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Abstract: 

 

Visible femtosecond laser is shown to be capable of selectively inactivating a wide 

spectrum of microorganisms in a wavelength and pulse width dependent manner. 

However, the mechanism of how visible femtosecond laser affects the viability of 

different microorganisms is still elusive. In this report, the cellular surface properties, 

membrane integrity and metabolic rate of Escherichia coli (E.coli) irradiated by a 

visible femtosecond laser (λ=415nm, pulse width=100fs) with different exposure time 

were investigated. Our results showed that femtosecond laser treatment for 60 minutes 

(min) led to cytoplasmic leakage, protein aggregation and alternation of the physical 

properties of E. coli cell membrane. In comparison, a 10 min exposure of 

bacteriatofemtosecond laser irradiation induced an immediate reduction of 75% of the 

glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. 

Results from enzymatic assays showed that oxidases and dehydrogenases involving in 

E.coli respiratory chain exhibited divergent susceptibility after laser irradiation. This 

early commencement of respiratory inhibition after a short irradiation is presumed to 

play a dominant effect on the early stage of bacteria inactivation. 
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1. Introduction 

 

Research efforts focusing on finding alternative antibacterial therapeutics have been 

raised due to the side effects and persisting antibiotic resistance of the clinically adopted 

antibiotics [1]. The application of photodynamic therapy technology on eliminating 

pathogenic microbials serves as a good example of a successful tactic in killing 

antibiotic-resistant bacteria by using a combination of photosensitizer and low intensity 

visible light [2]. However,side effects such as allergic dermatitis and phorphyria have been 

reported and the carcinogenic potential of certain photosensitizers has been discovered [3, 4].  

 

In recent years, an emerging pathogen elimination method using a visible femtosecond laser 

had been reported to be capable of selectively inactivating a wide spectrum of 

microorganisms, including bacteria, enveloped and nonenveloped viruses on a wavelength 

and pulse width dependent manner [5-13]. Maneuvering of this laser technology has several 

advantages over the other existing pathogen elimination treatments. First, it is 

environmentally friendly, because no introduction of chemical or nanoparticle based-reagents 

is needed. Second, it is a general disinfection strategy for a variety of viral and bacterial 

pathogens since the technology has been demonstrated to be effective on the enveloped and 

non-enveloped, single-stranded, double-stranded DNA or RNA viruses and gram-positive and 

gram-negative bacteria [14]. Third, its antimicrobial efficacy is likely as effective for the 

original strain as for the mutated ones because this laser strategy targets the global mechanical 

(vibrational) properties of microorganisms [14].  

 

Previous study on M13 bacteriophage and murine norovirus, which are non-enveloped viruses, 

showed that the capsid proteins of the viruses were disintegrated by the laser irradiation [6, 

13]. On the other hand, for the enveloped viruses, the experimental results indicated that the 

aggregation of capsid proteins and the subsequent inhibition of capsid function was the cause 

of the inactivation [12]. The fundamental effect a femtosecond laser exerted on these two 

kinds of viruses can both be attributed to the disruption of hydrogen bonds and/or 

hydrophobic interactions through the Impulsive Stimulated Raman Scattering (ISRS) [12, 13].  

 

In nowadays, pathogenic bacteria have raised a public health challenge because of the 

development of antibiotic resistance. Previous research has suggested that the relaxation of 

supercoiled plasmid DNA caused by femtosecond laser treatment can induce genetic damage, 

resulting in the inactivation of Salmonella typhimurium[11]. Nevertheless, the time 

dependency and the inactivation mechanism of bacteria by the femtosecond laser irradiation 

remained unclear. In this study, the cellular surface properties, membrane integrity and 

metabolic rate of Escherichia coli (E.coli) irradiated by a visible femtosecond laser (λ=415nm, 
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pulse width=100fs) with different exposure time were investigated. Our results demonstrated 

that the surface physical properties such as the stiffness (Young’s modulus) and the adhesive 

force ofthe treatedbacteriawere altered whenE. coli exposed to a femtosecond laser for 60 min. 

In addition, cytoplasmic leakage, protein aggregation, and shrinkage of cell volume as well as 

respiratory inhibition were observed with the femtosecond laser treated bacteria as well. 

