Supplementary Material

 Table S1. Oligonucleotide primers designed for and used in the present study.

Primers (5' to 3')	
F_ARO10KanMX	TTATTTACAAGATAACAAAGAAACTCCCTTAAGCATGGCCGTACGCTGCAGGTCGAC
R_ARO10KanMX	TGGTAGCAGTGTTTTATAATTGCGCCCACAAGTTTCTATATCGATGAATTCGAGCTCG
F_ARO4_BamHI	ATAGGATCCATATTGACACTCTTTCATTGGGC
R_ARO4_EcoRI	ATTGAATTCCTATTTCTTGTTAACTTCTCTTCTTTGTCT
F_ARO4_OLE	TTCATGGGTGTTACTTTGCATGGTGTTGCTGCTATCACCACTA
R_ARO4_OLE	AGCAGCAACACCATGCAAAGTAACACCCATGAAATGGTGAGAA
F_PAL2_attB1	GGGGACAAGTTTGTACAAAAAAGCAGGCTAAAAAATGTCTCAAATCGAAGCAATGTTG
R_PAL2_attB2	GGGGACCACTTTGTACAAGAAAGCTGGGTTTAGCAAATCGGAATCGGAGCT
F_ARO1_qPCR	GCTACAGTTTCTTCAGTACG
R_ARO1_qPCR	CGACGTACAATTTAGAGATTGG
F_ARO2_qPCR	CCTCACGACTACTCCGACAT
R_ARO2_qPCR	CGTTTCTCTAGCAGAAGCTCT
F_ARO3_qPCR	GCTGGAAAGGGTTGATTAAC
R_ARO3_qPCR	CCAACATCTCACCAGCAAT
F_ARO4_qPCR	CGAATCTCAACTGCACAGA
R_ARO4_qPCR	GCTTGACAAGCATCCACAG
F_ARO7_qPCR	GGTTCTGTTGCCACTAGAGAT
R_ARO7_qPCR	GCTTTGTGTATAGCGGGATAT
F_ARO8_qPCR	CGACTTCCTAATTGTGGAAGAT
R_ARO8_qPCR	GCTTTGGAGAACTTTGTGC
F_ARO9_qPCR	GCTACAGGAGCAAAAGTCATC
R_ARO9_qPCR	CCAGTTGACCAATTATCGAG
F_PHA2_qPCR	GGATTGTTCTTCCACATCTG
R_PHA2_qPCR	GCTGTTTCACTAGCAATGG
F_26S_qPCR	CCTATGATTTGAGTATCTCAGC
R_26S_qPCR	CGTAATTGGAATCGTTGACTAT

	C	•	•	1 • 1	C 1	1 1 • .1	1
Table NZ.	Nea	uencing	primers	destoned	tor and	l used in the	e present study
	204	aonomy	princip	aconginea	101 und	abea m m	probent brady.

F1_ARO3_seq	ATGTTCATTAAAAACGATCACG
F2_ARO3_seq	GCACAGAGAATTAGCATCCG
F3_ARO3_seq	GCTGTAGAACCTGTTGTCACTT
R1_ARO3_seq	CGTTCTTAAATCCAATAGGGAA
R2_ARO3_seq	TTTTTTCAAGGCCTTTCTTCTG
R3_ARO3_seq	CCTTTGATTCTCCAGTCTTCC
F1_ARO4_seq	ATGAGTGAATCTCCAATGTTCG
F2_ARO4_seq	GCCAGAACCACCGAATCTCAAC
R1_ARO4_seq	GGCCAATTCTCTGTGCAGTT
R2_ARO4_seq	TTTCTTGTTAACTTCTCTTCTTTGT
F1_ARO7_seq	ATGGATTTCACAAAACCAGAAA
F2_ARO7_seq	CATTAATTTCGAAAAGAGATGGT
R1_ARO7_seq	CCGAAGTTATTCTTATCATCACC
R2_ARO7_seq	CTCTTCCAACCTTCTTAGCAAG
F1_GCN4_seq	ATGTCCGAATATCAGCCAAGT
F2_GCN4_seq	GCAATTGAATCCACTGAAGAAG
R1_GCN4_seq	CCAGATTGGATGGTACCAGA
R2_GCN4_seq	GCGTTCGCCAACTAATTTCT
F1_PHA2_seq	CGTACTACATCATCTGCGACA
R1_PHA2_seq	GCAGCTGTTTCACTAGCAAT
F2_PHA2_seq	GCAGGTCACCTTTATAAGATTG
R2_PHA2_seq	GCCAGGTTTAAGCATATAAAAGTG

