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The neural mechanisms that take place during learning and adaptation can be directly

probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm

that enabled us to enforce learning by introducing perturbations which changed the

relationship between neural activity and the BMI’s output. We introduced a uniform

perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform

perturbation, through a decorrelation task. The controller in the VMR was essentially

unchanged, but produced an output rotated at 30◦ from the neurally specified output.

The controller in the decorrelation trials decoupled the activity of neurons that were highly

correlated in the BMI task by selectively forcing the preferred directions of these cell pairs

to be orthogonal. We report that movement errors were larger in the decorrelation task,

and subjects neededmore trials to restore performance back to baseline. During learning,

we measured decreasing trends in preferred direction changes and cross-correlation

coefficients regardless of task type. Conversely, final adaptations in neural tunings were

dependent on the type controller used (VMR or decorrelation). These results hint to the

similar process the neural population might engage while adapting to new tasks, and

how, through a global process, the neural system can arrive to individual solutions.

Keywords: learning, adaptation, neuroprosthetics, neural control, neural dynamics

1. INTRODUCTION

Motor and skill learning are closely related terms often used to describe the acquisition and
retention of behaviors through repeated practice (Shmuelof and Krakauer, 2011). Brain-machine
interfaces (BMIs) have proven to be a unique environment in which to study the neural correlates of
this motor learning. Early reports of BMIs focused heavily on changes in neural tuning as subjects
adapted to these peculiar output systems and learned to control the movement of an effector that
they had never before experienced (Wessberg et al., 2000; Serruya et al., 2002; Taylor et al., 2002;
Carmena et al., 2003): clearly these systems would require learning and adaptation to even operate.
This challenge to neuroprosthetics has become an opportunity in which BMIs provide a novel
environment to directly probe and measure the brain’s plasticity. These BMI systems can be used to
create a wide variety of learning challenges, from altering the decoders output to directly changing
the contribution each neural signal will have in this output, where the scope of the perturbations will
not to be limited by the physics of actual movement. BMIs also simplify the task of simultaneously
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studying different brain structures during learning and
adaptation. For example, BMIs have been used to test the
ability of subjects to learn new tasks (Shadmehr and Mussa-
Ivaldi, 1994; Taylor et al., 2002; Carmena et al., 2003; Hochberg
et al., 2006; Velliste et al., 2008; Orsborn et al., 2012) or to
adapt to new environments (Tong and Flanagan, 2003; Tanaka
et al., 2009). It has been possible, using BMIs, to identify
changes in the properties of individual neurons after learning
a task (Taylor et al., 2002; Carmena et al., 2003; Lebedev et al.,
2005; Zacksenhouse et al., 2007; Ganguly and Carmena, 2009;
Ganguly et al., 2011; Chase et al., 2012), as well as the existence
of constraints within the neural circuitry which can hamper
skill learning (Paz and Vaadia, 2004; Jarosiewicz et al., 2008;
Ranganathan et al., 2014; Sadtler et al., 2014). In other words,
these BMI systems give vast opportunities to uniquely challenge
neural circuitry and probe the neural basis of learning and
adaptation (Ganguly and Carmena, 2009; Ranganathan et al.,
2014; Sadtler et al., 2014).

Given the present evidence of plasticity in BMI systems, it is
clear that a given neural ensemble is able to adapt to different
decoders, suggesting these systems are able to generate strategies
that solve a number of diverse challenges. These decoders
need not follow exact representations of muscle activation or
movement (Ganguly and Carmena, 2009), although the speed of
adaptation seems to relate to how closely the decoder follows this
relationship (Ganguly and Carmena, 2009; Ganguly et al., 2011;
Sadtler et al., 2014). These different adaptations have system-
wide impact, i.e., changes in neural properties are measured
throughout the entire neural ensemble (Jarosiewicz et al., 2008;
Ganguly and Carmena, 2009; Ganguly et al., 2011; Chase et al.,
2012; Wander et al., 2013; Addou et al., 2014; Okun et al., 2015).
For example, in tasks with visuomotor rotations or force-field
perturbations, the system appears to solve the problem, and
respond to the perturbations mostly in a uniform manner across
the neural population (Tong and Flanagan, 2003; Rokni et al.,
2007; Tanaka et al., 2009). However, different groups have shown
that not all neurons change in the same manner: the amount of
adaptation may correlate with the properties required by the new
controller (Paz and Vaadia, 2004; Jarosiewicz et al., 2008; Chase
et al., 2012).

It has been shown that subjects can adapt to uniform
perturbations to their movements (Krakauer et al., 2000; Tong
and Flanagan, 2003), most likely driven by uniformly shifting
the neuronal ensemble tuning properties (Rokni et al., 2007;
Tanaka et al., 2009). Neural systems can also adapt to certain
non-uniform perturbations by finding a workable solution based
on a relatively uniform response across the ensemble, although
the overall ensemble dynamics can change in unpredictable
ways (Jarosiewicz et al., 2008; Ganguly and Carmena, 2009).
It remains unclear whether the differences in the measured
adaptations are due to the nature of the challenges (e.g., visual
rotations, force fields, shuffled decoders, etc.), or due to the
overall difficulty of the task. For example, it is not clear at
this point how the system would respond to a perturbation
that only impacted a focal set of cells which did not have an
equivalent visuomotor rotation. How does the learning process
compare across these different tasks: does the neural system

try to apply the same adaptation strategies, or does it engage
different adaptation processes? Do these strategies change the
properties of the signals or can they also alter the underlying
dynamics of the area of cortex undergoing adaptation? Lastly,
while there is evidence that a neural ensemble can alternate
BMI control between a normal and a shuffled decoder (Ganguly
and Carmena, 2009), it has not been shown that a given set of
neurons can process two very different kind of perturbations to
the decoder, which could have great influence in understanding
the limitations of motor learning, and might impact the design
of motor rehabilitation paradigms. In this study, we will address
the questions of whether the adaptation to uniform and non-
uniform perturbations have similar effects on neural tuning
when these perturbations are directly applied in BMI paradigms,
and whether these adaptations change the underlying input
signals which condition the activity of the measured neural
units.