These results suggest that membrane protein structure alteration due to protein aggregation 

may be the cause of cytoplasmic leakage and cell volume reduction of the laser-treated 

bacteria. In comparison, a 10 min exposure of bacteriatofemtosecond laser irradiation induced 

an immediate reduction of 75% of the glucose-dependent respiratory rate, while the 

cytoplasmic leakage and protein aggregation were not detectable. Further enzymatic activity 

assays showed that the oxidases and dehydrogenases involving in E.coli respiratory chain 

demonstrated divergent susceptibility after a shortfemtosecond laser irradiation. This 

compromised respiratory enzymes functions may play a role in the early stage of bacteria 

inactivation by the visible femtosecond laser. 

 

2. Material and Methods 

 

2.1.  Bacteria Preparation and Membrane Preparation 

The TOP10 E. coli strain (Invitrogen) was utilized in this study. A single bacteria colony 

picked from LB agar plate were incubated in 4ml liquid LB at 37
。
C for 16 hours, then 

subcultured by a 1:50 dilution in fresh LB liquid to mid-log phase and harvested by 

centrifugeat 5000 g for 1 min. Cells were suspended in 1 ml phosphate buffered saline 

(PBS) and loaded into glass vials for the subsequent irradiation. The irradiated bacteria were 

diluted in series, spread on LB agar plates and incubated at 37
。
C for 16 hours. The numbers of 

viable bacteria were counted as the numbers of colonies formed on LB plates. The membrane 

fractions were prepared by sonicating bacterial cells with cell disruptor following the protocol 

used by Lönnerdal B.et al [15]. The protein concentration was determined by Bradford assay 

(Bioshop). 

 

2.2.  Femtosecond laser irradiation 

Optical setup of femtosecond laser system is presented schematically in figure 1. The 

excitation source employed in this work was a diode pumped mode-locked Ti-sapphire laser. 

The laser produced a continuous train of about 70 fs pulses at a repetition rate of 80 MHz. 

The output of the second harmonic generation system at wavelength of 415nm was used to 

irradiate the sample. It has a maximum average power of about 250 mW and a pulse width of 

full-width at half maximum (FWHM) ≅ 100 fs. An achromatic lens was used to focus the 

beam into a glass vial containing bacteria suspension. An estimation of the focused spot size 
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is made by knife edge method. The peak power density is defined as that at the tightest 

focused region formed by the focusing lens. The power densities varies from ≅ 20 MW/cm
2
 to 

≅ 4.3 GW/cm
2
 were achieved by adjusting the average power with a calibrated variable 

attenuator. All the experimental results reported here are obtained at T = 20
◦
C and with single 

beam excitation. 

 

 

Figure 1. Schematics of the femtosecond laser microorganism inactivation system.  The 

arrow denotes the propagation of the laser. 

 

2.3. Spectroscopic quantification of cell leakage and florescence imaging 

Irradiated or control bacteria were precipitated by centrifuge at 5000g for 10 minutes. The 

supernatant was then carefully pipetted out for colorimetric measurement using NanoDrop 

1000 spectrophotometer (Thermo scientific). The bacteria were stained with propridium 

iodide (PI. 710400 KPL) for 5 min and then observed using a florescent microscope after 

several washes. PI is a dye that specifically bound to DNA and excluded from viable bacteria 

thus the excited florescence could be used to quantify the permeability change after laser 

treatment. All the images were collected with Leica DM RE microscope. 
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2.4. Protein extraction and electrophoresis 

Total proteins of bacteria were extracted with B-PER protein extraction reagents (Thermo 

scientific). Protein concentration was determined by Bradford assay. Solutions of laser-treated 

or control bacteria containing equivalent quantities of protein were boiled in reducing loading 

buffer and separated on a 4-20% gradient express PAGE gel (Genscript). Protein bands were 

visualized with Coomassie blue staining (Bioman scientific). 

 

2.5. Poly-l-lysine Mica Preparation and Bacteria Immobilization 

Immobilization of bacteria on poly-l-lysine treated mica is demonstrated to be a reliable 

method for AFM both in air and liquid [16, 17]. We followed the protocol of preparing 

substrate proposed by Bolshakova et al. with slight modifications [16]. To immobilize 

bacteria, 20 μl of bacteriasuspension were placed on mica and incubated for 20 minutes at 

room temperature. The mica carrying immobilized bacteria were immediately placed in a 

liquid cell with 0.5 ml PBS for AFM investigation. 

