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Theoretical modeling is presented for a freestanding vitreous silica bilayer which has recently been synthesized
and characterized experimentally in landmark work. While such two-dimensional continuous random covalent
networks should likely occur on energetic grounds, no synthetic pathway had been discovered previously. Here
the bilayer is modeled using a computer assembly procedure initiated from a single layer of a model of amorphous
graphene, generated using a bond-switching algorithm from an initially crystalline graphene structure. Each bond
is decorated with an oxygen atom and the carbon atoms are relabeled as silicon, generating a two-dimensional
network of corner-sharing triangles. Each triangle is transformed into a tetrahedron, by raising the silicon atom
above each triangular base and adding an additional singly coordinated oxygen atom at the apex. The final step in
this construction is to mirror-reflect this layer to form a second layer and attach the two layers to form the bilayer.
We show that this vitreous silica bilayer has the additional macroscopic degrees of freedom to form easily a
network of identical corner-sharing tetrahedra if there is a symmetry plane through the center of the bilayer going
through the layer of oxygen ions that join the upper and lower monolayers. This has the consequence that the upper
rings lie exactly above the lower rings, which are tilted in general. The assumption of a network of perfect corner-
sharing tetrahedra leads to a range of possible densities that we characterize as a flexibility window, with some
similarity to flexibility windows in three dimensional zeolites. Finally, using a realistic potential, we have relaxed
the bilayer to determine the density and other structural characteristics such as the Si-Si pair distribution functions
and the Si-O-Si bond angle distribution, which are compared with experimental results obtained by direct imaging.
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I. INTRODUCTION

The continuous random network model of network glasses
is widely accepted as a model for materials such as vitreous
silica and amorphous silicon.1 Although it has been more
than eighty years since Zachariasen proposed this model of
glasses2 and experimental evidence has been compelling over
the years, especially through diffraction experiments,1 it has
never been quite conclusive since the probability distribution
of rings of various sizes has been elusive to determine explicitly
experimentally. This situation has now changed dramatically
with the discovery and imaging3,4 of two-dimensional bilayers
of vitreous silica. Here, not only the distribution of rings but
the actual detailed atomic ring structure has been imaged for
the first time in real space, removing all speculation from this
subject (at least for this class of materials). These are the
first examples of which we are aware of real-space imaging
of a random network and as such represent tours de force.
Previously only small defect patches have been imaged, as for
example for graphene as reported by Geim.5

In this paper, we provide an atomic level computer
model for a vitreous silica bilayer and demonstrate some

intriguing and unexpected features that are shown to agree
with experiment. There is a symmetry plane through the center
of the bilayer where all the oxygen atoms that connect the
tetrahedra in the lower and upper planes of the bilayer lie.
Each tetrahedron comprises an SiO4 unit and the whole bilayer
is a perfect corner-sharing continuous random network with
the same chemical formula SiO2 as 3d bulk vitreous silica.
Each monolayer is amorphous with rings from 4 up to about
9 in size, consistent of course with Euler’s theorem that the
average ring size is 6. Because of the amorphous nature of
the monolayer and the need for oxygen bridges connecting the
upper and lower layers, it is necessary for the two layers to
have the same ring structure and be topologically identical to
form a complete corner-sharing tetrahedral network. The result
that the two layers are also geometrical mirror images of each
other is quite surprising at first sight in a system that is a priori
without any symmetry, but comes about from understanding
the nature of the constraints within the network as explained
later. This is consistent with our detailed atomic modeling and
also is in accord with the experimental results3,4 which show
that the upper and lower layers do lie one on top of the other
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FIG. 1. (Color online) Ring size distributions (fraction of rings
containing n silicon atoms) obtained experimentally for vitreous SiO2

bilayers formed on Ru(0001) (Ref. 3; red dashed line) and graphene
(Ref. 4; black dashed line). Also shown are ring size distributions
of computer-generated a-G seeds used in this study (with different
generating protocols but labeled by sample size N ).

as required by a symmetry plane. We note that this does not
imply that there is a threefold axis between the two upper and
lower tetrahedral units (tetrahedral pair) through the common
central oxygen atom; rather this Si-O-Si angle through the
central oxygen has a distribution of values throughout the
sample, as do all the other Si-O-Si angles in the bilayer.

