Zadorra 115 Ebro 2.88 455 458
CV  Cinca 115 Ebro 0.36 249 243
CV  Aragón 115 Ebro 4.32 421 435
CV  Gállego 115 Ebro 1.02 220 225
CV  Arakil 126 Ebro 2.43 410 442
V  Arlanza 115 Duero 1.86 889 940
V  Agueda 115 Duero 2.12 655 680
V  Eresma 104 Duero 9.8 771 820
V  Adaja 104 Duero 7.3 789 820
V  Guadarrama 115 Tajo 9.32 475 500
V  Bonhaval 101 Guadiana 7 330 335
V  Guadalquivir 117 Guadalquivir 9.03 45 65
V  Segura 114 Segure 4.1 180 265
V  Albaida 109 Júcar 7.77 172 333
V  Ega 115 Ebro 0.58 304 306
V  Oca 112 Ebro 0.65 574 598

2
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V  Najerilla 112 Ebro 5.32 437 437

.3. Baseline models

.3.1. Model C
Site-specific short-term forecasting models for water temperatures were based on two  nonlinear associations. The first

ssociation focuses on annual temperature cycles and will be denoted as model C, since to our knowledge it was first adopted
y Cluis (1972):

C : T̂w (t) = �1 + �2sin
(

2�
365

(t + �)
)

(1)

In (1) T̂w(t) denotes predicted average daily water temperature on day t, whereas�1, �2, �, represent unknown coefficients
hat should be estimated for each site. Site-specific subscripts on T̂w(t) and the unknown coefficients are henceforth omitted
or brevity. It is worth noting that estimation of annual cycles using (1) is parsimonious relative to models that are based on
eries of sinusoids and cosines for the long-term components (Ahmadi-Nedushan et al., 2007; Larnier et al., 2007; Hague and

atterson, 2014). These models were not adopted here as preliminary experiments showed that they would lead to overly
omplicated mixed models in the next stages with only small gains in forecasting accuracy. Furthermore the small number
f parameters in (1) facilitates convergence of NLMM estimation algorithms.
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Table 2
Calibration (C.; 3 years per location) and validation (V.; 1 year per location) periods. The calibration periods typically do not use data from consecutive
years  due to large numbers of missing measurements in some years. Columns 4–11 report minimum, median, mean, maximum of observed water and air
temperatures respectively, observed in the model-calibration (evaluation) period for Group CV (V) sites.

River C. V. Minw [◦C] Medw [◦C] Meanw [◦C] Maxw [◦C] Mina [◦C] Meda [◦C] Meana [◦C] Maxa [◦C]

Narcea 03,07,08 02 6.1 13.4 14.1 15.7 −4.6 14.2 14 37.6
Asón  06,07,08 02 4.7 12.1 13.2 26.8 −3 14.2 14 37.3
Miño 02,04,05 06 1.6 12.8 13.8 30 −9 12 12.2 35
Bidasoa 02,04,05 06 4.9 14.2 14.4 23.8 −5.4 15 14.6 37.2
Oria  00,07,08 06 4.2 14 14.6 27.5 −6 14.5 14.1 37
Miera 06,07,08 02 5.5 14.2 14.9 28.2 −4 13.8 13.5 36
Eo  02,04,08 05 5 11.9 12.8 23.2 −6.5 13.5 13.3 34
Neira  02,04,07 05 1.9 13.2 13.6 24.8 −8 13.5 13 37
Pisuerga 05,06,08 07 2.6 15 14.7 27.7 −11.5 12.9 12.8 37.5
Duero 06,07,08 05 4.1 15.3 15.1 28 −6.8 12.4 12.6 38.2
Tormes 06,07,08 04 3.5 16.9 16.6 30.8 −10 11 11.3 38
Carrión 06,07,08 05 1.9 14.1 13.4 24.9 −8 12 12.2 36
Arlanzón 06,07,08 05 2.6 12.6 13 30 −9 10.5 11 37.5
Órbigo 06,07,08 05 1 12.4 11.8 23.2 −8 10.5 10.7 34
Manzanares 05.06,08 07 10.8 20.9 21.2 42.5 −12 15.2 15.6 40.2
Henares 05,06,07 04 2.1 16.1 15.4 26.8 −12 13 13.1 40
Tajo  05,06,07 08 4 19.5 19.6 39.7 −8 16 16.3 40
Jarama 05,06,07 09 4.7 17.6 17.2 31.3 −9.1 14.6 15.1 40.7
Zújar  06,07,08 04 6.7 19.4 18.8 32.4 −5 18 17.9 43
Guadajira 06,07,08 04 5.8 18.2 17.8 30.3 1 16 16.2 41
Guadiana 06,07,08 04 6.7 19.6 19.1 32.3 1 16 16.3 41
Guadaira 05,07,08 06 1.4 19.8 19.8 40 −6 18.5 18.8 42
Túria  06,07,08 03 1.4 17.6 17.8 29.2 −3 18 18.2 39
Júcar  06,07,08 04 7.3 18.4 17.6 26.9 −8.1 16.1 16.3 41.7
Arga  05,07,08 06 1 13.1 13.9 27 −13.5 13 12.8 38
Ebro  06,07,08 05 6.8 16.3 16.5 28.6 −6 13.8 13.8 38
Zadorra 06,07,08 05 4.3 13.7 13.8 25.4 −7 13 12.9 36.5
Cinca  06,07,08 04 5.5 14.2 14.7 26.8 −6 14.5 14.7 37
Aragón 06,07,08 04 3.7 13.4 13.1 23.1 −6.5 14 14 37.5
Gállego 05,06,08 04 1.8 15.7 15.33 28.9 −10.7 14.9 14.6 40.4
Arakil 05,06,08 04 2.5 12.7 13.3 27.4 −8 13.8 13.1 37.5
Arlanza 08 1 10.8 11.5 24.1 −8 11.5 12.4 37
Agueda 05 2 13.1 13.1 28.9 −7 9.5 9.5 34
Eresma 05 1 11.8 12.1 26.3 −11 12 11.9 38.7
Adaja 08 3 11.7 12.5 25.5 −5.1 11.4 12.1 38
Guadarrama 05 1.6 17.3 16.9 31.8 −8 14.8 15.1 44
Bonhaval 04 6.6 15.1 16.4 27.3 −3 14 16.4 41.6
Guadalquivir 05 5.1 17.8 16.8 26.2 −6.5 19.5 18.9 45
Segura 07 7.3 17.1 17.4 33.4 −2.4 16.4 17.5 41.1
Albaida 07 8.8 17.6 18.5 31.5 1.5 18 18.3 39
Ega  02 5.2 13.1 13.7 24 −3 14.8 14.9 38.5