Previous studies have tracked changes in the tuning of neural
systems in BMI tasks (Rokni et al., 2007; Jarosiewicz et al.,
2008; Ganguly et al., 2011). These results range from substantial
variations in the preferred directions of neural units, where
neurons display systematic shifts in their tuning (Rokni et al.,
2007), or local shifts correlated to an introduced perturbation
(Jarosiewicz et al., 2008), to emergence of a stable tuning across
the neural ensemble (Ganguly and Carmena, 2009). Building
from these studies, we hypothesize that to solve distinct motor
learning tasks, the neural population will respond globally
rather than locally, varying the behavior of the entire neuronal
ensemble, even when the perturbation is only across a limited
subset of that ensemble. Otherwise, the first task for the ensemble
will be to solve the credit assignment problem (i.e., identify
which cells have changed properties in the decoder): this strikes
us as an enormously difficult task given the sparse sampling of
the neural systems which characterizes BMIs (e.g., recording a
hundred channels of the tens of millions of neurons participating
in the control of movement). Instead, we propose that motor
neural circuitry will exhibit changes across the entire neuronal
ensemble when challenged with different uniform and non-
uniform perturbations, and then using trial and error, determine
a workable solution to the current perturbation, not unlike
the error-noise-learning trade discussed by Rokni et al. (2007).
Importantly, we expect that different tasks will elicit similar
adaptation strategies throughout the learning process, even
when the final neural solutions are not similar between the
tasks.

Here we report the response of the motor cortical system
to two different control perturbations: one global and uniform,
and a second that is focal and non-uniform. In contrast with
previous studies (Paz and Vaadia, 2004; Jarosiewicz et al., 2008;
Ganguly and Carmena, 2009), the subjects were trained in brain
control only, and did not perform any overt movements for
either task. Similar to Ganguly and Carmena (2009) we used the
same decoder across several days.We recorded and characterized
the neural behavior during and after learning, anticipating
that any tuning changes induced by these tasks would be
reflected in the final adaptations displayed by the entire neuronal
ensemble.
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2. METHODS

2.1. Experimental Set-Up and Recordings
All experimental protocols were in accordance with the Guide
for the Care and Use of Laboratory Animals, and approved
by the Arizona State University Institutional Animal Care
and Use Committee. We implanted two non-human primates
(Macaca mulatta) with six bilateral (monkey O) and four
unilateral (monkey M) 16-channel micro-wire arrays (Tucker
Davis Technologies, Inc.), in the hand and arm regions of
the motor and dorsal premotor cortices. The coordinates of
the cortical regions of interest were acquired with previously
described methods (McAndrew et al., 2012), and verified by
visual inspection of the implantation sites during surgery. A 96-
channel recording system (Plexon, Inc., Dallas TX) was used to
capture, filter, and sort single and multi-unit activity. Units were
sorted using voltage threshold and waveform shape detection.
Action potentials that met both the threshold and waveform
criteria were registered as spikes, and sorted as a neural unit. Data
from all channels were captured at 40 kHz and saved for post-hoc
analysis.

The monkeys were trained to sit on a primate chair and to
observe three dimensional center-out movements of a computer
cursor in a 3D monitor (SeeReal Technologies), while keeping
their hands on pads located on the desk immediately in front
of the primate chair (Figure 1A). The task required continuous
contact with both left and right hold-pads in order to operate.
At least once weekly, and more frequently when recording
conditions were changing, the monkeys performed calibration
trial blocks. In these calibration blocks, the animals observed
the cursor moving automatically to each of the eight targets at
a constant speed. In each trial, the cursor took approximately

FIGURE 1 | Task set-up and time line. (A) NHP in primate chair set-up, and

VR screen with display lighting during calibration and active brain control. (B)

Task time-lines (with and w/o calibration block): task-off, calibration, baseline,

and perturbation.

9.5 s to move through a straight path to the target. Neural activity
during these epochs exhibited adequate directional tuning to
initialize a population vector. From this point, the motion of the
cursor was controlled by neural activity using a modified version
of the population vector algorithm (PVA) from Georgopoulos
et al. (1986). Changes in recording conditions were noted if a
neuron’s waveform was no longer recorded in a channel, or if the
sorted neurons no longer met the previously established sorting
criteria. Supplementary Table 1 shows a summary of the decoder
updates for each subject, and the total amount of sessions with
new and fixed decoders. Overall, the subjects learned a total of
twelve (monkey O) and five (monkey M) different calibration
maps during the experiments described here.

The tasks were organized by blocks of 32 trials. During
those blocks, the control code remained fixed: cursor and target
diameters, successful/failed trials criteria and cues, and inter-trial
times. The cursor and targets were differently colored spheres:
the cursor was green for all conditions, and the target was red
during calibration blocks and yellow during all brain control
blocks. Different background lighting in the virtual-reality (VR)
display was also used during the task: white for calibration, and
yellow for baseline and perturbations (Figure 1A). Two cases
were considered a failed trial: if the subjects did not reach the
target in a set time (13–22 s), or if the cursor went out of bounds.
These bounds were experimenter selected, and they were the
virtual limits where the cursor would no longer be visible in the
task display. Similarly, the time-out values were updated during
initial task training, and left fixed once the perturbations were
introduced. Between trials, the cursor and target were blanked for
0.8–2.4 s inter-trial interval (ITI). The ITI was empirically varied
to allow subjects to receive a juice reward after successful trials.

