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In this work, we report the design of a wavelength-tunable infrared metamaterial by tailoring mag-

netic resonance condition with the phase transition of vanadium dioxide (VO2). Numerical simula-

tion based on the finite-difference time-domain method shows a broad absorption peak at the

wavelength of 10.9 lm when VO2 is a metal, but it shifts to 15.1 lm when VO2 changes to dielec-

tric phase below its phase transition temperature of 68 �C. The large tunability of 38.5% in the reso-

nance wavelength stems from the different excitation conditions of magnetic resonance mediated

by plasmon in metallic VO2 but optical phonons in dielectric VO2. The physical mechanism is elu-

cidated with the aid of electromagnetic field distribution at the resonance wavelengths. A hybrid

magnetic resonance mode due to the plasmon-phonon coupling is also discussed. The results here

would be beneficial for active control of thermal radiation in novel electronic, optical, and thermal

devices. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896525]

I. INTRODUCTION

The unique phase transition behavior of vanadium diox-

ide (VO2)1–3 has drawn lots of attentions recently and many

applications have been found. Optical properties of VO2

change dramatically when the phase transition between

dielectric and metal occurs at 68 �C, which can be thermally

induced with temperature control. Applications of VO2 have

been demonstrated in optical information storage,4 strain

sensing,5 and lithium-ion batteries.6 Moreover, dielectric

VO2 possesses several optical phonon modes in the infrared,

which have been employed to modulate radiative heat trans-

fer7 in designing novel thermal devices such as vacuum ther-

mal diodes/rectifiers8,9 and thermal transistors.10

Progresses have been made recently in designing tuna-

ble metamaterials made of phase transition VO2. Dicken

et al. demonstrated a frequency-tunable metamaterial by

depositing split-ring resonators on a VO2 film.11 Kats et al.
showed �10% resonance wavelength tunability with a plas-

monic antenna array on a VO2 film in the mid-infrared.12

They also demonstrated an ultra-thin tunable perfect

absorber based on the VO2 phase transition.13 More recently,

a switchable thermal antenna with periodically patterned

VO2 has been proposed.14 Designs reported in Refs. 12 and

14 were realized by modulating the excitation condition of

surface plasmon polariton (SPP) at the interface between

subwavelength plasmonic nanostructures and the supporting

VO2 film upon phase transition.

Magnetic resonance has been studied intensively for

designing selective thermal emitters15,16 and perfect meta-

material absorbers.17 Magnetic resonance occurs when exter-

nal electromagnetic wave couples with magnetic resonance

excited inside the metamaterial structures typically in a

metal-insulator-metal configuration, resulting in strong

absorption or emission at the selected resonance frequency.

Note that, magnetic resonance can be also excited in the

mid-infrared regime with polar materials, mediated by opti-

cal phonons, rather than plasmon in metals. An infrared

selective emitter made of SiC has been demonstrated by

exciting magnetic resonance within its phonon absorption

band.18 The electrical current induced by the resonant mag-

netic field is realized by the high-frequency vibration of ions

in SiC, rather than free charges in metals.

In this study, we present a tunable infrared metamaterial

by exciting magnetic resonance at different conditions with

either metallic or dielectric VO2, leading to highly tunable res-

onant wavelength upon the phase transition of VO2. Figure 1

depicts the proposed tunable metamaterial structure, which is

made of a one-dimensional VO2 periodic grating structure

(period K¼ 1.5 lm and strip width w¼ 1.25 lm) on stacked

MgF2 and VO2 layers. The thicknesses of the VO2 grating and

thin films are h¼ 0.5 lm, d1¼ 0.3 lm, and d2¼ 1 lm, respec-

tively. In practice, the VO2 grating could be formed by the

FIG. 1. Proposed 1D tunable structure with period K¼ 1.5 lm, strip width

w¼ 1.25 lm, layer thicknesses h¼ 0.5 lm, d1¼ 0.3 lm, and d2¼ 1 lm. The

phase transition of VO2 can be controlled by modulating the temperature.
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strain mismatch method from a VO2 film on a flexible sub-

strate,19,20 while the temperature of the structure can be modu-

lated to thermally control VO2 phase transition.

II. NUMERICAL METHODS

When the temperature is above 68 �C, VO2 is an iso-

tropic metal, whose electrical permittivity em can be

described by a Drude model as1

em ¼ �e1
xp

2

x2 þ ixC
; (1)

where x is angular frequency, e1¼ 9 is the high-frequency

constant, xp¼ 8000 cm�1 is the plasma frequency, and

C¼ 10 000 cm�1 is the collision frequency. When the tem-

perature is below 68 �C, VO2 becomes dielectric but with

uniaxial anisotropy. Considering (200)-oriented crystal VO2

with optical axis normal to the surface,1 it exhibits ordinary

dielectric response denoted as eO when incident electric

field is perpendicular to optical axis, and extraordinary

response eE when electric field is parallel to optical axis.