Oca  02 3.9 10.8 10.9 18.5 −2 12.5 12.9 38
Najerilla 07 3.5 12.3 12.6 21.7 −6 12.5 13 36

2.3.2. Model M
The second baseline model is based on the logistic function and implies an S-shaped association between air and water

temperatures:

M :̂Tw(t) = �1 + �2 − �1

e(�3−�4Ta(t))
(2)

In (2), Ta(t) denotes air temperatures observed on day t, �1 is the ‘floor’ that corresponds to the lowest predicted stream
temperature levels, �2 is the ‘ceiling’ (maximum predicted stream temperature) of the estimated association at a site, �4is
a measure of the steepest slope of the logistic function and the ratio �3/�4represents air temperature at the inflection point
of the S-shaped profile.  The logistic model in (2) has been proposed by Mohseni et al. (1998) and will be denoted by M.

2.3.3. Model L
A third model which is evaluated against the sinusoidal and the logistic, implies a linear air-to-water temperature

association and hereafter will be designated by L:
L : T̂w(t) = �0 + �1Ta (t) (3)

Such linear associations have been estimated in several research works; a recent example is presented in Arismendi et al.
(2014). L was not used as the basis of more advanced site-specific short-term forecasting models as an initial examination,
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resented in Section 3.1, revealed inferior performance on the testing subset relative to the nonlinear specifications presented
bove.

Unknown coefficients in (1)–(2), were estimated using (a) the Gauss-Newton nonlinear least squares algorithm and (b)
he interior point algorithm for nonlinear median regression (Koenker and Park, 1994). The latter algorithm minimizes the
um of absolute deviations of the residuals and may  lead to superior forecasting performance as estimation based on least
bsolute deviations is robust to outliers and skewed response distributions (Dielman, 1986). Coefficients of the linear model
n (3) were also estimated using least squares (LS) and least absolute deviations (LAD) algorithms.

.4. Site-specific short-term forecasting models

A family of short-term water temperature forecasting models, presented in Caissie et al., 1998, can be based on (a) devia-
ions of water temperatures from their long-term annual components presented in (1), and (b) deviations of air temperatures
a from their corresponding long-term components presented below:

T̂w(t) = �1,� + �2,�sin
(

2�
365

(t + �˛)
)

(4)

Let Rw,1 denote observed deviations of water and Ra observed deviations of air temperatures respectively. Two time-series
egression models dubbed Ca and Cb, based on time-lags of Rw,1 and Ra, can be formulated as:

Ca : R̂w,1(t) = �0 +
p∑

j=1

�1,iRa (t − j) (5)

Cb : R̂w,1 (t) = �0 +
p∑

j=1

�1,jRa (t − j) + +
q∑

i=1

�2,iRw,1 (t − i) (6)

ith i, j denoting time lags of deviations of water and air temperatures, respectively. The above models produce 1-day ahead
orecasts: extensions for multiple-day-ahead forecasting are straightforward but will not be pursued in this article.