Figure 1B displays the two possible timelines in a session.
The upper timeline illustrates the event sequence with a
calibration session; while the bottom timeline represents the
days when the monkeys started directly with active brain
control. Supplementary Table 2 summarizes the total number of
recording sessions for each subject, the total of sessions where
a new calibration map was used, and those where the previous
map was kept. The first 5 min of recording were captured without
any task display: the monkeys sat quietly on the primate chair
with the monitor off. These data were used in a separate study
comparing background activity with task-based activity. Each
session consisted of three baseline blocks, 32 trials each, followed
by blocks of perturbations (average perturbed blocks= 4.7, s.d.=
1.1). Once the perturbation was introduced, it was kept constant
throughout the remainder of the session. If the monkey removed
either hand from the copper plates, the task would pause until
both plates were pressed, and the task would resume with the
cursor back at the center position.

2.2. Neural Decoding for Brain Control
We adapted the PVA to decode the movement of the cursor
from neural activity. Our choice of the population vector was
largely on the ease with which changes in neural tuning can
be quantified. There are many other possible algorithms, and
smoother and better control has been reported with other linear
and non-linear decoders such as Kalman filter, particle filters
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or Bayesian approaches (Carmena et al., 2003; Wu et al., 2003;
Hochberg et al., 2006; Velliste et al., 2008; Hochberg et al.,
2012; Orsborn et al., 2012); however any parametric changes
in neural tuning using these other decoders are more difficult
to decipher. Furthermore, in a direct comparison of several of
these decoders, most subjects can compensate online for poor
preferred directions distributions while using PVA, and have
similar performance across different decoders (Koyama et al.,
2010).

To begin, we assumed the neurons had cosine tuning profiles
as stated in Equation (1).

fi = b0 +micosθ, (1)

where fi refers to the ith neuron’s firing rate, b0 to the tonic
activity of the ith neuron, mi is the depth of modulation for the
ith neuron, and θ is the angle between the preferred direction
(PD) of the cell and the intended movement direction. Since
these neurons also display a preferential tuning when observing
movement in a VR environment (Wahnoun et al., 2006),
we calculated the preferred directions from recordings during
the calibration trials. We estimated each neuron’s calibration
preferred direction (cPD) using a multivariate linear regression,
which related the neuron’s change in firing rate from their
baseline to the target direction while the cursor automatically
moved during the calibration trials. We excluded the data when
the task was paused (i.e., subjects lifted hands from hold pads)
and during the ITI. The firing rate was calculated online from
the spiking activity of non-overlapping 50ms bins and a running
mean for each neuron using a rectangular kernel (Nawrot et al.,
1999). The estimated directions were converted to unitary vectors
and used to control the movement of the cursor, unless the
90% confidence interval for all three coefficients spanned zero.
During active brain control, the subjects O an M had on average
32.19 (s.d. 7.48) and 20.17 (s.d. 2.48) units tuned to the task,
respectively. These cPDs were used to compute the population
vector shown in Equation (2).

−→
PV t =

N
∑

i=1

(

fi − f̄i

)

−−→
cPDi, (2)

where
−−→
cPDi is the ith neuron’s preferred direction, fi is the

instantaneous firing rate, f̄i is the baseline firing rate, computed

as a running mean for each cell across the entire block, and
−→
PVt

is the final population vector for that time step. The population
vector was calculated every 50 ms, and the position of the
cursor was updated using this vector. The population vector was
smoothed using a two time-step window moving average filter.
Equation (3) displays the formula used to update the cursor
position.

−→
Ct =

−−→
Ct−1 +

[

−→
PVt · g ·

(

1− h
)

+
−−−→
Tart−1 · h

]

s · L, (3)

where vectors
−→
Ct and

−−→
Ct−1 refer to the current and previous

cursor position, respectively. The vector
−→
PVt represents the

current smoothed population vector, and the scalar g is the
population vector gain factor (µO = 34.94, s.d. 18.6; µM =

412.58, s.d. 4.36). Additional parameters include active assistance
factor (hO = 8% and hM = 0.8%), speed gain (s: experimenter
selected), and length of the population vector (L). The vector
−−−→
Tart−1 is the direction to target from the previous cursor position,
normalized to be a unitary vector.

For the second monkey we set parameter L to unity, instead
of using the length of the PV. Since this term was scaling down
the cursor movements. However, with either of the controllers
the subjects had good control of the cursor movement, and the
decoded PV dictated the overall speed of the movements. The
experimenter selected values were adjusted such that the cursor
would not easily shoot out of the virtual workspace range.

2.3. Uniform and Non-uniform
Perturbations to Task
We introduced two types of perturbation to the task: (1) a
visuomotor rotation (VMR), around the axis into the monitor,
of 30◦ in CCW and CW directions; and (2) a decorrelation
perturbation (DeCorr), in which we chose a subset of the
pairs of neurons with highest peak cross-correlation values, and
constrained their contribution to the population vector to be
uncorrelated by assigning them orthogonal preferred directions.

In the VMR task, we selected the antero-posterior axis as our
reference vector, with positive directions into the VR display. We
then rotated the computed PV using a rotation matrix derived
from the Rodrigues’ rotation formula Equation (4).

