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This work suggested an effective approach to fabricating the reduced graphene oxide based carbon 

(RGO/C) composite films. Carbonization of graphene oxide reinforced polyimide (GO/PI) composite 

films were investigated by the thermogravimetric analysis (TGA) and differential scanning calorimetry 

(DSC). Crystalline structures and carbonized mechanism of the RGO/C composite films were 

investigated in detail by an X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). 10 

Furthermore, the carbonization yields were improved due to catalytic effects of RGO. These RGO/C 

composite films exhibited the obvious structural orientations by SEM investigation of their cross sections. 

1. Introduction 

Graphene and graphene oxide (GO) based composites were 

considered as the most promising materials due to their extensive 15 

and potential applications, i. e. electric devices [1], catalysis[2], 

solar cells [3] and even aerospace elevator [4]. Recently, many 

researchers have made several rapid progresses toward preparing 

the GO or RGO based composites and developing their 

outstanding properties, including epoxy (EP) [5], phenol 20 

formaldehyde (PF) [6], polyimide (PI) [7], polyvinylidene 

fluoride (PVDF) [8], polyaniline (PANI) [9] and silicon (SI) 

resins [10].  

As we known, the PI films [11~13] were considered to be 

suitable as the high-effective precursors of carbonized films, 25 

owing to their thermal conductivity, tensile modulus and strength, 

optical and electrical properties [14]. Therefore, as significant 

electrical materials [15] and electrodes [16], the RGO/C 

composites prepared by carbonization of GO/PI composites could 

provide the higher critical electron-delivery efficiency and 30 

structural strengths than traditional carbon materials. However, to 

fabricate the high-performance RGO/C composite films, a serious 

challenge was the terrible compatibility between GO sheets and 

PI film [17]. The influence of RGO sheets on carbonization of 

GO/PI composite films was also another challenge in this area.  35 

In this work, we developed a facile ultra-sonicate method [18] to 

prepare the steady GO suspensions. The GO/PI composites films 

with different GO contents were obtained by an in situ 

polycondensation from 3,3',4,4'-benzophenonetetracarboxylic 

dianhydride (BTDA) and 4,4'-diamino-diphenyl ether (ODA). 40 

Subsequently, RGO/C composite films were fabricated by 

carbonization of GO/PI composite films at 400, 600, 800 and 

1000oC, respectively. The carbonization yields are calculated by 

the mass changes. The structures and fracture toughness of these 

films also are investigated by XRD patterns, FTIR spectra and 45 

SEM micrographs. 

2. Experimental 

2.1 Materials 

All agents were analytical reagent (AR) grade and used as 

received without further purification. Natural graphite was 50 

purchased from Qingdao graphite materials Co. Ltd. N, N-

dimethylacetamide (DMAC) and ethylenediamine (EDA) were 

purchased from Tianjin Chemical Reagent Co. Ltd. BTDA and 

ODA (>99.9%) were obtained from China Sinopharm Chemical 

Reagent.  55 

2.2 Preparation of GO/PI composites films 

Graphite oxide was synthesized by modified Hummers method 

from natural graphite [19]. The steady GO suspension in DMAC 

at a concentration of 2 mg/mL was prepared under the sonication 

for 60 min and modified by EDA. The calculated DMAC 60 

solvents and GO suspensions, i. e. GO ratios of 0.25wt%, 

0.5wt%, 1.0wt% and 2.0wt%, were added to a clean three-neck 

flask. Subsequently, 0.01mol of ODA was putted into the flask 

and dissolved in the mixture solvent. After stirring for 30min, 

0.0102mol of BTDA was added into this flask in batches. 65 

Uniformly stirring for 5h, GO and polyamic acid (GO/PAA) 

solutions were synthesized. The GO/PI composite films were 

prepared under the curing conditions of 60oC for 3h, 100oC for 

1h, 200oC for 1h and 300oC for 2h in a curing oven. 

2.3 Preparation of RGO/C composite films 70 

Before the carbonization of GO/PI composite films, post-

treatment at the temperature of 400oC for 1h was made to remove 

small molecules in these films. The above GO/PI composite films 

were firstly cut into square of 20mm×20mm and stacked together 

and putted into the middle of two quartz plates. Carbonization of 75 

the GO/PI composite films was took place in the constant 

temperature area of a vacuum tube furnace (OFX-1500X) at a 

heating rate at 2oC/min, under a nitrogen (N2) flowing rate of 

10L/min and at 400, 600, 800 and 1000oC for 2h, respectively.  
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Fig. 1 Schematic illustrations of preparation of (a) GO/PI composite films and (b) RGO/C composite films.