Thin vitreous SiO2 films have been grown on Mo(112),6

Ru(0001),3,7,8 and graphene,4 the last two examples interpreted
as bilayers. Figure 1 shows the experimentally obtained ring
statistics from Refs. 3 and 4. A key observation is that the
ring statistics obtained from the two experimental samples are
not the same, although this is not surprising in view of their
different preparation conditions, analogous to various fictive
temperatures used to characterize the preparation conditions
for bulk silica.9 Different Monte Carlo annealing temperatures
and/or protocols used computationally to create vitreous silica
bilayers also lead to different ring statistics, similarly to those
documented previously in amorphous cellular networks10 and
in amorphous graphene.11

What is unclear is the extent to which these differences
in ring statistics reflect the finite system sizes under study
or the more complex and more interesting dependence of the
structure on the precise preparation conditions (including the
nature of the substrate). The ring statistics are a fundamental
quantity and their dependence on sample size imaged and
on preparation conditions will be an important area for
future study, especially experimentally. The simplest nontrivial
(second cumulant) measure of the ring statistics μ2 should be
related to the static structure factor S(0), as in bulk vitreous
silica.9

Recent simulation work, in which amorphous graphene
(a-G) configurations were generated using both bond-
switching Monte Carlo and molecular dynamics methods,
highlights how networks constructed primarily from 5-, 6-,
and 7-membered rings may adopt a range of structures.11 A
useful simple metric for distinguishing between the different

samples is the second moment of the ring size distribution,

μ2 = (〈n2〉 − 〈n〉2), (1)

where 〈n〉 is the mean ring size for an ideal two-dimensional
network constructed from purely three-coordinated sites
(〈n〉 = 6 from Euler’s theorem). This metric conveniently
captures the major changes in ring statistics from sample
to sample in a single number. The values of μ2 for the
experimental data presented in Fig. 1 are 0.904 and 0.886
(from Refs. 3 and 4, respectively).

II. FLEXIBILITY WINDOW

A key concept that will emerge is that there is a flexibility
window involving O(N ) motions among the rigid corner-
sharing tetrahedra. This flexibility window designates a range
of densities over which a framework of rigid tetrahedra, freely
jointed at all corners with a given topology, can exist. The
low-density end of the window is defined by the maximum
extension the framework can sustain without breaking apart,
and the high density end of the window is determined by
oxygen-oxygen overlap between adjacent tetrahedra. We will
see that when additional terms are included in the potential,
particularly the Coulomb terms, a particular density is selected
from within the flexibility window. Similar ideas have been
explored extensively in zeolites12 where the origin of the
window is also due to symmetry. However, in bulk zeolites
the symmetry is associated with the rotations and translations
of the unit crystallographic cell, whereas here the symmetry is
due to a reflection symmetry, that is maintained between two
monolayers that comprise the bilayer. We will return to a full
analysis of this latter point in a later section.

III. CONSTRUCTION METHOD

The initial SiO2 bilayer configurations are generated from
ideal a-G coordinates (Fig. 2), which were themselves gen-
erated using a “bond-switching” Monte Carlo algorithm (as
described, for example, in Ref. 11; see also Ref. 10). The a-G
configurations generated in this manner are guaranteed to be
constructed exclusively from three-coordinated carbon local
environments. This method is superior to others in the sense
that it produces no coordination defects or dangling bonds,
and is periodic with a supercell whose size can be chosen
and varied. Seed a-G configurations were constructed with a
range of different ring statistics and hence μ2 values. Several
different network sizes were employed. For convenience we
shall refer to these systems below by their sizes, N = 120, 200,
400, 432 [two configurations, distinguished as (a) and (b)],
834, 836, and 1792 atoms. The two configurations containing
432 carbon atoms are generated with different ring statistics to
give some extra perspective on the effect of the ring distribution
on physical properties. Table I lists the values of μ2 for these
a-G configurations, while Fig. 1 shows the detailed ring size
distributions for these computer-generated structures.

The method for generating the bilayers is motivated by the
observation that the two layers sit on top of each other. As a
result, each layer can be generated from the a-G configuration
and joined with oxide anion bridges. To generate the initial
SiO2 bilayer configurations, each carbon atom is transformed
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FIG. 2. (Color online) The freestanding vitreous silica bilayer
is modeled by first creating an amorphous graphene layer from a
crystalline graphene sheet through a bond-switching algorithm (top
panel), where the carbon atoms are shown as solid black dots. An
oxygen ion is then placed at the center of each carbon-carbon bond,
forming a network of corner-sharing triangles (second panel), and the
carbon is replaced by a silicon ion. The silicon atom is then lifted
out of the plane and an oxygen ion (shown as a solid red dot) is
placed above this silicon to form a tetrahedron. This silica monolayer
is mirror inverted and placed directly above the first monolayer (third
panel) shown in plan view. Finally these two monolayers are brought
together to form the silicon bilayer (fourth panel) in which the central
oxygen ions are combined to make single bridging oxygen ions
between the two monolayers.