A second family of short-term forecasting models, which to our knowledge is examined here for the first time, can be
ased on deviations of observed water temperatures from their site-specific air-to-water association profiles (model M).  Let
w,2 denote these deviations; three time series models, dubbed respectively Ma, Mb, Mc can be formulated as follows:

Ma : R̂w,2(t) = �0 +
p∑

i=1

�1,iRw,2 (t − i) (7)

Mb : R̂w,2(t) = �0 +
q∑

j=1

�2,jRa(t − j) (8)

Mc : R̂w,2(t) = �0 +
p∑

i=1

�1,iRw,2(t − 1) +
q∑

j=1

�2,jRa(t − j) (9)

n (7)–(9) Ra represents observed deviations of air temperatures from their long-term annual components, as in (5) and (6).
Unknown coefficients in (5)–(9) were estimated using both LS and LAD algorithms. Autoregressive orders p and q where

hosen based on a forward stepwise procedure and Akaike’s Information Criterion (Hyndman and Khandakar, 2008). The
dequacy of linear autoregressive models was investigated by applying a battery of specification tests, including the Ljung-
ox and Breusch-Godfrey tests of residual autocorrelation (Ljung and Box, 1978; Godfrey 1978) the Keenan and Tsay tests
f remaining nonlinearity (Keenan 1985; Tsay, 1986) and the Breusch-Pagan test of heteroscedasticity (Breusch and Pagan,
979). All calculations were performed in R (R Development Core Team, 2014).

.5. Nonlinear mixed models

The time-series models presented in the previous sections treat each site independently. Multilevel, or mixed effects
odels can be seen as generalizations of site-specific models which summarize water temperature dynamics when mea-

urements are collected from a group of sites. Mixed models contain fixed and random effects: fixed effects can be viewed as
average’ model parameters whereas random effects represent site-specific deviations from ‘average’ dynamics. Nonlinear
ixed effects models (NLMM)  can be used for site-specific inference and forecasting when estimates at both levels (fixed
nd random effects) are taken into account. NLMM can be used to forecast water temperatures at any site, based solely on
he coefficients that correspond to fixed effects; this includes sites for which site-specific model calibration is infeasible due
o insufficient data.
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The NLMM dubbed C∗, based on C in (1), is formulated as:

C∗ : T̂w,s(t) = �1 + b1,s +
(
ˇ2 + b2,s

)
sin

(
2�
365

(
t +

(
ˇ3 + b3,s

)))
+ �s (t)

bj,s∼N
(

0,  2
j

)
, Cov

(
bj,s, bj’,s

)
= �jj’

�s (t) ∼N
(

0, �2�s
)
, Cov (εs (t) , �s (t − k)) = 	2�sk

(10)

The fixed effects coefficients �1, �2 and �3represent the mean values of the parameters of C across all measurement sites.
Site-specific deviations are represented by the random effects bj,s, j = 1, 2, 3with s denoting measurement site. Random

effects are assumed to follow a multivariate normal distribution with variances �2
j and covariances �jj’; �will denote the

resulting covariance matrix. Random effects corresponding to different measurement sites are assumed to be independent.
The site-specific error terms �s, are assumed normally distributed and independent of the random effects. The covariance
structure of the error terms aims to capture serial correlation: the �sk (k denotes time lags) are specified to correspond to
an autoregressive moving average specification ARMA(p,q).
C∗
a , the NLMM analogue of Ca is similar to (10) with additional terms

(
�4 + b4,s

)
Ra (t − 1) + . . . +

(
�k + bk,s

)
Ra (t − k) , (11)

with k representing time lags of air temperature deviations from their seasonal profiles. Similarly, M∗ is formulated as

M∗ : T̂w,s (t) = 
1,s + d1,s + 
2,s + d2,s − 
1,s − d1,s

exp
{


3,s + d3,s +
(


4,s + d3,s
)
Ta (t)

} + �s (t)

dj,s∼N
(

0, �2
j

)
, Cov

(
dj,s, dj’,s

)
= �jj’

�s (t) ∼N
(

0, 	2�s
)
, Cov (�s (t) , �s (t − k)) =  	2�sk

(12)

with 
i, dii = 1, ..4,denoting fixed and random effects respectively and the same assumptions as in (10) with regard to the
distributions of the residuals and the random effects.

The initial step in the model building procedure of mixed effects models is deciding which of the coefficients need random
effects to account for their between-site variation and which can be treated as purely fixed effects. The procedure applied
herein started with a model with random effects for all parameters and an un-constrained covariance structure. Simplified
versions of the general model with fewer random effects and block-diagonal covariance structures were evaluated using
likelihood ratio tests [these tests compare nested models estimated by maximum likelihood; further details are presented
in Pinheiro and Bates (2009) and the Bayesian Information Criterion (BIC; Zuur et al., 2009). With regard to the error terms
�s (t), two alternatives were examined: the first targeted well-specified models and estimated the autoregressive and moving
average order of the ARMA specification using a backward stepwise procedure with maximum values 5 and 3 respectively.
The second model building strategy did not account for serial correlation in residuals, given that water temperatures are
assumed unknown in the evaluation: forecasts are based only on short-term information on air temperatures (this renders
our models transferable to location without measurements on water temperatures) and residual autoregressive dynamics
cannot be used to improve forecast accuracy.