 5 

The RGO/C composite films were obtained after these two 

processes and their mass changes were recorded in the same time. 

Fig. 1 showed schematic illustration of the prepared process and 

carbonized process of GO/PI composite films. 

2.4 Characterizations 10 

Carbonization processes of polyimide and GO/PI composites 

films were analyzed according to the changes of mass loss and 

thermal flow by a TGA analysis and DSC (STA 449C, Netzsch 

Co.) experiment, under the N2 atmosphere at a heating rate of 

10oC/min from room temperature to 1500oC [20]. Crystalline 15 

grains and structures of these films were investigated by a XRD 

technique (Dmax-rB 12kW, Rigaku Co., Ltd.) with Cu Kα 

radiation (λ = 1.5406Å) and Raman spectroscopy (HR 800, 

Olympus Co.). The chemical compositions and molecular 

structure of the GO/PI and RGO/C composites films were 20 

characterized by a Fourier transform infrared spectroscopy (FT-

IR, Avatar-360, Nicolet Co.). The cross sectional morphologies 

and fracture toughness of the carbonized films were investigated 

by a SEM technique (Quanta 200FEG, FEI Co.). 

3 Results and Discussion 25 

To analyze the carbonization process, Fig. 2 displayed the TGA 

curves of GO/PI films in N2 atmosphere. The pyrolysis of GO 

sheets was divided into two steps, as our previous report [21]. 

The first step was under the temperature of 200oC, assigned to the 

decomposition of oxygen functional groups, i.e. -C=O, -OH and 30 

epoxy group. The GO sheets could transform to the RGO sheets. 

The second step was ranged from 500oC to 750oC, which is 

related to the structural reorganization and densification.  

   
Fig. 2 TGA curves of the GO, pure PI and GO/PI composite films 35 

with different GO contents. 

Pure PI film contained a large amount of benzene and imide 

groups in their main chains, which provided its higher pyrolysis 

temperature, exceed 550oC. The thermal stabilities of GO/PI 

composite films were enhanced with the increase of GO loadings 40 

below 0.5wt%, because the good interfaces between GO (or RGO) 

sheets and PI molecules improved their compatibility and leaded 

to the increase of cohesive energy [22]. However, with the GO 

contents exceeding 1.0wt%, the pyrolysis rate of GO/PI 

composite films would be accelerated. Because the GO sheets 45 

have lower thermal stability than PI matrix. Herein, the 

carbonization yield had a slight reduction, due to the pyrolysis of 

GO (or RGO) sheets. 

Combining with DSC curves in Fig. 3, it obviously demonstrated 

that these PI and GO/PI composite films were two endothermic 50 

peaks: the pyrolysis temperature between 400oC and 600oC, 

corresponding to the degeneration of micro-molecules in branch 
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chains, and the carbonized temperature between 800 and 1300oC, 

corresponding to reorganization and carbonization of the main 

chains in polyimide molecules [23]. In particular, for GO/PI 

composite films with 0.5wt% GO contents, the pyrolysis 

temperature was at 678.8oC (Td10), higher than the others. The 5 

prime reason was the GO sheets could bring to more aromatic 

units and prevent release of as-produced small molecules [24]. 

For pure PI film, the carbonized temperature was at 1250oC. In 

this process, for GO/PI composite films with 0.5wt% GO 

contents, its carbonized temperature was reduced to 884.0oC, 10 

lower than the others, owing to the presence of GO (or RGO) 

sheets. However, exceeding 0.5wt%, GO (or RGO)  sheets would 

hinder the carbonized progress of GO/PI composite films, 

because of the decreasing of GO sheets dispersed in PI films [25]. 

Therefore, the GO (or RGO) sheets would accelerate carbonized 15 

process of GO/PI composite films and improve the efficiency and 

atom economy. 

 

  
Fig. 3 DSC curves of the pure PI and GO/PI composite films with 20 

different GO contents. 

To describe the structural evolutions, Fig. 4 showed the FTIR 

spectra of the GO/PI composite films carbonized at different 

temperatures. Fig. 4a obviously demonstrated that the structures 

of PI and GO/PI composite films have no significant changes 25 

annealed at 400oC. However, with the increasing of the GO 

contents, the absorption peak at 1630cm-1, attributed to C=C 

bonds in aromatic groups, had be divided to two small peaks, 

highlighted by bi-arrows. This change was associated with the 

strong interfacial interactions between RGO sheets and aromatic 30 

groups in main chains of PI molecules [26]. In this case, it 

indicated that the reorganization of RGO sheets and PI molecules 

was happened and intensified with the increasing of GO contents. 