into a silicon atom (which will eventually become the center
of each SiO4 tetrahedron). Oxygen atoms are then placed
at the center of each C-C bond to produce a single-layer
configuration of stoichiometry Si2O3 confined to (say) the xy

plane, which can be viewed as a two-dimensional network of
corner-sharing equilateral triangles. Each triangle has oxygen
atoms at the vertices and a silicon (transformed from carbon)
atom at the center. Additional oxygen atoms are then placed
perpendicular to the xy plane (which initially contained all
of the atoms) at the center of each triangle and raised above
to form a tetrahedron, with the silicon atom raised out of the
plane to be at the center of the tetrahedron. This generates
an Si2O5 network formed from tetrahedra, each sharing three
corners with a fourth corner unshared (for the moment) and

TABLE I. Variances μ2 in the second moment of the ring size
distribution for the eight configurations studied here, labeled by the
number N of atoms in the original graphene layers, or equivalently
the number of Si atoms in a monolayer. The resulting bilayer therefore
has 2N SiO2 units. Also shown are the two experimentally observed
configurations.

N μ2

120 0.467
200 0.500
400 0.480
432a 1.046
432b 0.935
834 0.618
836 0.856
1792 1.014
Expt.3 0.904
Expt.4 0.886

with all unshared corners pointing up. The second layer of
the bilayer is created by producing a mirror image of the
first layer (such that the tetrahedra are now pointing in the
down direction) and offsetting the layer along the z direction,
to lie above the first bilayer; see Fig. 3. Finally, the median
oxygen atoms are coalesced between the two layers giving
the required SiO2 bilayer stoichiometry. The system supercell
lengths are then rescaled so as to generate the required Si-O
bond lengths. As a result, the systems considered contain 2N

[=240, 400, 800, 864(a), 864(b), 1668, 1672, and 3584] SiO2

molecules.
These structures are relaxed using standard molecular

dynamics (MD) procedures with appropriate model inter-ion
potentials. Two forms of potential model are considered. The
first, which we will refer to as the harmonic potential, is
designed to produce a corner-sharing network of identical
regular tetrahedra, with freedom of the individual tetrahedra
to move and tilt with respect to each other while maintaining
the topology. This allows for hinging freedom of the joined
tetrahedral corners, and does not impose reflection symmetry.
A convenient way to accomplish this is to use harmonic springs
to join the four nearest-neighbor Si-O and six nearest-neighbor
O-O atoms in individual tetrahedron. Computationally the
ratios of the O-O and Si-O equilibrium bond lengths of the
potentials are chosen so as to produce ideal tetrahedra in
isolation; thus the equilibrium separation for the neighboring
oxygens along the edge of the tetrahedron in the O-O potential
is taken to be

√
8/3 � 1.633 times that for the Si-O nearest-

neighbor separation. For computational convenience the spring
force constants are taken to be equal for both the Si-O and O-O
pairs within each tetrahedron. The detail of this interaction is
only significant in the sense of allowing for a relatively rapid
energy minimization.

These simple harmonic potentials do not however preclude
different tetrahedra from overlapping, as would be the case
in reality, for example to prevent oxygen overlap, and as
limits the motions in zeolites.12 In order to prevent this in a
computationally convenient manner, the harmonic potential
is augmented with a purely repulsive potential which acts
between pairs of silicon atoms effectively acting as an
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FIG. 3. (Color online) Showing the structure of the bilayer
made of perfect corner-sharing tetrahedra from various perspectives,
relaxed with the harmonic potential and with a dimensionless area
of A∗ = 0.9. This puts the structure into an arbitrary place in the
flexibility window at some density (not restricted to the experimental
density). This illustration is a piece from a bilayer with a periodic
supercell with 864 silicon atoms. Notice that the central oxygen atoms
all lie in the symmetry plane. Each tetrahedron has four oxygen ions
shown as small red spheres at the vertices and a silicon ion at the
center.

inter-tetrahedron repulsive term. The physically more realistic
imposition of a short-range repulsion between oxygen atoms
requires greater computational accounting. The chosen form
is a shifted 24-12 potential,

U (r) = 4ε

{(
σ

r

)24

−
(

σ

r

)12}
+ ε, (2)

where σ is the atom diameter and ε is the well depth of the
(unshifted) potential. The potential is cut off at the minimum
[rmin = (2)1/12σ ] while ensuring continuity in both energy and
force. The parameter ε is fixed while σ can be varied to explore
the extent of the flexibility window. In the second form a more
realistic potential model (a TS potential)13 is used in which
pairwise-additive potential energy terms (including ion-based
charge-charge electrostatic interactions) are augmented with
a description of (many-body) polarization effects.13–15 This
potential is more realistic than the harmonic potentials plus
repulsions, mainly because Coulomb terms are included which
are known to be important in ionic materials,12 and we use it

for a further optimization of the bilayer structure. Nevertheless
the harmonic potential plus repulsions is useful as the language
of flexibility windows and constraints and the symmetry plane
can be used, as is discussed in the next section.