In the next stage of the model building process, part of the variability on the random effects in (10)–(12), was  explained by
site-specific environmental and geographical characteristics. Specifically, a forward stepwise procedure was implemented to
evaluate whether terms �j + bj,s, j = 1, . . .,  3 in (10) should be augmented with information on site-specific covariates: �j +
bj,s + �1

j X1,s + . . . + �m
j Xm,s; the same procedure was  followed for the random effects in (11) and (12). The covariates used

were average, median, minimum and maximum annual air temperatures, elevation of the water temperature measurement
site and a dummy  variable that indicates whether a site belongs to the most frequently observed WFD  type. The effects of
the remaining WFD  types were not examined due to the small number of rivers per type. The forward stepwise procedure
was based on likelihood ratio tests and BIC, and was  guided from exploratory scatterplots of random effects on each Xi,s.
After this step, random effects were re-evaluated and a final specification was derived.

The forecasting performance of three NLMM variants of C, Ca, M,  Mb, which produce forecasts without using short-term
information on water temperatures, was evaluated on 12 measurement sites. These sites were not part of the data used in the
model building process. Mixed models analogous to the ones shown in (10)–(12), without autoregressive dynamics for the
residuals, were compared to models which use environmental and geographical covariates to explain part of the variability

of the random effects and to models which also take into account residual autocorrelation. The assumptions of variance
homogeneity of site-specific residuals, normality of site-specific residuals, normality of random effects and the correlations
of residuals and random effects were examined using graphical tools and statistical information criteria (Pinheiro and Bates,
2009; Zuur et al., 2009).
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Table  3
Average (across measurement locations) MAE, RMSE, Type I and Type II error rates for the predictive models in the evaluation period. Performance of
models  estimated using LAD is shown in parentheses.

C Ca Cb M Ma Mb Mc L

MAE  [◦C] 1.62(1.63) 1.15(1.15) 0.41(0.41) 1.70(1.69) 1.05(1.06) 1.62(1.61) 1.00(1.01)  1.74(1.74)
RMSE [◦C] 2.03(2.05) 1.46(1.46) 0.57(0.56) 2.14(2.14) 1.38(1.41) 2.03(2.03) 1.32(1.35) 2.18(2.18)
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Ē1 0.46(0.45) 0.33(0.33) 0.11(0.11)  0.41(0.39) 0.21(0.21) 0.39(0.37) 0.17(0.17) 0.41(0.40)
Ē2 0.05(0.05)  0.03(0.04)  0.01(0.01) 0.04(0.03)  0.03(0.03)  0.03(0.04)  0.03(0.03)  0.03(0.03)

.6. Evaluation metrics

Water temperature forecasts from NLMM and site-specific models were compared with historical observations of daily
ater temperatures in the evaluation period using five performance criteria: (1) mean error (ME) which is a measure of

ias; (2) mean absolute error (MAE); (3) root mean square error (RMSE); (4) Type I error rate and (5) Type II error rate,
oth relative to a threshold of 20 ◦C, chosen to represent the biological preferences of typical cold-stenotherm organisms
Lessard and Hayes, 2003). Type I error occurs when the observed water temperature exceeds the threshold but the model
ails to predict it. Conversely, Type II error occurs when observed water temperature is below the designated threshold but
he model erroneously predicts that it is above.

. Results and discussion

.1. Baseline models: predictive performance

Fig. 2 depicts the distributions of the five performance metrics for baseline models C, M and L, estimated using LS and
AD. The performance of median regression models in the evaluation period was  found similar to the one achieved by
east-squares regression, which suggests the absence of outlying measurements in the calibration period (Table 3). Indeed,
AD-estimated curves were almost identical to the ones estimated by conventional least squares with minor deviations for
odel M (Fig. 3).
Interestingly, predictive models based solely on seasonal cycles (model C) performed better in the evaluation period in

erms of MAE  and RMSE (Fig. 2b,c) than site-specific models based on air-to-water association profiles (M), despite the fact
hat the former did not use information on air temperatures. In accordance with prior expectations, linear air-to-water
elationships (L) performed worse than both C and M;  furthermore, the same performance ranking across models was
bserved when median MAE  and median RMSE were used as summary measures of accuracy across sites. It is worth noting
hat C performed better than M in terms of both MAE  and RMSE, in 19 (out of 31) measurement locations and L performed
etter than M in 7 locations. Moreover, C was the best performing model in 19 locations, M in 7 and L in 5.

Baseline models frequently underpredicted water temperatures above the 20 ◦C threshold: average (across sites) Type I
rror rates for M and L were close to 41% (Table 3) whereas model C performed even worse. On the other hand, C dominated
ased on median Type I error rate across sites (15% versus 18% and 17% for M and L respectively), which suggests that in
ome measurement sites C performed much worse than M and L (Fig. 2d). L was the best performing model in terms of both
ean and median Type II error rate; false alarms appear to be a less significant problem for baseline models as Type II error

ates (Fig. 2e) were substantially lower than Type I rates.