As shown in Fig. 4b, the chemical compositions of the carbonized 

films were quickly changed. For GO/PI composite films of 5wt% 35 

GO content, the absorption peak strength at 1720cm-1, assigned to 

C=O bond, was enhanced, compared with other GO/PI composite 

films. These characteristics were agreement with the thermal 

stabilities of GO/PI composite films in TGA and DSC curves. 

Furthermore, as shown in Fig. 4c and Fig. 4d, the absorption peak 40 

at 1570cm-1, assigned to aromatic groups, became the main 

presence of these composite films, where carbonized 

temperatures reached up to 800 and 1000oC. It indicated that the 

RGO/C composite films were successfully obtained at 1000oC for 

2h. 45 

  

 
Fig. 4 FTIR spectra of RGO/C composite films carbonized at 400, 

600, 800 and 1000oC for 2h. 

 Fig. 5 showed the related curves of average carbonization yields 50 

with the changes of the temperature and GO contents. Although 

RGO sheets were unstable exceed 800oC, the carbonization yield 

at 1000oC also reaches up to 58.5% for the GO/PI composite 

films with a 0.5wt% GO content. In this process, carbonized 

process was accelerated by catalytic effects of the RGO sheets. 55 

However, two main factors could enlarge their carbonization 

yield. One factor was that RGO sheets play a similar background 

role on the carbonization, due to their honeycomb-like stacked 

structures [27]. Moreover, due to accelerating the pyrolysis rate, 

the small molecules were easily released as a saturated state, such 60 

as hydrogen (H2) and N2. Here, the outstanding atomic economy 

was exhibited in carbonized process of GO/PI composite films. 

XRD patterns were measured to investigate the crystalline 

structures of RGO/C composite films, as shown in Fig. 6. All the 

patterns at 400oC presented an obvious diffraction peak of 2θ 65 

located at 19.1o, assigned to the structural orientation of PI 

molecules [28]. The crystalline spacing (d-spacing) of (002) 

could be calculated by Bragg’s equation:  

2 sinn d                                      (1) 

Where d is the crystalline spacing of samples; n=1 is an integer of 70 

first order reflection; λ=1.5406nm is the X-ray wavelength of Cu 

kλ radiation; θ is the Bragg angle. 

  
Fig. 5 Carbonization yields of pure PI and GO/PI composite films 
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carbonized at 600, 800 and 1000oC for 2h.  

The intensities of RGO/PI composite films (in Fig. 6a) were 

gradually enhanced with the increase of GO contents and the 

corresponding d-spacing was increasing from 4.766 Å to 4.736 Å. 

 5 

During the carbonization at 600oC, the diffraction peak shifted to 

about 2θ=21o, corresponding to the above amorphous structures 

carbonized at 400oC. With the increasing of GO content, an 

obvious 2θ peak at 11.6o appeared, assigned to the (002) feature 

peak of the thermal reduced GO sheets. Carbonized at 800 and 10 

1000oC, the (002) feature peak of RGO sheets were presented in 

XRD patterns of RGO/C composite films, as shown in Fig. 6c 

and Fig. 6d. The (002) peak of the carbonized films of pure PI 

films became narrower and sharper. It indicated that their 

structures were near to that of graphite at 2θ=26.1o [29]. 15 

Meanwhile, the d-spacings calculated from (002) peaks of 

RGO/C composite films were 3.639, 3.735, and 3.867Å, for GO 

contents of 0.5wt%, 1wt% and 2wt%, respectively. Therefore, the 

catalytic effects of RGO sheets could improve the crystalline 

structure of RGO/C composite films. The fracture toughness also 20 

would be promoted due to the presence of RGO sheets. 

 

 
Fig. 6 XRD patterns of RGO/C composite films carbonized at (a) 

400, (b) 600, (c) 800 and (d) 1000oC for 2h. 25 

Carbon materials exhibited a high Raman active, which could 

characterize the different bonding states and the different 

crystalline forms [30]. Fig. 7 showed the Raman spectra of 

different carbonized films (RGO/C composite) at 600, 800 and 

1000oC for 2h. All the carbonized film presented two intensive 30 

scatting peaks, which are assigned to D band at 1360cm-1 

(assigned to the unordered defects) and G band at 1580 cm-1 

(assigned to ordered honeycomb structures). And the presences of 

the second scatting peaks at 2750 and 3100cm-1 indicated that 

these carbonized films were amorphous glassy-carbon structures. 35 

Especially, D’’ peak at 3100cm-1 indicated that the defects were 

presented in the crystalline edges [31].  