We believe the choice of potential model is not crucial in
displaying potentially interesting phenomenology in systems
of this type. The harmonic potential is chosen as (arguably) the
simplest model which constrains the system to form a series
of ideal linked tetrahedral units. The TS potential is chosen
as a potential which accounts well for a number of key (bulk)
properties whilst retaining a relatively simple functional form.

Anion polarization, which controls the Si-O-Si bond angles
in models of this type, may be crucial in defining the
structures adopted both for silica and (potentially) other
chemically-related systems. While the structures formed are
low dimensional, the atoms retain their full (bulk) coordination
so it is reasonable (at least in the first approximation) to
apply potentials derived by reference to bulk three-dimensional
properties. These will most probably need further refinement
as more precise experimental results on the vitreous silica
bilayers become available.

We are very concerned with variation of the number density
(number of SiO2 molecules per unit area) or, equivalently, the
area occupied by a single molecule. The number density n0 is
expressed in terms of SiO2 units per unit area projected onto
the central plane of the bilayer, while the area A is expressed
by reference to an ideal value A0 which is the area occupied by
a crystalline sample, based on crystalline graphene, in which
all the tetrahedral pairs are aligned vertically with a threefold
axis about the central oxygen ion, and which would be obtained
from bilayers constructed from an ideal crystalline graphene
sheet containing only six-membered rings.

Energy minimizations are performed over a range of dimen-
sionless reduced areas A∗ = A/A0; 0.4 � A∗ � 1.4. Note that
A∗ = 1 is the maximum possible area which can be attained
without strain (i.e., distortion within the individual tetrahedra).
At each density, the system’s energy is minimized using a
steepest descent method. The atom positions are allowed to
evolve, controlled by standard Newtonian mechanics, and the
velocities are reset to zero (quenching the kinetic energy) when
the kinetic energy reaches a (local) maximum. In order to allow
explicitly breaking of the initial imposed reflection symmetry
between the bilayers, several simulations are performed with
randomized starting locations.

IV. RESULTS

In Fig. 4, we show comprehensive results for the harmonic
and the TS potential. These results are given for two different
samples (derived from the 200 and 432a atom a-G samples, so
containing a total of 1200 and 2592 atoms, respectively) in the
two panels to give some perspective on the universality of the
results. These two configurations are chosen as examples of
systems with relatively high and low ring distribution variances
(Table I). The results for the harmonic potential that describes
the corner-sharing network of rigid tetrahedra are shown by
the red, blue, and green lines and show a distinct flat region for
both samples that is the manifestation of the flexibility window.
These three curves are generated by different values of σ , with
the smaller values of σ leading to larger flexibility windows.
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FIG. 4. (Color online) The energies of the relaxed configurations
shown as a function of the density (upper abscissa) and the reduced
area, A∗ = A/A0 (lower abscissa), obtained for the 400 (upper panel)
and 864 (lower panel) SiO2 molecule system, using both harmonic
and TS potentials. The distances indicated are for the parameter σ

in the box in the upper panel. The minima for the TS potentials for
the 400 and 864 molecule configurations are at densities of ∼18.4
SiO2 nm−2 and ∼20.0 SiO2 nm−2, respectively. The yellow lines
and arrows in both panels highlight the density range observed from
experiment (Ref. 16).

The flexibility window exists over a similar range of densities
for both samples. It should be noted that the high-density limit
of the flexibility window is defined by repulsive potentials
between the Si ions in this model, rather than the more physical
repulsion between the larger O ions that is expected physically.
However, repulsion between the Si ions is expected to closely
approximate the O-O repulsion, as the tetrahedra are all rigid.
The low-density limit, defined as the lowest the density can
be without breaking the network of corner-sharing tetrahedra,
is where almost all zeolites are found experimentally. This is
because when a more realistic potential than the harmonic
potential is used, Coulomb inflation maximizes the pore
volume, and hence the sample volume.12 The high-density
limit in zeolites is determined by that density at which

interpenetration of the oxygen atomic spheres would onset.
A similar situation is found here for vitreous silica bilayers,
with a well-defined flexibility window. This is in contrast to the
case of three-dimensional vitreous silica (no pores) where the
flexibility window collapses to a single point (single density)
even with only the linked-tetrahedral constraints.12

Figure 4 also shows the energies obtained by minimizing
the energy of the 400 and 864 SiO2 molecular bilayers using
the TS potential. The energies resulting from the use of
this potential function show sharp minima (when plotted on
a logarithmic scale used here). These potentials produce a
unique conformational minimum just below the high area
limit of the flexibility window (obtained with the harmonic
potential).