.2. Short-term forecasting models

Fig. 4 depicts distributions of the five performance metrics across measurement sites for models Ca, Cb, Ma, Mb and Mc ,
stimated using LS; averages of MAE, RMSE, Type I and Type II error are shown in Table 3. Cb outperformed all alternative
pecifications across all sites in terms of all metrics, with average MAE  (Fig. 4b) and RMSE (Fig. 4c) well below 1 ◦C. Type I
rror rates (Fig. 4d) improved dramatically relative to the baseline models and were close to 10% for Cb. Mc was  the second
est model with average RMSE across sites below 1.5 ◦C and average type I error rate below 20%. It is noteworthy that
b, the model based on air-to-water association profiles and time lags of deviations of air temperatures from their annual

omponents, performed poorly as its performance metrics were close to the ones of the baseline model C (for instance,
verage RMSE across sites was slightly above 2 ◦C).

The inferior performance of Ca and Mb, which did not use short-term information on water temperatures to produce 1-day
head forecasts, is also manifested in Table 4 via the results of the Ljung-Box and Breusch-Godfrey hypothesis tests: these
wo models clearly failed to capture the autocorrelation of the Rw,1 (t) and Rw,2 (t) series. The two tests on remaining non-
inearity (Table 4) suggest that in the vast majority of measurement sites, there was no evidence of remaining non-linearity in

he residuals of Cb, Ma and Mc . Based on this finding, one should not expect improved forecasting performance by estimating
onlinear models (such as regime switching autoregressive specifications) to describe the dynamics of Rw,1 (t) and Rw,2 (t).
inally, the Breusch-Pagan test rejected the null hypothesis of homoscedastic residuals in about 50% of measurement sites
or the best performing models Cb and Mc .
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Fig. 2. Distributions of (a) mean error (bias); (b) MAE; (c) RMSE; (d) Type I and (e) Type II error rate across measurement sites for models C, M and L
estimated by LS and LAD.

Table 4
Number of sites for which the null hypothesis of the specification tests is rejected at the 0.01 significance level. Tests were applied to model residuals in
the  calibration period. Rows correspond respectively to the Ljung-Box and Breusch-Godfrey tests for residual autocorrelation, Keenan’s and Tsay’s tests for
remaining nonlinearity and the Breusch-Pagan test for heteroscedasticity.

Ca Cb Ma Mb Mc

L-B 31 1 2 31 0
B-G  31 6 4 31 2
K  3 1 1 3 1
T  10 4 5 12 4
B-P  10 17 5 8 12
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ig. 3. Seasonal (model C, left) and air-to-water association profiles (model M,  right) for four selected measurement locations. Data from the calibration
eriod  (3 years) are shown in grey. Solid curves correspond to LS estimates and middle dashed curves correspond to LAD. Outer dashed curves predict the
.25  and 0.75 quantiles of water temperatures.

Our results confirmed previous research findings: site-specific statistical models can forecast river water temperatures
ith RMSEs close to 1 ◦C for a 1-day ahead horizon (Larnier et al., 2010; Hague and Patterson, 2014). In accordance with
revious works, it was shown that models that exploit short-term information on water temperatures outperform speci-
cations based solely on short-term dynamics of air temperatures. Variants of the nonlinear modeling approach proposed
y Mohseni et al. (1998) were not found superior to the widely applied specifications based on seasonal decompositions.
owever, logistic models could be useful in forecast combination schemes, which improve the performance achieved by
ny single model (Pappenberger et al., 2015).
.3. Site-specific models: parameter variability

Table 5 presents summary statistics for the parameters of C, Ca and M, which, given the estimated annual cycles, used
olely short-term information on air temperatures to produce forecasts. Results for Mb and L are not shown, since based
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Fig. 4. Distributions of (a) mean error (bias); (b) MAE; (c) RMSE; (d) Type I and (e) Type II error rate across measurement sites for models Ca , Cb , Ma , Mb

and Mc estimated by LS.

Table 5
Summary statistics of estimated (via least squares) parameters for models C, Ca and M.

˛1 ˛2 � �0 �1 �2 � 3 �1 �2 �3 �4

Mean 15.40 −7.07 −296.2 0.02 0.30 0.08 0.11 5.65 25.70 2.84 0.20
Median  15.58 −7.06 −295.5 0.02 0.29 0.08 0.10 5.56 25.96 2.78 0.20
IQR  3.74 2.64 7.12 0.07 0.07 0.03 0.07 3.24 4.51 0.92 0.04
Max.  26.93 −4.46 −285.5 0.10 0.41 0.18 0.27 14.38 32.09 4.58 0.31
Min.  11.82 −9.34 −306.9 −0.10 0.10 −0.01 0.04 0.93 18.57 1.49 0.13
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Table  6
Parameter estimates, residual sum of squares (RSS) and coefficient of determination (R2) for linear models that aim to predict estimated (via least squares)
coefficients in models C, Ca and M.  The set of explanatory variables includes altitude of measurement site, a dummy variable that indicates sites that
belong  to the most frequently observed WFD  type (115), minimum, maximum, mean, median air temperature in the calibration period and multiplicative
interactions of all variables. All parameters are significant at the 0.05 level; empty cells correspond to variables that were not included in the final model
produced from the stepwise linear model building procedure (based on BIC).