Both components can be described by a classical oscillator

model as

e xð Þ ¼ e1 þ
XN

j¼1

Sjx2
j

x2
j � icjx� x2

; (2)

where xj is the phonon vibration frequency, cj is the scatter-

ing rate, Sj represents the oscillation strength, and j is the

phonon mode index. The values for each parameter can be

found from Ref. 1 for both ordinary (eO) and extraordinary

(eE) components with a total of eight phonon modes for eO

and nine modes for eE. In the simulation, the permittivity ten-

sor was employed to consider the uniaxial anisotropy of

dielectric VO2,

�edielectric ¼
eO 0 0

0 eO 0

0 0 eE

0
@

1
A: (3)

Figure 2 plots the real parts for the permittivity of metal-

lic and dielectric VO2 in the mid-infrared regime from 5 lm

to 20 lm in wavelength. The metallic phase exhibits a nega-

tive real part of permittivity, which is crucial to excite plas-

monic resonances as found in most noble metals.21 On the

other hand, there exist several phonon modes in both ordi-

nary and extraordinary components of the dielectric phase.

As a result, negative real part of permittivity exists in the

wavelengths from 12.4 lm to 16.7 lm for eO and from

17.5 lm to 18.8 lm for eE, respectively. As pointed out by

Ref. 18, negative permittivity is required to excite phonon-

mediated magnetic resonance in polar materials. The unique

material properties of metallic and dielectric VO2 suggest

the potential in exciting magnetic resonance at both phases.

The finite-difference time-domain method (Lumerical

Solutions, Inc.) was used to numerically calculate the spec-

tral reflectance R and transmittance T of the proposed tunable

metamaterial above and below the VO2 phase transition tem-

perature of 68 �C. The optical constants of MgF2 were

obtained from Palik’s data.22 A linearly polarized plane

wave was incident normally onto the metamaterial structure

with transverse-magnetic (TM) incidence, in which magnetic

field is along the grating groove direction. Note that, mag-

netic resonance can be excited only at TM polarization in 1D

grating based metamaterials.15,16 A numerical error less than

2% was verified with sufficiently fine mesh sizes. The spec-

tral normal absorptance in the infrared region was thus

obtained by a¼ 1�R�T based on energy balance.

III. RESULTS AND DISCUSSIONS

A. Tunable resonance absorption with VO2 phase
transition

As shown in Fig. 3, when the temperature is above

68 �C, the VO2 is at metallic phase and the metamaterial

exhibits a broad absorption band peaked at the wavelength

of 10.9 lm with almost 100% absorption. However, when

VO2 becomes dielectric at temperatures less than 68 �C, the

absorption band is narrower and shifts to the peak

FIG. 2. Real parts of permittivity of VO2 at either metallic or dielectric

phase, which exhibits both ordinary and extraordinary dielectric response.

FIG. 3. Simulated normal absorptance of proposed tunable absorber in the

mid-infrared upon VO2 phase transition, showing a relative 38.5% shift of

resonant absorption peak wavelength.
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wavelength of 15.1 lm with maximum absorptance of 0.97,

resulting in a relative 38.5% peak wavelength shift upon the

VO2 phase transition from metal to dielectric induced ther-

mally. Note that there exist three bumps on the shoulder of

absorption peak around 13 lm, 16.5 lm, and 19 lm, which

are caused by the abrupt change in the optical properties of

dielectric VO2 associated with several phonon absorption

modes at these wavelengths.

In fact, both absorption peaks are caused by the excita-

tions of magnetic resonance at both phases of VO2. But the

fundamental difference is that, one is assisted by free charges

or plasmon in metallic phase, while the other is mediated by

optical phonons in its dielectric phase. The different reso-

nance conditions and thereby the resulting large resonance

wavelength shift are due to different optical behaviors of dif-

ferent energy carriers that excite the magnetic resonances.

B. Electromagnetic field distribution at magnetic
resonance

To illustrate the underlying mechanism responsible for

the large absorption peaks, electromagnetic field distribu-

tions at the cross section of the metamaterial structure were

plotted at the resonance wavelengths with metallic and

dielectric phases of VO2, as shown in Figs. 4(a) and 4(b),

respectively. The arrows indicate the strength and direction

of the electric field vectors, while the contour shows mag-

netic field strength normalized to the incidence as jH/H0j2 at

different locations.

When VO2 is at metallic phase, the electric field vectors

inside the MgF2 layer underneath the VO2 strips indicate an

anti-parallel current loop, along with the strong localization

of magnetic field, as shown in Fig. 4(a). The localized energy

is more than five times higher than the incidence. This is the

exact behavior of magnetic resonance that has been inten-

sively studied in similar 1D grating based metamaterials.15,16

Due to the oscillating movement of free charges in metallic

VO2, the sandwiched MgF2 layer serves as a capacitor, while

top metallic VO2 strip and the bottom metallic VO2 film

function as inductors, forming a resonant alternating-current

circuit. When the magnetic resonance occurs, the external

electromagnetic energy at the resonant wavelength of 10.9

lm is coupled with the oscillating plasmon, resulting in

almost 100% absorption inside the metamaterial structure.