Regulator	Association Type (if known)	Description	Reference
ACE2	Negative	Transcription factor required for septum destruction after cytokinesis; phosphorylation by Cbk1p blocks nuclear exit during M/G1 transition, causing localization to daughter cell nuclei, and also increases Ace2p activity; phosphorylation by Cdc28p and Pho85p prevents nuclear import during cell cycle phases other than cytokinesis; part of RAM network that regulates cellular polarity and morphogenesis; ACE2 has a paralog, SWI5, that arose from the whole genome duplication	[1]
BAS1		Myb-related transcription factor; involved in regulating basal and induced expression of genes of the purine and histidine biosynthesis pathways; also involved in regulation of meiotic recombination at specific genes	[2]
GCN4	Positive	bZIP transcriptional activator of amino acid biosynthetic genes; activator responds to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels	[3] [4] [5]
LEU3	Negative	Zinc-knuckle transcription factor, repressor and activator; regulates genes involved in branched chain amino acid biosynthesis and ammonia assimilation; acts as a repressor in leucine-replete conditions and as an activator in the presence of alpha-isopropylmalate, an intermediate in leucine biosynthesis that accumulates during leucine starvation	[6] [2]
RAD3		5' to 3' DNA helicase; involved in nucleotide excision repair and transcription; subunit of RNA polII initiation factor TFIIH and of Nucleotide Excision Repair Factor 3 (NEF3); homolog of human XPD protein; mutant has aneuploidy tolerance; protein abundance increases in response to DNA replication stress	[2]
SOK2	Positive	Nuclear protein that negatively regulates pseudohyphal differentiation; plays a regulatory role in the cyclic AMP (cAMP)-dependent protein kinase (PKA) signal transduction pathway; relocalizes to the cytosol in response to hypoxia; SOK2 has a paralog, PHD1, that arose from the whole genome duplication	[7] [8]
SSL1		Subunit of the core form of RNA polymerase transcription factor TFIIH; has both protein kinase and DNA-dependent ATPase/helicase activities; essential for transcription and nucleotide excision repair; interacts with Tfb4p	[2]
SWI3		Subunit of the SWI/SNF chromatin remodeling complex; SWI/SNF regulates transcription by remodeling chromosomes; contains SANT domain that is required for SWI/SNF assembly; is essential for displacement of histone H2A-H2B dimers during ATP-dependent remodeling; required for transcription of many genes, including ADH1, ADH2, GAL1, HO, INO1 and SUC2; relocates to the cytosol under hypoxic conditions	[2]
TAF1		TFIID subunit, involved in RNA pol II transcription initiation; possesses in vitro histone acetyltransferase activity but its role in vivo appears to be minor; involved in promoter binding and G1/S progression; relocalizes to the cytosol in response to hypoxia	[2]
VPS72		Htz1p-binding component of the SWR1 complex; exchanges histone variant H2AZ (Htz1p) for chromatin-bound histone H2A; may function as a lock that prevents removal of H2AZ from nucleosomes; required for vacuolar protein sorting	[2]
YRM1	Not applicable	Zinc finger transcription factor involved in multidrug resistance; Zn(2)- Cys(6) zinc finger transcription factor; activates genes involved in multidrug resistance; paralog of Yrr1p, acting on an overlapping set of target genes	[9]

Table S3. Common known regulators of ARO1, ARO2, ARO3, and ARO8 expression.

References

- 1. Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR: Daughter-specific transcription factors regulate cell size control in budding yeast. *PLoS Biol* 2009, 7:e1000221.
- Venters BJ, Wachi S, Mavrich TN, Andersen BE, Jena P, Sinnamon AJ, Jain P, Rolleri NS, Jiang C, Hemeryck-Walsh C, Pugh BF: A comprehensive genomic binding map of gene and chromatin regulatory proteins in *Saccharomyces*. *Mol Cell* 2011, 41:480-492.
- 3. Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G: Linking highresolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. *Proc Natl Acad Sci U S A* 2009, 106:6477-6482.
- Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ: Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. *Mol Cell Biol* 2001, 21:4347-4368.
- 5. Uluisik I, Kaya A, Unlu ES, Avsar K, Karakaya HC, Yalcin T, Koc A: Genomewide identification of genes that play a role in boron stress response in yeast. *Genomics* 2011, **97**:106-111.
- Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT: Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 2005, 71:3276-3284.
- 7. Rossouw D, Jacobson D, Bauer FF: **Transcriptional regulation and the diversification of metabolism in wine yeast strains.** *Genetics* 2012, **190:**251-261.
- 8. Vachova L, Devaux F, Kucerova H, Ricicova M, Jacq C, Palkova Z: Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. *J Biol Chem* 2004, 279:37973-37981.
- 9. Lucau-Danila A, Delaveau T, Lelandais G, Devaux F, Jacq C: Competitive promoter occupancy by two yeast paralogous transcription factors controlling the multidrug resistance phenomenon. J Biol Chem 2003, 278:52641-52650.