˛1 ˛2 � �0 �1 �2 � 3 �1 �2 �3 �4

Intercept −14.95 8.52 −354 0.02 4.05 0.07 0.09 5.59 −12 0.46 7.85
Min(Ta) −0.02 1.61
Med(Ta) 0.88 0.35
Mean(Ta) −0.21
Max(Ta) 0.55 −0.38 1.42 −0.09 0.99 −0.01 −0.26
Min(Ta): mean(Ta) 0.001 −0.12
Max(Ta): mean(Ta) 0.01
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ELW/1000 4.28 −2.43 8.19 −0.11 0.07
RSS 1.25 0.98 4.28 0.05 0.06 0.04 0.05 2.11 2.25 0.04 0.58
R2 0.76 0.53 0.43 0.29 0.15 0.12 0.39 0.51 0.16 0.44

n the results of the previous section, L was inferior to M whereas for Mb, the gains in predictive performance relative
o M were not large enough to justify further investigation of its generalization potential. Mohseni et al. (1998) applied

 on weekly data from 573 streams in the United States. The average of �1, the ‘floors’ of the air-to-water temperature
ssociation profiles across the 31 measurement locations of the calibration data, was  about 5 ◦C higher than the value of the
orresponding parameter reported in their paper. The average value of the ratio�3/�4, the air temperatures at the inflection
oints of the air-to-water association profiles, was about 1 ◦C higher in our sample. On the other hand, the averages of �2,
he ‘ceilings’ of the profiles and �4, the steepest slopes of the sigmoids, were very close to the ones reported in Mohseni
t al. (1998).

Associations of site-specific model parameters with geographical and environmental variables are shown in Table 6,
hich reports results from parameter-specific, forward-stepwise linear model building procedures. It can be observed that

he proportion of parameter variability for C and M explained by altitude and summary statistics of air temperatures observed
t nearby meteorological stations, ranged from 16% to 76%. Results were in accordance with intuition: variables included in
he predictive model for � were maximum air temperature and altitude, whereas information on maximum air temperature
xplained approximately 50% of the variability of the ‘ceilings’ in M. Interestingly, estimated parameters did not differ
ignificantly for sites that belonged to the most frequently observed WFD  type; the corresponding dummy  variable was  not
ound statistically significant in any parameter-specific model.

.4. Mixed effects models: estimation

Eqs. (13)–(15) present, respectively, C∗, C∗∗, C∗∗∗: three NLMM based on C. In (13) one observes that estimated fixed
ffects were identical to the reported means in Table 4. Moreover, the model building procedure resulted in significant
andom effects with an unrestricted covariance structure for the three coefficients that characterize annual cycles in water
emperatures.

C∗ : T̂w,s (t) = 15.40 + b1,s +
(

b2,s − 7.07
)

sin
(

2�
365

(
t +

(
b3,s − 296.22

)))
+ �s (t)

�1,1 = [

2.37 −0.48 0.45

−0.48 1.35 −0.61

0.45 −0.61 5.35

] 	 = 1.87

(13)

he off-diagonal elements of the Psi matrices in (13)–(20) correspond to estimated correlations instead of covariances. Corre-
ations are more informative for model-building purposes, as strongly correlated random effects indicate over-parameterized

odels. Diagnostic checks were conducted on the normality assumption of random effects. Also the variance homogeneity
nd normality of site-specific residuals were assessed.

In C∗∗, shown in (14), part of the variability of the random effects b1,s and b3,s was explained by site-specific average and
aximum annual air temperature denoted respectively X1,s and X2,s)in the calibration period. This reduced substantially

he variability of random effects as can be observed by a comparison of the diagonal elements of the covariance matrices
1,1 and �1,2. Hence, one should expect improved generalization ability relative to C∗.

C∗∗ : T̂w,s (t) = 1.1X1,s + b1,s +
(

b2,s − 7.04
)

sin
(

2�
365

(
t +

(
0.72X2,s + b3,s − 323.71

)))
+ �s (t)
�1,2 = [

1.53 −0.41 0.51

−0.41 1.35 −0.51

0.51 −0.51 4.68

] 	 = 1.87

(14)
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C∗∗∗, shown in (15), accounted for autoregressive dynamics of the residuals:

C∗∗∗ : T̂w,s (t) = 1.1X1,s + b1,s +
(

b2,s − 7.14
)

sin
(

2�
365

(
t +

(
b3,s − 296.09

)))
+ �s (t)

�1,3 = [

1.57 −0.31 0.44

−0.31 1.56 −0.56

0.44 −0.56 4.64

] us (t) ∼N
(

0, �2
2

)
�s (t) = 1.16�s (t − 1) − 0.39�s (t − 2) +0.12εs (t − 3) + us (t) , 	2 = 1.8 0

(15)

One may  observe differences in the estimated fixed-effects relative to C∗∗; these differences are expected to influence the
forecasting evaluation that will follow, which was based solely on those parameters. Although C∗∗∗ accounted for autocor-
related residuals (therefore it was correctly specified whereas C∗∗ was not), the additional terms for residual dynamics were
not used in the validation procedure; their application required knowledge of water temperatures, which were assumed
unknown as these models should be transferable to sites with no measurements on water temperatures.