 

2.6. Atomic Force Microscopy (AFM) 

The AFM analyses discussed in this study were all collected by using Bruker DNP-10 

cantilever, with a nominal spring constant of 0.06 N/m and tip diameter of 2 nm. Young’s 

modulus and adhesive force of the analyzed area were obtained using Bruker Multi-mode 8 

atomic microscope operated in Peak Force QNM mode. The scan rate was 0.5 Hz and the 

maximum applied force was limited to 1 nN. Data processing and the extraction of 

mechanical properties are done with NanoScope Analysis from Bruker. Topographical images 

are presented with contrast adjustment and background removal with the open source 

software Gwyddion[18]. 

 

2.7. Respiration assays 

Respiration rates in cell suspensions were determined at 20
◦
C by measuring oxygen 

consumption rate using a Clark type dissolved oxygen sensor and interface controller 

(CoachLab II+, CMA). Bacteria suspension were irradiated by laser for 10 minutes with a 

range of peak power density, or irradiated with constant power for different exposure time. 

Oxygen consumption rate was recorded as mg·l
-1

·min
-1

 oxygen consumed after the adding of 

glucose in the suspensions. 

 

2.8. Oxidase & Dehydrogenase Assays 

Chemicals such as Decylubiquinone (D7911), Sodium DL-lactate (71720), DL-α-Glycerol 

phosphate magnesium salt hydrate (17766), β-Nicotinamide adenine dinucleotide, reduced 

disodium salt hydrate (N8129), Sodium succinate dibasic hexahydrate (s2378), 
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phenazinemethosulphate (P9625), and 2,6-Dichlorophenolindophenol sodium salt hydrate 

(33125) used in the assays were purchased from Sigma Aldrich. The assays on oxidase and 

dehydrogenase activities were conducted following the procedures used by Lönnerdal B.et al 

[15]. The reduction of the dichlorophenol-indophenol indicator was monitored to determine 

the activities of dehydrogenases, and the oxidases activities were determined by measuring 

the oxygen consumption rate while the different substrates were added. Prepared membrane 

fractions irradiated for 10min were chosen to examine the enzyme activities in respiratory 

chain.  

 

3. Experimental Results 

 

3.1. Inactivation of Escherichia coli by 415nm femtosecond laser 

 

In our study, we tested the effect of femtosecond laser on the viability utilizing a 415 nm, 100 

fs laser source. The load reduction depends on the power density as well as the exposure time 

(Data not shown). We have found that a load reduction as large as 3 in log10 scale of viability 

was observed after 1 hour irradiation.  

 

3.2. Femtosecond laser irradiation alters the surface physical property of bacteria 

 

To investigate the membrane integrity and cell topography after 1 hour laser irradiation, we 

adopted AFM to evaluate the cellular volume, height, rigidity and adhesiveness of the bacteria 

before and after irradiation. As can be seen in figure 2(a), untreated E. coli cells are appeared 

in rod shape. In comparison, the topology of laser irradiated bacteria looked similar to the 

control except that their cell volume and height were significant decreased (figure 2(b) and 

2(c)). Specifically, the volume ofcell shrinks from 1.78±0.85 to 0.79±0.35μm
3
, and the 

average cell height decreases from 516±99 to 394±98 nm. The mechanical properties of 

bacterial surface were probed by AFM tip and the results demonstrated that there are 

considerable differences between the irradiated and control. As can be seen in figure 2(d) and 

2(e), the Young’s modulus of control (1.27±0.46 Mpa) is significantly lower than the Young’s 

modulus of irradiated bacteria (3.00±0.72 Mpa), and the adhesive force of control (0.33±0.13 

nN) is notably higher than the adhesive force of irradiated bacteria (0.20±0.12 nN).  
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Figure 2. Exposure to femtosecond laser caused alteration of cell surface physical 

properties. (A) AFM topography images of control (top) and laser irradiated (bottom) E. coli. 

The summarized topographical properties in (B) cell volume, (C) average cell height and 

mechanical properties, (D) Young’s modulus and (E) adhesive force are presented 

respectively.  