Figure 4 also shows the energies plotted against density;
the harmonic potential results are scaled by the Si-O bond
length (1.6 Å). Also shown is the density range obtained
from experiment.16 For both configurations, studied with
all potentials, the harmonic potentials predict structures of
slightly higher density than those observed preliminarily
experimentally.

On the other hand, for both these configurations the energy
minima for the TS potential do lie within the currently observed
experimental density range (n0 = 18.4 and 20.0 SiO2/nm2

for the 400 and 864 molecule configurations, respectively).
The higher densities possible using the harmonic potential
compared to the TS are to be expected due to the lack of
electrostatic interactions which act to push the silicon cations
apart. It is significant to note that the two configurations studied
in depth produce energy minima with the TS at different
densities, implying the optimal density to be a function of the
atomistic detail (ring structure) of the bilayer configuration.

Figure 5 shows the Si-Si radial distribution functions
(RDFs) obtained for both the harmonic and TS potentials for
both the 400 and 864 molecule configurations. The RDFs are
calculated by projecting the Si-Si separations onto the xy plane
(and hence mimicking the experimental procedure). Energy
minimization using the TS potential produces structures with
order beyond the nearest-neighbor length scale of the same
form as that generated by the harmonic potential. The first
peak (corresponding to the nearest-neighbor Si-Si length scale)
appears considerably sharper for the TS potential, reflecting
the ordering imposed by the presence of the electrostatic
interactions. The reduced intensities in the 864 molecule
system compared with the 400 molecule one reflects the higher
degree of disorder in the former (as characterized by their
respective values of μ2).

Figure 5 also shows the experimentally determined func-
tions (from Ref. 16) obtained for both a crystalline and an
amorphous section of bilayer. The analysis of the experimental
data remains very preliminary, and a much better determination
of the density will be possible once larger areas of the samples
are imaged. For the moment the fairly wide estimates of
the experimental density16 are shown by the yellow lines in
Fig. 4. These wide estimates are obtained from the relatively
small field of view of the vitreous silica bilayers currently
available, and we await larger fields of view from which a
more accurate density can be obtained. Note this density is
obtained directly from the atomic imaging.16 The density is
a very important parameter to know, both in regards to the

214108-5



WILSON, KUMAR, SHERRINGTON, AND THORPE PHYSICAL REVIEW B 87, 214108 (2013)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Pair separation, r [nm]

0

5

10

g(
r)

TS

a-G

Harm.

expt.

FIG. 5. (Color online) Radial distribution functions g(r) calcu-
lated for the silicon sub-network using the Si-Si separations projected
onto the xy plane. The RDFs are calculated for the 400 and 864
SiO2 molecule systems (respectively μ2 = 0.500 and 1.046) using
the harmonic (black lines) and TS potential (blue lines). Successive
functions are offset along the ordinate axes for clarity. In each case the
lower curve is for the 400 molecule configuration and the upper for
the 864 molecule case. The original carbon RDF determined from the
a-G sample is also shown (red). This function has been scaled along
the abscissa in terms of the first peak positions for comparison. The
harmonic potential functions are obtained at a density of A∗ = 0.81
(at which the energy can be quenched) while the TS functions are
obtained at the respective energy minima. The uppermost curves are
the amorphous (magenta) and crystalline (cyan) functions obtained
from experiment (Ref. 16).

flexibility window and for detailed validation of the potentials
used here. It is quite possible that the potentials we have used
will have to be fine-tuned later to reflect the experimental
density but for the present we are concentrating principally
on the conceptual physics. The preliminary experimental
RDF shown in Fig. 5 is broadly consistent with all the
model structures in this paper, and data from much larger
experimental areas should discriminate between the nuances
of various computer-generated structures.

Figure 6(a) shows the Si-O-Si bond angle distributions
(BADs) determined for the harmonic potential (at A∗ = 0.81
for which the energy could be driven to zero), and at the
energy minimum determined from the TS potential for the 400
molecule system. The Si-O-Si BAD determined with the TS
potential is significantly narrower than that determined from
the harmonic potential, reflecting the higher degree of ordering
imposed by the presence of the electrostatic interactions. The
harmonic distribution shows a major peak at θ ∼ 125◦ of width
�θ ∼ 25◦ while the TS shows a peak position (width) of θ ∼
132◦ (�θ ∼ 15◦). Note that the removal of anion polarization
terms from the TS potential (to generate a rigid-ion model)
results in a peak position (width) of θ ∼ 150◦ (�θ ∼ 10◦).
The change in the peak position in the bond angle distribution
is consistent with the inclusion of anion polarization which
acts to effectively screen the Si-Si (repulsive) electrostatic
interactions and hence stabilizes more acute Si-O-Si bond
angles. The distribution appears very different from that
obtained for the bulk glass using the TS potential17 (also shown
in Fig. 6) which shows a broader distribution (�θ ∼ 50◦) with