R =





cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ



 , (4)

where θ is the angle of rotation around the selected axis. The
rotation was applied to the PV before updating the cursor
position. A positive theta yielded a CCW rotation, and a negative
theta a CW rotation. Figure 2A displays the rotation of an
arbitrary movement vector in CCW direction, where the blue
vector is the initial intended movement, and the magenta vector
is the outputted movement after the rotation. After a new
decoder calibration, we randomly selected the direction of the
perturbation (CW o CWW), and used this until the next decoder
update.We selected the y-axis as reference for the rotation, which
places the rotation in the plane of the display screen.

For the DeCorr perturbation, we intended to disrupt the
internal dynamics of the neural population and introduce a
difficult challenge to the control paradigm. We used the cross-
correlation function between the firing rates of neurons to
identify functional connections between the cells (Vaadia et al.,
1995; Salinas and Sejnowski, 2001). We considered that selecting
these highly correlated pairs allowed us to directly interfere
with the ensemble dynamics, without relying on the individual
contribution each neural unit has in the decoder.

Figure 2B shows the DeCorr perturbation procedure: we
calculated the cross-correlations between all neuron pairs from
activity recorded in the baseline intervals. We then selected the
pairs which displayed the highest maximum cross-correlations.
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FIGURE 2 | VMR and DeCorr Perturbations. (A) Diagram displays the VMR applied to the original population vector (blue) and the resulting rotated vector

(magenta), which was used to update the cursor movement. (B) DeCorr procedure (read clockwise from top left corner): from a given cPD distribution the

cross-correlation coefficients were computed (rxy ), and top correlated pairs were then selected. A neuron was randomly selected from the pair (magenta vector), and

the rest of the cPDs were projected into an orthogonal plane. The cPD for the selected neuron was rotated toward the region of the plane with fewer neurons (red

dashed vector). This process was repeated for a small number (4–6) of neuron pairs.

One neuron was randomly selected from each pair, and the cPD
of the selected neuron was rotated to a new direction orthogonal
to the starting cPD. To select the specific direction within that
orthogonal plane, we projected the cPDs of the entire ensemble
to that same plane, and computed the circular histogram count of
the projected neurons, using five degree bins. We then identified
the bin of the plane with the fewest projected cPDs. The new
cPD for the selected cell was chosen to fill the most substantial
gap in that orthogonal plane. This process was repeated four
to six times, with no single cell involved in more than a single
rotation. Supplementary Figure 1A shows the distribution of
angles between all the cPDs for a given decoding map of
monkey O and monkey M before (black) and after (purple) the
perturbation. Supplementary Figure 1B displays the distribution
of angle differences between the rotated pairs before (black) and
after (purple) the DeCorr perturbation of the same ensemble
cPDs for both monkeys. The sum of the individual rotations did
not result in substantial rotation to the output (two-sample test,
circular data, p > 0.05, Zar, 1996).

2.4. Control for Chance Performance
In order to test whether the subjects were able to rely on
active assistance to perform the tasks, we simulated the task
offline using the stored firing activity during baseline, VMR
and DeCorr trials, but manipulated the relationships between
firing and device motion in two ways. First, we used the actual
cPDs and randomly assigned them to actual neural units. Our
goal was to keep the same directional distribution and neuron
firing rates, but to alter the relationship between neurons and
their preferred directions. Second, we again shuffled cPD and
neural units relationship, but used the mean firing activity from
brain control trials toward the same target. The purpose was to

check for significant target hits if the subjects had not modulated
his firing activity. In both cases, we recalculated the population
vector using Equation (2), and updated the cursor position using
Equation (3). All task parameters were kept the same as those
used during active brain control. From these simulations, we
computed the estimated target hits and angular errors between
population vector and target direction. These controls provided
a measure of the extent to which the cursor motion was due to
active assistance, and how much was due to subjects modulating
their activity. In cases using modulated firing rates, we would
observe only 2 or 3 target hits in 96 trials. If only the help was
included (no firing rate modulation), there were no target hits
(see Supplementary Figure 2 for details).

2.5. Changes in Tuning Properties and
Neural Ensemble Dynamics
We expected tuning to change between tasks, and specifically,
we expected preferred direction to change (Taylor et al., 2002;
Jarosiewicz et al., 2008; Chase et al., 2010). Therefore, a key
measure of changes in the neural system was observed by
calculating the preferred directions associated with action in
the virtual task (action PDs or aPDs), using the same tuning
equation shown in Equation (1). Many of our main results
reflect differences in the aPDs between conditions. As a primary
measure of changes in cell properties, we calculated the angle
between the aPDs of baseline and perturbed trials for both
successful and failed trials.

To measure any possible changes in neuronal ensemble
dynamics, we calculated the cross-correlation function during
both the baseline trials and the perturbations using 1 ms bins and
a Gaussian kernel of 200ms (Nawrot et al., 1999). We compared
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the peak cross-correlation coefficients for each trial across the
different paradigms. We used one-way analysis of variance to
test the effect that task type (baseline and perturbation) had in
these peak cross-correlation coefficients, in both the rotated and
non-rotated neuron pairs. We also compared the peak cross-
correlation shifts from baseline during the first phases of task
learning to those from when the monkeys were fully adapted to
the tasks.