Eqs. (16)–(18) present, respectively, C∗
a, C∗∗

a , C∗∗∗
a ; NLMM based on Ca. In (16) it can be seen that only the first lag of

deviations of air temperatures from their seasonal profiles needed a random effect to account for site-specific variability;
the coefficients of the remaining lags did not vary significantly across measurement sites:

C∗
a : T̂w,s (t) = 15.42 + b1,s +

(
b2,s − 7.09

)
sin

(
2�
365

(
t +

(
b3,s − 296.21

)))
+ 0.28Ra

s (t − 1)

+b4,s + 0.08Ra
s (t − 2) + 0.04Ra

s (t − 3) + 0.09Ra
s (t − 4) + �s (t)

�2,1 = [

2.36 −0.49 0.44 −0.18

−0.49 1.36 −0.63 −0.03

0.44 −0.63 5.35 0.29

−0.18 −0.03 0.29 0.06

]	 = 1.33

(16)

The standard deviation of the residuals, �, decreased substantially relative to (13)–(15), which did not include information
on air temperatures.

In C∗∗
a , part of the variability of the site-specific random effects b1,s and b3,s was  explained by site-specific average and

maximum annual air temperatures:

C∗∗
a : T̂w,s (t) = 1.08X1,s + b1,s +

(
b2,s − 7.07

)
sin

(
2�
365

(
t +

(
0.71X2,s + b3,s − 323.43

)))
+ 0.28Ra

s (t − 1)

+0.08Ra
s (t − 2) + 0.04Ra

s (t − 3) + 0.09Ra
s (t − 4) + �s (t)

�2,2 = [

1.52 −0.41 0.51

−0.41 1.36 −0.52

0.51 −0.52 4.73

], 	 = 1.33

(17)

This resulted in a significant reduction of the variability of the random effects, as can be verified by comparing the diagonal
elements of �2,1 and �2,2, and is expected to lead to improved forecasting performance.
C∗∗∗
a , shown in (18), accounted for residual autocorrelation. The fixed-effects part of the model, which will be used to

validate the generalization ability of estimated mixed models to sites for which model estimation did not take place, differed
relative to C∗∗

a as it did not include information on maximum annual air temperatures:

C∗∗∗
a : T̂w,s (t) = 1.09X1,s + b1,s +

(
b2,s − 7.11

)
sin

(
2�
365

(
t +

(
b3,s − 295.95

)))
+ 0.12Ra

s (t − 1)

+0.07Ras (t − 2) + 0.02Ras (t − 3) + 0.01Ras (t − 4) + εs (t)

(18)
�2,3 = [

1.57 −0.30 0.44

−0.30 1.52 −0.58

0.44 −0.58 5.09

], us (t) ∼N
(

0, �2
2

)
, 	2 = 1.8

�s (t) = 0.27�s (t − 1) + 0.46�s (t − 2) − 0.04�s (t − 3) + 0.10�s (t − 4) + us (t) + 0.74us (t − 1)
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Table  7
Average MAE, RMSE, Type I and Type II error rates across measurement sites in group V for NLMM.

C* C** C*** C∗
a C∗∗

a C∗∗∗
a M∗ M∗∗

MAE  [◦C] 2.74 2.12 2.55 2.55 1.91 2.22 2.24 2.73
RMSE[◦C] 3.20 2.54 2.98 2.95 2.28 2.61 2.65 3.17
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Ē1 0.15 0.45 0.26 0.20 0.34 0.22 0.09 0.11
Ē2 0.11 0.04 0.12 0.10 0.06 0.10 0.12 0.16

inally, Eqs. (19)–(20) present M∗,and M∗∗which were based on the logistic air-to-water association profiles proposed in
ohseni et al. (1998):

M∗ : T̂w,s (t) = 5.61 + d1,s + 25.91 + d2,s − 5.61 − d1,s

exp
{

2.72 + d3,s − 0.19Ta,s (t)
} + �s (t)

�3,1 = [

2.37 0.56 0.68

0.56 2.71 0.61

0.68 0.61 0.46

], 	 = 1.96

(19)

n M∗∗, average and maximum annual air temperatures in the calibration period explained site-specific variability related
espectively to the ‘floors’ and the ‘ceilings’ of the air-to-water association profiles:

M∗∗ : T̂w,s (t) = 0.39X1,s + d1,s + 0.68X2,s + d2,s − 0.39X1,s − d1,s

exp
{

2.72 + d3,s − 0.19Ta,s (t)
} + �s (t)

�3,2 = [

2.00 0.38 0.53

0.38 2.11 0.58

0.53 0.58 0.45

], 	 = 1.96

(20)

otably, residual standard deviation in (19) and (20) was  substantially higher relative to models based on estimated annual
ycles; hence one may  expect inferior forecasting performance from these models. M∗∗∗ is not presented as the NLMM
stimation algorithm (Pinheiro and Bates, 1995) failed to converge for all examined ARMA specifications.