0 50 100 150
Bond angle, θ [ο]

0 50 100 150
Bond angle, θ[o]

Si-Si-SiSi-O-Si
(b)(a)

180 180

FIG. 6. (Color online) (a) Si-O-Si bond angle distributions deter-
mined at a density of A∗ = 0.90 for the harmonic potential (black)
and at the densities corresponding to the respective energy minima for
the TS (blue) for the 400 molecule system. The light blue plot shows
the corresponding function for the bulk glass at ambient pressure
using the TS potential (Ref. 17). (b) Si-Si-Si bond angle distributions
obtained under the same conditions as for panel (a). For reference
the additional red line shows the C-C-C distribution from the original
two-dimensional a-G configuration.

a peak at θ ∼ 150◦ consistent with experiment.18 Note that
in an unrelaxed crystalline bilayer, based on a crystalline
graphene seed with a median symmetry plane, the Si-O-Si
bond angle is cos−1(−7/9) � 142◦ within a monolayer and
180◦ between monolayers. It is interesting to note that 142◦ is
very close to the chemically preferred Si-O-Si bond angle
in the absence of any topological strains due to rings.19

The component at lower angles in the middle blue panel in
Fig. 6(a) is associated with in-plane angles and the other peak
with angles involving both planes. In the other two panels in
Fig. 6(a), there is only a single very broad peak.

The difference between the bilayer and bulk BADs can
be rationalized as follows. The mirror symmetry relationship
between the top and bottom layers of the bilayer means that
ions of the same charge sit on top of one another perpendicular
to the plane containing the bilayer. As a result, the (repulsive)
like-like electrostatic interactions are effectively maximized,
leading to relatively obtuse Si-O-Si bond angles centered about
the oxygen ions which bridge the two layers, and resulting in
the peak at ∼175◦. A simple geometric argument indicates that
the presence of these relatively obtuse angles has a knock-on
effect for the Si-O-Si angles centered about the oxygen ions
which are in one of the bilayer planes, which will be relatively
acute. This is an area that needs more study as there will
always be a competition between the preferred Si-O-Si angles
from chemistry and the requirements of the network topology.
This effect will influence whether similar vitreous bilayers
can be made from germanium and also whether aluminum
ions can be alloyed with silicon ions in these vitreous silica
bilayers.

Figure 6(b) shows the Si-Si-Si bond angle distributions
obtained using the harmonic and the TS potential at the same
densities as in Fig. 6(a). The results are compared to the C-C-C
BAD generated from the original a-G configuration. Recall
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TABLE II. Variances in the position of the oxygen atoms
perpendicular to the bilayer plane, �z, for the 400 and 864 SiO2

molecule configurations determined using both the harmonic and TS
potentials at the reduced areas indicated. The oxygen atoms sit in three
layers: upper, lower, and central. The small variances for the atoms in
the central plane (of the order of the numerical error associated with
the calculation), coupled with the identical variances of the atoms
above and below this plane, are indicative of the existence of a mirror
plane containing the central oxygen atoms.

�z/Å

2N Potential A∗ Upper Lower Center

400 harm. 0.81 0.124 0.124 3.9×10−14

harm. 1.00 0.087 0.087 2.8×10−14

864 harm. 0.81 0.184 0.184 4.0×10−14

harm. 1.00 0.137 0.137 3.9×10−14

400 TS 0.92 0.151 0.151 7.2×10−14

864 TS 0.85 0.274 0.274 9.0×10−14

that for crystalline graphene the bond angle is θ ∼ 120◦.
The bilayer BADs show a sharp peak at θ ∼ 90◦ which
corresponds to Si-Si-Si triplets in which the Si atoms are split
between the two layers comprising the bilayer, while the higher
broader peak corresponds to in-plane Si. The harmonic and TS
potentials show similar distributions which are significantly
broader than the a-G distribution.