The tasks are three-dimensional, and so the control of the
tasks is over-specified by the neural ensemble. Because of this,
it is possible that each of the tasks is eventually controlled in
separate neural spaces. To capture this, we used a dimensionality
reduction algorithm to identify control manifolds specific to
each task, and to explore whether the neural activity could be
expressed in terms of latent dimensions (Rubin and Thayer,
1982; Sadtler et al., 2014). This method uses the expectation-
maximization algorithm (Rubin and Thayer, 1982) to iteratively
estimate a subspace or manifold that related the activity of
each of the recorded neurons to the solution space for a given
phase of the task (see Supplementary Material). This space may
indicate latent variables driving the activity of the recorded
neurons (Santhanam et al., 2008; Yu et al., 2009) or describe
further functional connections between the neural units.We used
existing algorithms andMATLAB scripts (Yu et al., 2009; Cowley
et al., 2013) to estimate these intrinsic manifolds and latent
variables from our raw neural data.We estimated thesemanifolds
using a fixed number of latent dimensions (n = 12) across the
different trials. The number of dimensions was selected from
cross-validation with initial data calculated with the DataHigh
toolbox. The software (Cowley et al., 2013) iterates across possible
latent dimension values and computes the log-likelihood from
the binned firing activity (50 ms bins). We used the the average
number of dimensions at which the log-likelihood function was
maximized (see Supplementary Figure 8).

Finally, we computed the principal angles (PAs) between
these estimated manifolds for baseline and perturbation trials.
These PAs capture the intersections between subspaces. For
dimensions that two subspaces share, the PAs are near zero. For
dimensions that the two manifolds do not share, the PAs are
closer to 90◦, indicating that the subspaces are distinct. We used
an algorithm and MATLAB function which allows for precise
estimation of small angles between subspaces (Knyazev and
Argentati, 2002). We measured the changes in the distribution of
the PAs as subjects improved performance in both perturbations,
and performed one-way analysis of variance to test whether task
type (baseline, VMR, and DeCorr) and performance (number of
correct trials) had an effect on these PAs.

3. RESULTS

We trained both subjects on both perturbations. For monkey O,
we were able to observe full adaptation back to initial levels of
performance in both tasks. For monkey M, we were only able to
complete adaptation in the VMR task. After 3 days of training
with the DeCorr task, the recording implants failed (loss of
neurophysiological signals). After the subjects had been trained

with both types of perturbation, we measured the variations
in behavior and performance across days where perturbations
were constant. For all the performance measurements of VMR
sessions, the rotation directions (CCW and CW) were merged,
we did not find significant differences in performance or
movement errors among them (one-way ANOVA, p > 0.8).
Pertinent corrections for rotation direction were made when
measuring the angle shift in aPDs, and movement errors.

Figure 3 summarizes task success of the perturbations for
both monkeys. Figure 3A displays the percentage success for
VMR sessions for monkey O (solid purple lines) and M (dashed
black lines). Illustrated trials belong to sessions where the
cPDs distributions and the perturbation were kept constant.
Percentage success was normalized according to the maximum
success rate during the baseline trials. The red trace represents

FIGURE 3 | Tasks performance. (A) VMR success for monkey O (solid

purple) and monkey M (dashed black). Trials span across different days.

Percentage success was normalized with maximum performance in baseline

trials. The success rate was calculated per block (32 trials/block). Red trace

shows fit for Wright’s learning curve (y = 100− axb). with coefficients aO =

22.11, bO = −0.08 and aM = 58.1, bM = −0.10. (B) DeCorr performance for

monkey O and monkey M in solid purple and dashed black lines, respectively.

Trials span across different days with the same perturbed cPDs. Coefficients

aO,1 = 47.43, bO,1 = −0.19, aO,2 = 46.09, bO,2 = −0.17, and aM = 74.91,

bM = −0.03. The first fit of monkey O used the complete trial set, while the

second one used partial trial set similar in length to that of monkey M. Format

is the same as top panels. (monkey M had less data in DeCorr task, trials span

for ∼500 trials).
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model fitting of a modified Wright’s (1936) learning curve (y =

100 − axb), the coefficient b represents how quickly or slowly
the subjects improved in the task. Values close to zero mean
the learning was slow, while values close to negative one mean
the subjects adapted quicker as they performed more trials. We
observed similar learning rates for both subjects in VMR trials,
as shown in Figure 3A. Subject M had a slightly faster adaptation
with an estimated coefficient b = −0.10, while subject O had an
estimated b = −0.08. Similarly, Figure 3B displays the increase
in performance in the DeCorr trials for both subjects. Subjects O
and M had estimated coefficients of b = −0.19 and b = −0.03,
respectively.

As we can observe in Figure 3B, monkey M performed fewer
trials of the DeCorr task, although he showed improvement in
the task, he did not reach accuracy similar to the baseline trials
and displayed slower learning than monkey O. However, the
improvements were similar along the initial learning phases, and
we will compare the initial phases of learning between subjects.
For example, during the first couple of sessions (∼500 trials)
both had an increase of approximately 20% of initial performance
(Figure 3B), and there was not a significant difference between
the normalized performance of these trials (one-way ANOVA,
F = 0.7, p > 0.4). In order to make comparisons of this initial
learning, we separately fit monkey O’s initial data (first ∼ 500
trials) to the modified learning curve. This separate fit is shown
in the darker red solid line in Figure 3B, with an estimated
coefficient of b=−0.17.

3.1. Tuning Properties Variations with
Learning
As a first measurement of responses in the neural signals, we
compared the firing rates across days where we used the same
decoding cPDs maps for cursor control, and we did not find
significant differences between baseline and the perturbations
(one-way ANOVA, p > 0.1). We also looked for specific

differences between the firing activity of the rotated and non-
rotated neurons in the DeCorr task, and we also found no
significant variations between these groups. As a next step, to
show that the changes measured would not be due to random
variations in the aPDs but due to task adaptation, we analyzed
the shifts in aPDs during baseline trials, and tracked them across
days were the decoders were fixed. Supplementary Figure 4
shows an example of the trends we measured across trials for
both subjects. Overall, the aPDs estimated during baseline trials
stabilized over time (p > 0.1, circular data one-way ANOVA),
returning to directions similar to thosemeasured during previous
sessions.