.5. Mixed models: forecasting performance

Figs. 5–6 and Table 7 summarize the forecasting performance of NLMM.  Before commenting on the results, we should
tress the analogies between NLMM and their site-specific counterparts. C∗, C∗∗and C∗∗∗, which were based on C, did not
se information on air temperatures, so are expected to display weaker forecasting performance relative to C∗

a, C∗∗
a and C∗∗∗

a ,
espectively. On the other hand, the latter specifications can be viewed as 1-day ahead forecasting models whereas the
ormer can be used to forecast temperatures even at an annual horizon, since they only use information on day of the year,
eographical and environmental site-specific variables. Table 7 suggests that using air temperatures in NLMM formulations
ased on seasonal decompositions reduced MAE  and RMSE by about 0.2 ◦C; this reduction was substantially smaller relative
o that depicted in Table 3 for site-specific models C and Ca.

Parameters in C∗, C∗
a,and M∗ were fixed across measurement sites whereas some parameters in C∗∗, C∗∗∗, C∗∗

a , C∗∗∗
a and M∗∗

epended on site-specific maximum and mean annual air temperatures. This additional flexibility resulted into reductions
n MAE  and RMSE, which range from 0.2 ◦C to 0.6 ◦C for models based on annual components. The opposite was observed
or models based on Mohseni’s et al. (1998) approach: NLMMs  that used information on air temperatures to predict ‘floors’
nd ‘ceilings’ in air-to-water association profiles performed significantly worse than their ‘static’ counterparts according to
ll metrics.

As expected, performance of mixed models was inferior relative to site-specific models. For instance, average MAE
ncreased by about 1 ◦C for C∗∗and C∗∗

a relative to C and Ca respectively (Tables 3 and 6). Fig. 6 depicts observed versus
orecasted values for C∗∗

a and M∗∗ for 4 sites in group V; the superiority of the former specification can be clearly observed.
∗∗
a outperformed alternative specifications according to average and median (across sites in group V) MAE  and RMSE, and
isplayed significantly less bias and low error rates related to over-prediction of high-temperatures (Type II error).

Median and average MAE  and RMSE for C∗∗
a were close to 2 ◦C, which was only about 0.5 ◦C higher relative to the perfor-

ance of its site-specific counterparts reported in Table 3 and in Ahmadi-Nedushan et al. (2007). C∗∗
a was the best performing

odel in terms of MAE  and RMSE in half of the locations in group V; furthermore, it was among the best three models in all
ut one locations. Accuracy of the best performing NLMM was  found comparable to the one achieved from linear site-specific

odels (Table 3); this is a promising result, especially given that forecasting performance can be improved with estimation

ased on more measurement sites and more site-specific environmental and geographical variables. On the other hand
LMM based on air-to-water temperature association profiles, were found superior in terms of Type I error rates (Fig. 5d).
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Fig. 5. Distributions of (a) mean error (bias); (b) MAE; (c) RMSE; (d) Type I and (e) Type II error rate across measurement sites in group V for alternative
NLMM specifications.

4. Conclusions

This article applied a new model class, namely nonlinear mixed models, which makes forecasts of river water tempera-
tures feasible in regions with insufficient data for site-specific model estimation. Forecasting accuracy was found comparable
to the one achieved from linear site-specific time-series models. Therefore, the proposed approach is a promising tool that
may extend the scope of statistical river temperature forecasting models.

Site-specific time-series models were used as the basis of NLMM building. The pool of specifications encompassed simple
linear regressions (as in Arismendi et al., 2014), seasonal decompositions of temperatures coupled with time-series regres-
sions for residual dynamics (as in Caissie et al., 2001; Hague and Patterson, 2014) and logistic air-to-water temperature
association profiles, originally developed for weekly data by Mohseni et al. (1998). An evaluation of the dependence of site-
specific model parameters on geographic and environmental factors revealed statistically significant relationships. These

findings were exploited in the development of mixed models; a significant amount of variability in random effects, which
correspond to site-specific parameters, was explained by site-specific characteristics.

The article focused on the Iberian Peninsula: a region with a high diversity of freshwater systems which lacked studies
related to river water temperatures as opposed to Central (Switzerland, France) or Northern Europe (United Kingdom,
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ig. 6. Observed versus forecasted water temperatures from models C∗∗
a (left) and M** (right) for four measurement locations in group V. The black line

ndicates where perfect forecasts should lie.

weden). A next step would be to apply similar analyses to other areas in the Mediterranean because the capacity of its

nland water systems to act as sensors of global and local changes is particularly important. Such studies will improve the
orecasting accuracy of river water temperatures, providing a tool for policy makers to facilitate strategic decisions and to

anage freshwater resources according to water policy directives such as the EU-WFD.
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