To quantify the presence of a mirror plane after relaxation,
which does not impose any symmetry, we determine the
variance of the oxygen atom positions (�z) perpendicular to
the bilayer plane. The oxygen atoms can be considered as
sitting in three distinctive quasi-planes corresponding to the
central layer (which joins the two original monolayers) and
the two layers above and below this central layer. Table II
lists the variances for the 400 and 864 SiO2 molecule systems
obtained using the harmonic potential (at two densities) and
the TS (in the respective energy minima densities). The central
atoms are clearly confined to a single plane while the atoms
in the upper and lower layers show identical variances. The
existence of the mirror plane is confirmed by determining the
variance in the positions of the mirrored atoms in the upper
and lower planes which is ∼0 to within the numerical precision
used. In principle the mirror symmetry can be broken once the
potential contains Coulomb terms, etc., as the argument given
in the section “Symmetry Plane” based on constraints does not
hold with more complex forces. However in practice it seems
these deviations are very small, although in principle present.
We also note that this symmetry in the �z perpendicular to
the bilayer plane holds not only at the macroscopic (average)
level, but also at the local level between corresponding atoms
above and below the central symmetry plane.

The most important results of this section, and the paper,
are summarized in Fig. 7, where the flexibility windows and
corresponding energy minima for the two amorphous and one
crystalline sample are shown. It should be noted that the TS
minimum lies within the flexibility window, as expected. In
addition it lies towards the high area end of the window,
reminiscent of the relationship observed in 3d zeolites.9 The
argument given for the zeolites was that Coulomb inflation in
the pores between the negative oxide ions caused the sample

FIG. 7. (Color online) The low-density end of the flexibility
window (for the harmonic potential case) for the two amorphous
(green and red; sample sizes as indicated) and one crystalline (black)
sample, shown as lines ending in a + symbol. Note that the high
density end of the window for harmonic potentials is to the left and
determined by repulsive forces between neighboring ions. The figure
also shows the corresponding energy minima from the TS potential
(×) colored as for the corresponding flexibility windows. The blue
line highlights the experimental density range.

to swell to be very close to the maximum allowed while
remaining inside the flexibility window. Such an argument
cannot be given here, as there are no large pores as in zeolites,
but we propose that Coulomb inflation, between the oxide ions,
may still be the explanation within the rings of the bilayer. The
silicon ions are less important as they are smaller. However
we do not find this argument entirely convincing, and more
work on understanding the subtleties of the effects of Coulomb
interactions in ionic framework structures is needed.

V. SYMMETRY PLANE

The existence of a symmetry plane in an amorphous sample
is surprising and quite unlike anything that we have encoun-
tered before. This symmetry emerges from the disordered state
as the network takes advantage of the larger conformational
space available when a symmetry plane is present compared
to without. Hence symmetry is induced in a system which
at first sight seems a canonical example of a system without
symmetry. The argument for it is compelling as outlined here,
and confirmed both by detailed atomic computer modeling
and by experiment. Of course the individual tetrahedral units
are close to perfect tetrahedra because of the strong local
chemical bonding, but these pack in a disordered way. The
local symmetry of perfect tetrahedra is not necessary for the
argument for the symmetry plane to hold. Residual degrees
of freedom in a structural unit are often referred to as floppy
modes.20

Consider two tetrahedral units (which we will call a
tetrahedral pair) with a common oxygen atom, that is, Si2O7,
as shown in Fig. 8. There are N such units made from
the 2N units of SiO2 in the bilayer structure. A rigid body
has 6 degrees of freedom in three dimensions, and for any
two vertices of adjacent tetrahedra to coincide requires 3
constraints (x1 = x2, y1 = y2, and z1 = z2, where 1 and 2 refer
to the two tetrahedral vertices that come together). We now
give counting arguments20 for the case without symmetry and
then with symmetry between the bilayers from a (proposed)
reflection plane in the middle of the two layers.
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FIG. 8. (Color online) Showing a tetrahedral pair, one from the
upper layer and one from the lower layer. Each tetrahedron has four
oxygen ions shown as small red spheres at the vertices and a silicon
ion (not shown) at the center. Note that the Si-O-Si link between the
two tetrahedra is, in general, not straight.

(1) Without symmetry. Consider the two separate tetrahedra
in the tetrahedral pair shown in Fig. 8, each with the usual
6 degrees of freedom for a rigid body in three dimensions.
That makes 12 degrees of freedom in total. Joining the
common oxygen atom requires 3 constraints (to make the
tetrahedral pair) and the 6 remaining oxygen ions each
require 3 constraints, which are shared so that there are
12 − 3 − (6 × 3)/2 = 0 floppy modes, which is the expected
result that the system is isostatic;12 that is, the structure just has
enough constraints to be rigid and cannot be moved (subject
to the usual remarks about boundary conditions, etc.).21 This
result is expected as the bilayer is just a special case of
a network of corner-sharing tetrahedral units which are all
isostatic.12 This can be seen easily as each individual isolated
tetrahedron has 6 degrees of freedom, and four shared corners
each with 3 constraints; hence the number of floppy modes
per tetrahedron is 6 − (4 × 3)/2 = 0 and we have an isostatic
network, that is, no floppy modes.