 

3.3. Femtosecond laser irradiation caused leakage of bacterial cellular substances  

 

To investigate the cause of viability reduction after 1 hour laser treatment, we adopted 

florescence imaging and absorption spectroscopy to detect the leakage of cellular substances 

of the laser-irradiated bacteria. The bacteria exposed to 1hr laser irradiation (figure 3(a)-(h)) 

shown a strong florescence from PI intercalating nucleic acids relative to the untreated 

bacteria (figure 3(i)-(p)). The counts of the bacteria with definite and distinguishable 

florescent images in a 2020μm
2
 frame was found dependent to the laser irradiation time 

(figure 3(q)). Number of PI stained bacteria increased from 1.6±1.4 (control) 15.5±2.5 of the 

bacteria exposed to laser for 60min. The optical density of the supernatant of the centrifuged 

bacteria suspension at the wavelength of 260 nm and 280 nm shown in figure 3(r) 

corresponds to the absorption of nucleic acids and proteins, respectively. The power density 

dependent leakage of nucleic acids and proteins is shown in the figure inset, which indicates 

that the laser-induced cellular substance leakage increases as the power density increases. 

These results strongly suggest that the integrity of the cell membranes was compromised after 

1 hour laser treatment.  
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Figure 3. Exposure to femtosecond laser caused E. coli cellular nucleic acid leakage and 

protein aggregation. Represent florescent images of PI stained bacteria exposed to 1hr laser 

irradiation (A-H) and the untreated bacteria (I-P) are shown. (Q) Optical density of the media 

from the irradiated bacteria at 260nm () and 280nm (). The inset is the enlargement of the 

segment of the optical density curve between 0 to 4.3 GW/cm
2
. The counts of the detectable 

bacteria florescence signals are presented in (R). Image from coomassie blue stained 

SDS-PAGE (S) containing total proteins extracted from control (lane 2) or irradiated (lane 3 

and 4) protein sizes are indicated by the size marker (unit in KDa) in Lane 1.  

 

3.4. Femtosecond laser irradiation alters bacterial protein expression profile 

 

To investigate whether 1 hour laser treatment of E. coli changed the total protein expression 

profile, total proteins from control and treated bacteria were separated and visualized using 

SDS-PAGE technique [12]. As indicated in the dotted rectangular box in figure 3(s), while 

majority of the protein bands from the irradiated groups showed reduced intensity, the high 

molecules weight protein aggregations appeared on the top of the electrophoresis wells, and 

the intensity of the aggregated protein band increases as the power density increases. This 

result demonstrated that, similar to the visible femtosecond laser treated virus [12], protein 

aggregation occurred after bacteria were exposed to laser irradiation.  

 

3.5. Short time femtosecond laser exposure affects bacterial respiratory rate 

 

Both previous reports [12] and this study demonstrated that protein aggregation occurs after 

microorganisms were irradiated with femtosecond laser for 1 hr or longer. However, whether 
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shorter femtosecond laser irradiation time affects bacterial normal physiological activities is 

not known. To investigate the effect of shorter laser irradiation on bacteria, we measured the 

oxygen consumption rates for the control and laser-irradiated bacteria because 

glucose-dependent aerobic respiration rate can directly reflect the bacterial physiological 

state.  

 

In figure 4(a), the respiratory rates are plotted as a function of the exposure time of laser 

irradiation at a constant peak power density of 2.8 GW/cm
2
. The respiratory activity descends 

rapidly despite a relatively low laser fluence applied. An over 50% decrease of the respiration 

rate is reached in less than 10 minutes of irradiation. The dependence of respiratory rate to 

peak power density is exhibited in figure 4(b). The respiration is quickly suppressed when 

exposing to laser with peak power larger than 0.2 GW/cm
2
. Therefore, the aerobic respiratory 

rate is immediately affected after a brief femtosecond laser irradiation. In addition, no 

significant change of membrane permeability between bacteria exposed to 10min laser 

irradiation and the control samples (cytoplasmic leakage assay in figure 4(c) and PI 

incorporation assay in figure 4(d)-4(i)). 

 

 

Figure 4. Immediate reduction of cell respiratory rate followed short exposure to 

femtosecond laser. (A-B) The oxygen consumption rate of the control () and the irradiated 
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sample () are plotted as a function of exposure time at a constant peak power density of 2.8 

GW/cm
2
 (in A), or as a function of power density (in B). (C) The absorption spectra at 260nm 

and 280nm (O.D. 260,280) of supernatant from bacteria suspension irradiated by laser for 10 

min. The absorbance in the control and irradiated samples are identical within the error. (D-I) 

Florescent image of PI stained bacteria of the control group (D,E) and the bacteria exposed by 

10 min laser irradiation (F-I). 