When VO2 becomes dielectric with the temperature

below 68 �C, the electromagnetic field shown in Fig. 4(b)

presents a similar behavior of magnetic resonance with an

induced anti-parallel electric current loop and confined mag-

netic field inside the MgF2 layer but at a different resonance

wavelength of 15.1 lm. The localized energy strength is

about five times to the incidence. Note that, this resonant

wavelength is within the phonon absorption band of the

ordinary component of dielectric VO2, in which negative

permittivity exists. When optical phonons vibrate at high fre-

quency, the fast movements of bound charges or ions form

oscillating electric currents and an inductor-capacitor reso-

nant circuit, resulting in the excitation of magnetic reso-

nance. Since the energy carrier changes from free electrons

to optical phonons upon the phase transition of VO2 from

metal to dielectric, a large shift in resonance wavelengths

occurs. It should be noted that, similar to the surface phonon

polariton with polar materials,23 which is a counterpart of

SPP in the infrared regime, phonon-mediated magnetic reso-

nance18 is the counterpart of magnetic resonance in plas-

monic metamaterials made of metallic nanostructures.15–17

C. Hybrid magnetic resonance due to the
phonon-plasmon coupling

Finally, we would like to show that a hybrid magnetic

resonance mode could also occur by the phonon-plasmon

coupling from a modified tunable metamaterial by replacing

the bottom VO2 layer with a gold film, as shown in the inset

of Fig. 5. The period and strip width of the top VO2 grating

are kept unchanged, while the thicknesses of the grating and

the MgF2 spacer layer are h¼ d1¼ 0.5 lm.

The spectral normal absorptance of the hybrid structure

at TM waves is plotted in Fig. 5. When VO2 is in either me-

tallic or dielectric phase, the absorption peaks remain almost

at the same resonance wavelengths, suggesting that magnetic

resonance can still be excited in both phases of VO2.

However, maximum absorptance drops slightly to 0.85 for

the peak with metallic VO2, while the absorption peak with

dielectric VO2 becomes narrower, after the bottom VO2 film

was replaced by a gold substrate. The successful excitation

of magnetic resonance between metallic VO2 strips and the

bottom gold film is easy to understand, as there exist free

charges in both metals. The peak absorptance drops due to

FIG. 4. Electromagnetic field distribution at resonance peak wavelengths

when VO2 is at (a) metallic or (b) dielectric phase. The field patterns show

the exact behavior of magnetic resonance with both phases of VO2, but

assisted by plasmon in metallic VO2 and mediated by optical phonons in

dielectric VO2, respectively.
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the plasmonic coupling between metallic VO2 and Au,

whose strength is weaker compared to that between two

identical materials with matching plasmonic properties. On

the other hand, it would be expected that it would fail to

excite phonon-mediated magnetic resonance due to the re-

moval of the bottom VO2 film. Surprisingly, the strong

absorption with dielectric VO2 could still occur. This can be

understood by the excitation of a hybrid magnetic resonance

mode due to the strong coupling between optical phonons in

dielectric VO2 and plasmon in the bottom gold substrate.

The high-frequency vibration of optical phonons at the top

interface of the MgF2 spacer along with the movement of

plasmon at the bottom interface could still form a close-loop

inductor-capacitor circuit, which successfully excites mag-

netic resonance at the wavelength of 14.8 lm. Note that the

absorption peak becomes narrower because Au has less

intrinsic loss compared with the VO2 substrate.

IV. CONCLUSIONS

In summary, we have numerically demonstrated a

wavelength-tunable metamaterial by tailoring magnetic reso-

nance conditions with phase transition of VO2. The absorp-

tion peak shifts from 10.9 lm to 15.1 lm upon the VO2

phase transition from metal to dielectric, resulting in a rela-

tive 38.5% shift in the peak wavelength. The underlying

physical mechanisms lie in the plasmon-assisted magnetic

resonance in metallic VO2 and phonon-mediated counterpart

in dielectric VO2, which leads to different resonance

wavelengths. A hybrid magnetic resonance mode due to

phonon-plasmon coupling was also discussed when replac-

ing the bottom VO2 layer with a gold film, which could

simplify the metamaterial design in practice. The

wavelength-tunable metamaterial absorber or emitter could

find applications in tunable infrared detectors and coherent

thermal emitters. The insights and understanding gained in

this work will facilitate the design of novel tunable metama-

terials for active control of thermal radiation in electronic,

optical, and thermal devices.
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