(2) With symmetry. First define an external plane and
position it at z = 0. Then move a single tetrahedron so one
vertex lies in this plane but is free to move in the x-y plane.
This tetrahedron initially has 6 degrees of freedom, and
putting an atom somewhere in the external plane requires a
single constraint. The 3 other oxygen atoms require (3 × 3)/2
constraints to link the corners; the second tetrahedron in
the tetrahedral pair is fixed by the reflection symmetry and
therefore has neither independent degrees of freedom nor
independent constraints associated with it. Thus there are
6 − 1 − (3 × 3)/2 = 1/2 remaining degrees of freedom for
each tetrahedral pair and hence a total of N/2 degrees of
freedom for the whole bilayer.

The important observation here is that with corner-sharing
tetrahedra, there are a macroscopic number of degrees of
freedom if there is a reflection plane. This allows the
bilayer structure to roam over a region of conformational
space while maintaining all the constraints. This leads to
a flexibility window analogous to that found previously in
zeolites.12 As discussed later, we find that with a more realistic
potential the bilayer settles within the flexibility window at a
preferred density. This is a pretty remarkable and unexpected
result.

The above arguments can be streamlined and made very
compact. Looking at the lower monolayer, disconnected from
the upper monolayer, then if there is a reflection plane only
a single constraint is required at each oxygen that is not
shared with another tetrahedron in order to bring it to the
reflection plane, whereas three shared constraints would be
required to bring it into coincidence with a similar oxygen
in an otherwise unconstrained second monolayer. Adding the
mirror monolayer adds no extra degrees of freedom. Therefore
a reflection plane leads to a macroscopic number of floppy
modes (3/2 − 1)N = N/2.

Yet another distinct demonstration of this result can be given
as follows. Start with planar collection of N corner-sharing
triangles. There are 3N degrees of freedom and 3 × 2N/2 con-
straints giving no remaining degrees of freedom. That is, such
a network (example is a kagome lattice) is isostatic and only
flexible if there is a surface and hence O(

√
N ) floppy modes.

Now consider a 3d flexible monolayer framework of tetrahedra
connected with the same 2d topology of corner-sharing trian-
gles (each tetrahedron has three connected corners); then there
are 6N degrees of freedom and 3 × 3N/2 constraints giving a
macroscopic number of degrees of freedom 3N/2. If further,
the remaining vertex of each tetrahedron is positioned in a
plane, so fixing one of its Cartesian coordinates, then the total
number of degrees of freedom per tetrahedron is N/2. Adding
the reflected monolayer to the original monolayer gives 2N

SiO2 units with N/2 degrees of freedom for the bilayer, as
before.

Note that these arguments apply to tetrahedra of arbitrary
shape and size, so if there are some Al ions within tetrahedra in
the lower layer at some composition, they should be mirrored
in the upper layer based on the arguments in this section,
although Coulomb repulsions between them would discourage
this. Aluminum and silicon tetrahedra are both nearly perfect
but have different sizes12 and so attempting to construct such
bilayers would be something interesting to try experimentally.
The situation is very different in conventional zeolites, where
Loewenstein’s empirical rule22 for aluminosilicates states
that (in essence) every Al-containing tetrahedra must be
connected to four neighboring silicon-containing tetrahedra. It
is possible, therefore, that Loewenstein’s rule could sometimes
be violated in bilayer structures.

VI. CONCLUSIONS

We have shown how the recently discovered vitreous silica
bilayer can be computer-modeled by progressive assembly,
starting from an amorphous graphene sheet, and making
various decorations and then relaxation with appropriate
potentials. This pathway is of course not physical, but
represents a convenient way of computer-generating such
structures.

This system is probably the first network glass where the
ring structure can be experimentally observed directly by STM
and STEM measurements with atomic resolution, making it a
paradigm system for future study. This present study provides
a complementary computer-theoretical study that we hope will
encourage further experimental and theoretical work.

An interesting observation is the unexpected mirror sym-
metry plane through the center of the bilayer, which seems to
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defy the logic which says that such bilayers should pucker.
The fact that the top monolayer lies exactly on top of the
lower monolayer means that a single layer is seen in the
experimental STEM image, making structural interpretations
much easier, and confirming the symmetry argument given
here. This is a very unusual situation of a symmetry induced
in a disordered system. However it should be noted that
such a reflection symmetry is also expected in crystalline
silica bilayers, where it is less surprising. Although additional
terms in the potential, such as the Coulomb terms, may result
in this symmetry being broken, this is not observed in the
experiments, or in the computer simulations, at the current
level of accuracy. It should be noted that amorphous graphene

shows no such symmetry and is expected to show considerable
puckering, unless constrained from doing so by a sufficient
applied tension.11
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