 

3.6. Effects of the femtosecond laser on membrane-associated respiratory enzymes  

 

To understand whether quick inactivation of membranes-associated respiratory enzymes 

through laser-induced molecular vibration in E. coli (ISRS effect) [12] accounts for the 

reduction of respiratory rate, the DCPIP (dichlorophenol-indophenol) oxidoreduction reaction 

assays were performed with the membrane fractions extracted from irradiated and control 

bacteria. Utilizing different electron donors to trigger the reduction of DCPIP by each 

corresponding dehydrogenases, our results indicated that the dehydrogenases from the 

irradiated groups (denoted as open legends) could not efficiently reduce the DCPIP as their 

counterparts from the control groups (filled legends) did (figure 5(a)-5(b)). Interestingly, 

while the succinate, DL-lactate, and glycerol-3-phosphate dehydrogenases are 41.3±2.6%, 

42.1±2.6% and 20.1±7.4% reduced respectively, 87.6±3.5% of the NADH dehydrogenase 

activities from the irradiated bacteria remained (figure 5(a)-5(b)). In comparison, the oxygen 

consumption rates from the irradiated groups (denoted as open legends) were greatly 

inactivated comparing to their counterparts from the control groups (filled legends), where 

61.4±8.9% of the succinate; 63.9±5.7% of glycerol-3-phosphate, 61.2±7.1% of the DL-lactate, 

and 46.5±4.8% of the NADH oxidase activities were reduced respectively (figure 5(c)-5(d)). 

In addition, the inactivation of terminal oxidase activity measured using Decylubiquinone 

(reduced DB), a ubiquinone analogue, was 69.5±7.2% to the control (figure 5(c)-5(d)). The 

notable decrease of the terminal oxidase activity indicated a disruption of electron transport 

train at the level of using the reduced equivalents of the quinone.  
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Figure 5. Effect of the femtosecond laser on respiratory enzymes. (A-B) DCPIP reduction 

assays on the membrane-associated respiratory dehydrogenase. Degree of DCPIP reduction is 

reflected by the absorbance at 600nm (O.D.600) and were plotted as the function of time (in A), 

the degree of dehydrogenase activity reduction is calculated (in B). (C-D) The dissolved 

oxygen concentrations were measured and presented as a function of time (in C); and the 

degree of oxidase activity reduction is calculated (in D). The untreated groups were denoted 

as filled symbols and the laser irradiated groups were denoted as open ones in (A) and (C).  

(E) A pictorial model of the interaction between femtosecond laser and E. coli. The upper 

arrow denotes the time scale of the interaction and lower square specifies the activated events 

in the bacterial inactivation. 

 

 

4. Discussion 

 

In this report, we demonstrated that irradiation for 1 hour with a femtosecond laser having a 

wavelength centered at 415 nm, pulse width of 100 fs and the power density equal to 
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3.1GW/cm
2
 can efficiently inhibit bacteria growth. Utilizing AFM to evaluate the physical 

property of irradiated bacteria, we found that their cellular volume, height, rigidity (stiffness) 

as well as the adhesiveness were altered (figure 2(b)-2(e)). Utilizing permeability assay and 

absorption spectroscopy to detect the nucleic acid and protein amount in the media, we found 

that the membrane permeability of irradiated bacteria is altered (Figure 3(a)-(r)).  

 

In the AFM examination, the decrease of cell volume after femtosecond laser irradiation is 

significant. However, we did not detect the appearance of large amount of DNA and proteins 

in the supernatant of the irradiated bacteria, indicating that the materials leaking out could 

primarily be water and cellular ions. One feature worth notice is that the amount of the 

leaking substances is relatively low when comparing to the totally lysed bacteria. This 

observation indicates that the membranes can still restrain most of the large biomolecules 

after 1 hour laser treatment when the power density is below 4.3 GW/cm
2
. However, cellular 

ion balance is essential for maintaining proper cellular functions, such as the control of turgor 

pressure and solute transport. Therefore, the increased permeability could become a 

detrimental effect to the normal metabolism of irradiated bacteria. Another observation from 

AFM examination is that although there is no observable defect or indentation on the 

membrane surface (figure 2(a)), the increase of surface stiffness (Young’s modulus) suggested 

that an alteration of membrane structure was induced by the laser irradiation, because change 

of Young’s modulus reflects the conformational change of the extracellular layer and the 

dimensional change of periplasmic space that are sensitive to the internal structural details of 

cellular materials [19]. Furthermore, because prior reports indicated that the decrease of the 

adhesion force on both Gram-negative and positive bacteria cell surfaces after antibacterial 

photodynamic therapy or environmental pH alteration reflects the destruction of envelope 

polymers and the exposure of proteins inside the envelope [19, 20], the decrease of 

adhesiveness of the laser irradiated E. coli in our study thus further suggested that laser 

irradiation induced structural alteration of the bacteria membrane. Consistent with this notion, 

the results from the permeability assay indeed indicated that the integrity of the cell 

membranes was compromised after 1 hour laser irradiation.  