In order to quantify tuning changes in individual signals while
the subjects adapted to the task, we calculated the angles between
aPDs of baseline and perturbed trials. We measured these aPDs
at two different stages, when the subjects were adapting to the
tasks, and when they had steady improvements in performances.
To measure changes during learning, we used sets of 16 trials,
measuring the angle shift between subsequent trial sets until
subjects had reached between 90 and 100% accuracy within those
trials. Figure 4 shows the average shift between aPDs for VMR
and DeCorr trials for monkey O (purple) and M (black). We
fitted simple linear first order models to the average aPD shifts,
shown in the red traces. We observed a decreasing trend for both
task types, but did not observe any significant differences in the
aPD variations of rotated and non-rotated neurons during the
initial stages of learning (performance < 65%) for either subject
(one-factor ANOVA, circular data. Zar, 1996). For monkey M,
the DeCorr trials did not have a strong fit to any model but did
display a slight decreasing trend (see Figure 4B).

In order to estimate the final aPDs once the monkeys had
learned the perturbations, we used only successful trials across
different days (200+ trials) where a fixed decoder was used.
Figure 5A displays examples of aPD shifts during VMR trials
for monkey O in CW direction, where the black end of each
trajectory represents the baseline aPD, and the red end shows the

FIGURE 4 | Preferred direction changes during learning. (A) Average arc length vs. percentage success in VMR task for monkey O (purple circles) and monkey

M (black cross), error bars display standard error. Red traces display fit for linear model (y = ax + b), with coefficients aO = −0.229, bO = 51.222, aM = −0.401,

bM = 58.614. (B) Average length vs. percentage success in DeCorr task for both subjects, error bars display standard error. Red traces display fit for linear model,

with coefficients aO = −0.172, bO = 43.831, aM = −0.172, bM = 46.295.
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aPD during perturbation. Similarly, Figure 5B shows the change
in aPDs in the DeCorr trials, the magenta trajectories highlight
the rotated neurons during the perturbation. Figure 5C displays
changes in VMR aPDs across all days for monkey O. In the
majority of the sessions, the aPDs displayed an average angle
shift of 30◦ in the direction of the induced rotation (p < 0.05,
one-sample test for mean angle; Zar, 1996). On the other hand,
Figure 5D shows the distribution of aPD shifts for the rotated
(magenta) and non-rotated (blue) cells for the same subject in the
DeCorr task. We observed a significant difference between these
sub-populations (p < 0.01, two-sample test for mean angle; Zar),
with a larger shift in the rotated neurons. For the VMR task, we
observed similar behaviors in monkey M’s aPDs, but not during
the DeCorr task (see Supplementary Figure 5). Monkey M had
an overall 30◦ rotation in the VMR trials, but not a significant
difference between the rotated and non-rotated sub-populations
in the DeCorr task, although the non-rotated neurons had on
average larger shifts.

3.2. Changes in Population Dynamics
during Learning
A key goal in this experiment was to measure whether the
tasks, and specially the DeCorr task, resulted in changes in

the internal dynamics of the ensemble. Our first measure of
changes was to determine whether the overall profile of the cross-
correlations between neurons of interest changed with the task.
Thus, we compared changes in the peak cross-correlations from
the neurons used to control the movement of the cursor while
the subjects adapted to the task, using all the trials during these
sessions. Here we found that during the majority of the sessions
there was a significant change in peak cross-correlations between
baseline and DeCorr trials (19/24 sessions, see Supplementary
Table 2). For half of the DeCorr sessions, there was a significant
drop in cross-correlation coefficients after the perturbation was
introduced for both subjects (12/24 sessions, one-way ANOVA,
p < 0.01). During these sessions, we also observed an increase in
the coefficients of all cell pairs as subjects improved performance
(see Supplementary Figure 7); however this trend was not present
across all days.We also compared changes in correlation between
the rotated and non-rotated neurons, and did not find any
significant differences between them during most sessions for
both subjects (16/24 sessions, p ≥ 0.1). These results suggest that
the network dynamics are changed during learning, but these
changes are not unique to the rotated neurons.

We thought also to measure the state of the ensemble by
examining the spaces in which the ensemble encoded movement.

FIGURE 5 | Preferred direction changes in VMR and DeCorr task. (A) aPDs shifts during VMR task (CW direction): aPDs during baseline (black end) and after

perturbation (red dot) are displayed for each neuron used for brain control. (B) aPDs changes during DeCorr task (5 rotated pairs): aPDs during baseline (black end)

and after perturbation (red dot) are displayed for each neuron used in brain control, magenta trajectories highlight the rotated neurons. (C) Shift in neurons aPDs,

pooled data are displayed for all VMR sessions for monkey O. Dashed gray line illustrates average shift. (D) Shift in neurons aPDs, pooled data for all DeCorr trials for

monkey O. Blue bars show data for non-rotated neurons, and magenta bars display data for rotated neurons.
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To this end we applied factor analysis methods to discern key
dimensions of the neural control (Yu et al., 2009; Sadtler et al.,
2014). We estimated manifolds which captured the observed
firing patterns among the neural ensembles with a smaller set of
latent dimensions. We found that with at most 12 dimensions
we could capture the key elements of neural activity that were
associated with control of the cursor. When we examined the
manifolds corresponding to baseline performance and those
associated with the perturbations, we found that there was a
great degree of overlap between the manifolds, reflected in small
principal angles (PAs) between axes of the manifolds. There
were generally only one or two dimensions which were distinct
between manifolds in the perturbed cases and those from the
baseline cases.