The crystalline size (La) can be calculated as follows: 

 44a D GL I I                                         (2) 

Where La is calculated crystalline size along a-axis direction, 40 

ID/IG is the intensity ratio of D band and G band [32]. 

 

 
Fig. 7 Raman spectra of RGO/C composite films carbonized at 

different temperature: (a) pure PI film at 600oC, (b) pure PI film 45 

at 800oC, (c) 0.5wt % GO/PI composite film at 800oC, (d) 2wt% 

GO/PI composite film at 800oC, (e) pure PI film at 1000oC, (f) 

0.5wt% GO/PI composite film at 1000oC and (g) 2wt% GO/PI 

composite film at 1000oC for 2h. 

Table 1 showed the calculated results of scattering peak, intensity 50 

ratios and crystalline sizes (La) according to Raman spectra. 

Obviously, the crystalline sizes in the direction of La were 

gradually reduced with the increasing of carbonized temperature. 

However, the crystalline size obviously became larger with the 

increasing of GO contents. It indicated that RGO sheets might 55 

improve the orientation along the direction plane. For 2wt% GO 

content, the calculated value of La reaches would reach to 23.53 

nm. The pryolysis of polyimide was took place in a closed inert 

atmosphere, thus the release of smaller molecules would break 

out and reduce the "carbonized phase" [33]. However, added the 60 

two-dimensional (2-D) GO (or RGO) sheets, this broken process 

would be hindered structure stability would be improved. 

 The cross-sectional morphologies of the carbon materials were 

widely evaluated the fracture toughness. Fig. 8 displayed the 

SEM micrographs of cross sections of the RGO/C composite 65 

films carbonized at 1000oC. The fracture mode of pure carbon 

film was brittle fracture in the Fig. 8a, owing to presence of the 

smooth fracture surface of glassy carbon. With the increasing of 

GO contents, the fracture modes of RGO/C composite films had 

gradually transformed to the dimple rupture processes, as shown 70 

in Fig. 8b, 8c, 8d and 8e. The RGO sheets and carbonized district 

were well combined and homogeneously distributed. Foremost, 

the obvious transversal cracks were presented in RGO/C 

composite films of 2.0wt% GO content, as shown in Fig. 8f, 

which might cause the transgranular cleavage [34]. It was an 75 

important evidence of dimple rupture cracks around the RGO 

sheets, signed by the red arrows. Therefore, it was believed that 

the RGO sheets obviously enhanced the fracture toughness of the 

RGO/C composite films. 

 80 
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Table 1 Calculated results of Raman scattering peaks and crystalline sizes for carbonized films at different temperature. (a) pure PI film 

at 600oC, (b) pure PI film (c) 0.5wt %  and (d) 2wt% GO/PI composite film at 800oC, (e) pure PI film, (f) 0.5wt% GO/PI composite film 

and (g) 2wt% GO/PI composite film at 1000oC for 2h. 

Sample 
Raman shift/cm-1 

ID/IG La/nm 

D band FWHM G-band FWHM 

(a) 1355 97 1593 67 1.37 32.12 

(b) 1350 89 1582 63 1.75 25.14 

(c) 1350 93 1589 67 1.67 26.35 

(d) 1358 96 1586 48 1.60 27.50 

(e) 1365 87 1588 64 1.87 23.53 

(f) 1361 86 1583 59 1.70 25.88 

(g) 1363 93 1585 62 1.65 26.67 

 

 5 

 

Fig. 8 SEM micrographs of cross sections of (a) carbon films, RGO/C composite films carbonized at 1000oC for 2h with (b) 0.25wt%, (c) 

0.5wt%, (d) 1.0wt% and (e) 2.0wt% GO contents, (f) the enlargement of the green district highlighted in (e). 

4. Conclusions 10 

In summary, we reported an effective approach to fabricate the 

RGO/C composite films. The results of thermal analysis 

demonstrated that the RGO sheets could accelerate the 

carbonized reaction rate during the carbonization of GO/PI 

composite films and improve the carbonization yields. 15 

Meanwhile, the structural orientations of RGO/C composite films 

were also improved. The crystalline sizes were grown with the 

increasing of GO contents. The excellent fracture toughnesses 

were displayed in these RGO/C composite films. It would be 

valuable to enlarge the applications of carbon based composite 20 

films. 
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