 

In our case of femtosecond laser irradiated bacteria, the alteration of membrane structural 

integrity could be related to the aggregation of membrane proteins. Utilizing gel 

electrophoresis (SDS-PAGE) to separate and visualize the total protein expression of 

irradiated bacteria, we found that similar to the femtosecond laser treated virus [12], the high 

molecules weight protein aggregations appeared indeed, and the intensity of the aggregated 

protein band increases as the laser power density increases (figure 3(s)). Because the 415nm 

femtosecond laser adopted in this study lacks enough photon energy to excite the covalent 

bond formation in bacterial proteins [12], the disruption of weak bonds and the 
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partial-unfolding of proteins by the ISRS-mediated coherent molecular vibrations are the 

possible causes of the protein aggregation observed in this study. In addition, because the 

permeability and the cell surface physical properties are maintained and regulated by the 

structural and chemical composition of cell membranes, the alteration of membrane structure 

caused by protein aggregation might be the cause for the releasing of the cellular substances.  

 

The test of glucose-dependent respiration is often adopted as an assay to examine the damage 

of membrane structure, which eventually leads to cytoplasmic leakage and a lethal effect to 

bacteria [21-23]. In this study, we tested whether a shorter irradiation could affect the 

glucose-dependent respiratory rate. The results showed that the inhibition of respiration, the 

decrease of oxygen consumption, is triggered when exposing bacteria suspension to the power 

density greater than 0.2 GW/cm
2
. The respiratory rates remained on 25% to the control 

regardless the further increasing of power density or exposure time (figure 4(a), 4(b)). 

Because the laser-induced genetic damages would require a longer period of time to become 

effective [11], this early commencement of respiratory inhibition after a shorter exposure time 

might be caused by the inactivation of respiratory enzymes through laser-induced molecular 

vibration that blocked the energy uptake process and interrupt metabolism in E. coli. 

Consistently with this notion, the membrane-associated dehydrogenases and oxidases showed 

various degrees of inhibition (figure 5(a)-5(d)). Nevertheless, in the assay of dehydrogenases, 

the NADH dehydrogenase activity showed only 12.4% inactivation by the laser irradiation. 

On the other side, the NADH oxidase inactivation abruptly increased to 46.5%. The 

significant difference between the extents of inactivation might be explained by the selective 

inactivation of the quinone reduction subunit in the NADH dehydrogenase [15]. It suggests 

that the laser irradiation could cause local alteration on the enzyme complex. Also, the effect 

femtosecond laser deposited to the enzyme might be dependent to the species of enzymes and 

the subunit composition. 

 

5. Conclusions 

 

In this study, we have demonstrated that the femtosecond laser irradiation-induced E. coli 

inactivation is a combined effect of an early respiratory rate reduction and the later cell 

permeability, membrane structure and genetic damages resulted from the laser 

irradiation-induced protein inhibition via ISRS process. A schematic drawing describes the 

relationship between irradiation time and bacteria state is presented in figure 5(e). The 

proposed scenario is that a brief femtosecond laser irradiation directly inhibits the enzyme 

functions in the aerobic respiratory chain and causes an immediate oxygen consumption 

reduction within the irradiated bacteria. This compromised respiratory function may play a 

role in the early stage of bacteriainactivation by the femtosecond laser treatment. The effect is 
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not only immediate but also can be activated with a very low laser power. As the exposure 

time increases, the other detrimental factors such as genetic damages and the alteration of 

membrane surface properties will contribute to the inactivation and induce a high reduction of 

viability. The future research focusing on how a brief femtosecond laser irradiation 

immediately affects the cellular respiratory system shall reveal the structure of proteins in the 

enzyme complex that are highly sensitive to the ISRS-mediated coherent molecular vibrations. 

The identification of the specific enzyme targets in respiratory chain of the femtosecond laser 

irradiation may contribute to the development of a new strategy to the pathogen elimination 

technology. 
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