We computed the average PAs between the baseline and
perturbation (VMR and DeCorr) manifolds, shown in Figure 6.
Overall we observed a decreasing trend in these average angles as
performance improved, a simple linear model explained some of
the variability in the DeCorr trials (R2 ≥ 0.5) for one subject.
A similar trend was measured in VMR trials, although with
a poor model fit. However, we consider this decreasing trend
captures the overall shifts in PAs, where larger shifts occur when
the perturbations are first introduced. These changes in the
manifolds could reflect both how the neurons interact with each
other, and how inputs to these neurons are varying their control
signals throughout the tasks. We would expect that changes due
to controller inputs would stay closer to the original manifold,
similar to the within-manifold task described by Sadtler et al.
(2014), and these could be measured as smaller PAs between the
manifolds.

In order to test whether the perturbation type or the
improvement in performance had effects in the average PAs,
between the manifolds of baseline and each perturbation, we
used one-way ANOVA for circular data (Zar, 1996). We tested

the levels of task type (VMR and DeCorr), and the performance
in each set of trials. While we found that for one subject
performance had a significant effect in the average PAs [F(20, 157)
= 1.73, p = 0.033], the perturbation type did not have a
significant effect for either of the subjects (p≥ 0.5), and we found
no significant interactions between task type and performance
level.

4. DISCUSSION

It is clear that motor learning and adaptation are captured in
changes in cortical mapping of movement (Taylor et al., 2002; Paz
and Vaadia, 2004; Wahnoun et al., 2006; Jarosiewicz et al., 2008;
Ganguly and Carmena, 2009; Ganguly et al., 2011). Neurons can
change basic tuning properties like preferred directions (Paz and
Vaadia, 2004; Jarosiewicz et al., 2008), and can even adapt to
entirely arbitrary mappings between neural activity and motor
output (Ganguly and Carmena, 2009). Here we describe findings
which show that although mapping outcomes can be extremely
different (e.g., uniform vs. non-uniform shifts in PDs), part of
the neural mechanism for achieving those outcomes is similar.

Neural adaptations and correlates are described here during
two very distinct motor learning paradigms: a uniform VMR
perturbation, which induced expected errors in movement and
behavior (Krakauer et al., 2000; Paz and Vaadia, 2004; Jarosiewicz
et al., 2008), and a non-uniform DeCorr task, which generated
bigger and more random errors in the behavior (Figure 3). Our
major findings indicate important similarities in the mechanisms
that allow subjects to reach the solutions for each task. The
neural signals display a population wide adaptation to both tasks
(Figures 4, 5 and Supplementary Figure 5), which implies there
is a global response to both perturbations, and eventual solutions
are found for the tasks (Figure 5 and Supplementary Figure 5).

FIGURE 6 | Average principal angles between baseline and perturbations manifolds. (A) VMR task angles for monkey O (purple circle) and M (black cross) vs.

success rate for all sessions. Error bars show standard error across all trials. Red line shows fit to decreasing model (y = ax + b). (B) DeCorr task angles for both

subject vs. success rate for all sessions. Error bars show standard error across all trials.
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We also measured transient changes in the tuning properties
of the neural signals, and found that success rate had a more
significant effect in these dynamic changes than the type of
perturbation (Figures 4, 6). This suggests that learning might be
encoded in these transient variations in individual tuning, and
agrees with recent findings that motor cortical activity modulates
with both movement direction and previous trial success or
failure (Yuan et al., 2014).

4.1. Directional Tuning Changes during
Learning
We found significant correlations between task performance and
changes in the aPDs of both tasks (Figure 4). When subjects
learn a task, or try to solve a novel problem, there is often an
increase in global entropy in systems, and an eventual reduction
in this uncertainty as learning progresses (Cordier et al., 1994;
Zacksenhouse et al., 2007; Schöllhorn et al., 2009; Suminski et al.,
2010). As Cordier et al. (1994) shows, it is possible to measure
the entropy in exploration paths (e.g., a rock climber’s route), by
considering the tortuosity of such trajectories. We consider that
an analogy could be made with the transient changes in aPDs,
and these changes could in part mirror variations in the system
entropy, which would suggest an exploratory strategy that the
brain engages in when trying to solve challenges posed by a novel
task.

Each of our tasks could be solved in principle if the subjects
were able to solve the credit assignment problems offered
by the two perturbations. In order to verify whether the
subjects were able to solve the credit assignment problems, we
measured the final changes in aPDs from baseline, as shown
in Figure 5 and Supplementary Figure 5. In the VMR task,
the preferred directions yielded expected shifts across the entire
neuronal ensemble (Figures 5A,C, and Supplementary Figures
5A,C), which would correspond to solving the credit assignment
problem. However, this was a global perturbation and could
be led by structures that drive motor cortex. Uniform tuning
changes across the neural units hint to changes in the controller,
rather than in the internal dynamics of these units. To verify this,
we also measured possible re-aiming strategies using the latent
target calculation developed by Chase et al. (2010), which can
estimate new target directions that better explain the firing rate
changes in the recorded neurons (See Supplementary Material
for a description of the method). Using this algorithm, we found
that changes in firing properties during VMR trials were indeed
explained by re-aiming strategies, where the new targets were
on average shifted 30◦ in the opposite direction of the VMR
(Supplementary Figure 6). For the majority of the VMR sessions
(monkeyO: 33/41,µ= 39.57◦; monkeyM: 17/17,µ= 40.54◦) the
latent directions had shift significant around 30◦ (circular mean
test, Zar, 1996, p ≤ 0.05).

In the DeCorr task, such a simple global solution was not
possible. The latent target directions did not follow a single
direction as in the VMR trials (see Supplementary Figure 6),
and the majority of the trials had significantly different target
locations between baseline and DeCorr trials (monkey O: 20/21,
µ = 41.83◦; monkey M: 3/3, µ = 57.06◦; circular mean test, Zar,

1996, p ≤ 0.05). The only “correct” solution would be to identify
those few neurons for which we had altered the cPDs, and change
the system to use those neurons with their new assigned preferred
directions. Instead, the entire population had significant aPD
shifts during the DeCorr task, without the uniformity we
observed in the VMR case (Figure 5B and Supplementary Figure
5B). This non-uniformity was expected, since the task itself was
designed to disrupt the neuronal dynamics in a non-uniform
manner. However, we did not observe adaptation only on
specific subsets of neurons, as previous groups have reported
(Jarosiewicz et al., 2008), but rather compensations distributed
across the entire neuronal ensemble. We observed larger shifts
in the aPDs of the rotated neurons during the DeCorr task for
one subject(µRot = 31.71◦), when compared to the non-rotated
sub-population (µNon−rot = 18.65◦), as shown in Figure 5D.
However, if we measure the shift in the rotated neurons only in
direction of the perturbed cPDs, we observe a smaller and non-
significant shift. Interestingly, the second subject had larger, albeit
not significant (Watson-Williams test, Zar (1996)), shifts in the
non-rotated sub-population (µRot = 39.78◦; µNon−rot = 53.77◦).
This subject was not able to fully adapt to the task, so these larger
changes in the non-rotated neurons provide a snapshot of the
ensemble wide variations during the learning process. In other
words, while the perturbed cells did have larger final aPD shifts,
they were not always in the directions required to compensate
for the DeCorr perturbation as would be expected if the brain
was solving the credit assignment problem (Paz and Vaadia,
2004; Jarosiewicz et al., 2008), and were most likely the result
of initial global shifts across all the neural population. Finally,
although the DeCorr perturbation improved the uniformity of
the cPD distribution (see Supplementary Figure 1), this did not
translate to an immediate improvement in performance, as seen
in the initial drop in performance for the two subjects after the
perturbation was introduced (Figure 3).

4.2. Changes in Population Dynamics
Correlate to Task Improvement
We found that cross-correlation coefficients did vary between
baseline and each task, but these changes were not consistent
across the different sessions and subjects, and we did not
measure any significant differences between the rotated and non-
rotated pairs in the behavior of their cross correlations. These
results suggest that the changes in neural dynamics were more
dependent on the stage of the learning process than on the type
of task the neural system was trying to solve.

In addition to changes in preferred directions or cross
correlations, it is possible that wider changes could be observed
in the underlying space of the neural representations of the tasks.
It is conceivable that a change in the neural space would not
be directly reflected in changes in aPDs, and so we estimated
reduced neural spaces for the tasks and tasks states. In order to
further characterize changes in neural dynamics during learning
of both tasks, we measured the principal angles between these
subspaces during baseline and each perturbation. In Figure 6

we show transient changes in average PAs as subjects learned
the perturbation tasks (VMR and DeCorr), observing an inverse
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relationship between PAs and performance during both tasks.
While we expected to find very distinct ranges in the PAs of
the two tasks, we were surprised to find similar ranges and
relationship between PAs and performance. However, in the
DeCorr perturbation, we found a shift from small to large PAs
(0–30◦ to 60–90◦, data not shown), indicating that the system
could be operating in a separate neural space (Sadtler et al.,
2014). Thus, it would appear that the DeCorr task required larger
changes in the intrinsic manifold of the neural signals. However,
it is hard to interpret changes in the underlying manifolds from
average activity, and further studies at single trial level would
help us track these changes. We assume that if more neuron pairs
were rotated, we might be able to measure larger changes in the
manifolds of baseline and perturbed tasks, although the subjects
would possibly need more time to bring performance back to
baseline.

As Sadtler et al. and Ranganathan et al. have already shown,
there might be some internal constraints in the neuronal
ensemble that make it more or less likely for a subject to become
proficient at a task. Our results suggest that indeed there are
certain limitations as to how much can we ask the neuronal
population to change its internal mapping or dynamics. Keeping
a stable map across several days allows subjects to adapt and
learn new and complicated mappings between neuronal activity
and desired output. However, this certainly does not seem to
be enough to alter underlying functional relationships across
different neural units, at least not for the long term as is shown
in our results (Figures 4, 6).

The similarities between the two tasks and the analogous
neural changes during learning give evidence that the neural
circuitry engaged similar strategies when adapting to each task,
even though the “correct” solution is quite different between the
tasks. In other words, a similar random exploration in the neural
space could be driving the adaptation in both learning challenges,
and the harder the solution might be, or the more local minima

there might be in the neural space, the longer it would take
for the subjects to find a solution. Our results also suggest that

underlying functional connections between neural units are not
easily decoupled, so it is understandable that a task that requires
this from the system will take longer to learn.

Overall, our results show that the brain uses similar strategies
to solve strikingly different tasks. We compared how the
neural signals changed as the monkeys adapt to each task, and
showed the transient and final changes in preferred directions
(Figures 4, 5 and Supplementary Figure 5). Moreover, we believe
that the similar global changes in cross-correlation coefficients
also hint that similar strategies are used when adapting to the
two tasks (Supplementary Figure 7 and Supplementary Table 2).
It remains unclear whether these similarities in the adaptation
process might interfere with learning, or if subjects will still be
able to perform the tasks when alternating between perturbations
within a single session, as suggested by Ganguly and Carmena
(2009). Similarly, our results indicate that system wide changes
are responsible for task adaptation, so these processes should be
measured in tasks that allow the exploration of neural ensembles
as a modular system. Experiments which explore these system
wide variations can provide better information about dynamic
adaptations in neural systems and reveal limitations to the
challenges the brain can solve.
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