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The debate about representation in the brain and the nature of the cognitive system has
been going on for decades now. This paper examines the neurophysiological evidence,
primarily from single cell recordings, to get a better perspective on both the issues. After
an initial review of some basic concepts, the paper reviews the data from single cell
recordings – in cortical columns and of category-selective and multisensory neurons. In
neuroscience, columns in the neocortex (cortical columns) are understood to be a basic
functional/computational unit. The paper reviews the fundamental discoveries about the
columnar organization and finds that it reveals a massively parallel search mechanism.
This columnar organization could be the most extensive neurophysiological evidence
for the widespread use of localist representation in the brain. The paper also reviews
studies of category-selective cells. The evidence for category-selective cells reveals
that localist representation is also used to encode complex abstract concepts at the
highest levels of processing in the brain. A third major issue is the nature of the cognitive
system in the brain and whether there is a form that is purely abstract and encoded by
single cells. To provide evidence for a single-cell based purely abstract cognitive system,
the paper reviews some of the findings related to multisensory cells. It appears that
there is widespread usage of multisensory cells in the brain in the same areas where
sensory processing takes place. Plus there is evidence for abstract modality invariant
cells at higher levels of cortical processing. Overall, that reveals the existence of a purely
abstract cognitive system in the brain. The paper also argues that since there is no
evidence for dense distributed representation and since sparse representation is actually
used to encode memories, there is actually no evidence for distributed representation in
the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel,
distributed computing system that is symbolic. The paper also explains how grounded
cognition and other theories of the brain are fully compatible with localist representation
and a purely abstract cognitive system.

Keywords: localist representation, distributed representation, amodal representation, abstract cognitive system,
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INTRODUCTION

We have argued for decades about how features of the outside
world (both abstract and concrete) are encoded and represented
in the brain (Newell and Simon, 1976; Newell, 1980; Smith, 1982;
Hinton et al., 1986; Earle, 1987; Smolensky, 1987, 1988; Fodor
and Pylyshyn, 1988; Rumelhart and Todd, 1993). In the 70s and
80s, however, when the various theories were proposed and most
of the fundamental arguments took place, study of the biological
brain was still in its infancy. We, therefore, didn’t have much
neuroscience data to properly evaluate the competing theories.
Thus, the arguments were mainly theoretical. Fortunately, that
situation has changed in recent years with a significant amount
of research in neurophysiology. We are, therefore, in a better
position now to evaluate the competing theories based on real
data about the brain.

Freeman and Skarda (1990) have argued that the brain
does not need to encode or represent features of the outside
world in any explicit way. Representation, however, is a
useful abstraction for computer and cognitive sciences and for
many other fields and neurophysiology continues to search
for correlations between neural activity and features of the
external world (Logothetis et al., 1995; Chao and Martin, 2000;
Pouget et al., 2000; Freedman et al., 2001; Wang et al., 2004;
Quiroga et al., 2005; Samejima et al., 2005; Averbeck et al.,
2006; Martin, 2007; Patterson et al., 2007; Kriegeskorte et al.,
2008). In fact, the two Nobel prizes in physiology for ground-
breaking discoveries about the brain have been about encoding
and representation: (1) Hubel and Wiesel’s discovery of a
variety of fundamental visual processing cells in the primary
visual cortex, such as line, edge, color and motion detector
cells (Hubel and Wiesel, 1959, 1962, 1968, 1977), and (2) the
discovery of place cells by O’keefe and grid cells by Mosers
(O’Keefe and Dostrovsky, 1971; O’keefe and Nadel, 1978; Moser
et al., 2008). Thus, in this paper, I focus primarily on the
two main competing theories of representation – localist vs.
distributed.

The cortical column – a cluster of neurons that have similar
response properties and which are located physically together
in a columnar form across layers of the cortex – is now
widely accepted in neuroscience as the fundamental processing
unit of the neocortex (Mountcastle, 1997; Horton and Adams,
2005; DeFelipe, 2012). There are some very interesting findings
from studies of the cortical columns and it makes sense to
understand the nature and operation of cortical columns from
a representational and computational point of view. So that is a
major focus of this paper.

Encoding of complex abstract concepts is the second major
focus of this paper. Distributed representation theorists have
always questioned whether the brain is capable of abstracting
complex concepts and encoding them in single cells (neurons)
or in a collection of cells dedicated to that concept. There was an
article in MedicalExpress (Zyga, 2012) on localist representation
following the publication of Roy (2012). That article includes
an extensive critique of localist representation theory by James
McClelland. I quote here a few of his responses regarding
encoding of complex concepts:

(1) “what basis do I have for thinking that the representation
I have for any concept – even a very familiar one –
as associated with a single neuron, or even a set of neurons
dedicated only to that concept?”

(2) “A further problem arises when we note that I may
have useful knowledge of many different instances of
every concept I know – for example, the particular
type of chicken I purchased yesterday evening at the
supermarket, and the particular type of avocados I found
to put in my salad. Each of these is a class of objects,
a class for which we may need a representation if
we were to encounter a member of the class again.
Is each such class represented by a localist representation
in the brain?”

As one can sense from these arguments, the nature and means
of encoding of complex abstract concepts is a major issue in
cognitive science. A particular type of complex abstract concept
is the concept of a category. There are several neurophysiological
studies on category representation in the brain and they provide
some new insights on the nature of encoding of abstract concepts.
I review some of those studies that show that single cells can
indeed encode abstract category concepts.

I also address the issue of modality-invariant (or amodal)
representation, which is also a form of abstraction, and provide
evidence for the extensive use of an amodal cognitive system in
the brain where such abstractions are encoded by single cells.
Finding these different kinds of abstractions in the brain (from
categorization to modality-invariance) resolves a long standing
dispute within cognitive science – between grounded cognition,
which is modality-based, and the traditional cognitive system
defined on the basis of abstractions (Borghi and Pecher, 2011).
Given the evidence for grounded cognition (Barsalou, 2008) and
the various forms of abstractions encoded by single cells, it is
fair to claim that both a purely abstract form of cognition and
modality-dependent cognition co-exist in the brain providing
different kinds of information and each is supported by localist
representation.

Finally, I address the issue of distributed representation or
population coding (Panzeri et al., 2015) and its conflict with the
evidence for localist representation. I essentially argue that there
is no evidence for distributed representation because there is
no evidence for dense distributed coding. And dense distributed
coding is the essential characteristic of distributed representation
as claimed by some of the original proponents (McClelland et al.,
1995).

The paper has the following structure. In Section “Localist vs.
Distributed Representation,” I provide the standard definitions
for localist and distributed representations and explain the
difference between distributed processing and distributed
representation. In Section “Columnar Organization in the
Neocortex,” I explore the neuroscience of columnar organization
in the neocortex and what it implies for representational theories.
In Section “Category Cells,” I review neurophysiological studies
that relate to encoding of category concepts in the brain. Section
“Multisensory Integration in the Brain” has the evidence for
multi-sensory integration and modality-invariant single cells
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in the brain. In Section “The Existence of a Single Cell-Based
Purely Abstract and Layered Cognitive System and Ties to
Grounded Cognition,” I argue that there’s plenty of evidence
for a purely abstract, single-cell based cognitive system in the
brain. In addition, I argue that a sensory-based (grounded)
non-abstract and a purely abstract cognitive system co-exist
and support each other to provide cognition in its various
forms. In Section “On the “Meaning and Interpretation”
of Single Neuron Response,” I explain what “meaning and
interpretation” implies for a single cell response. Section
“Localist Representation and Symbols” explains why localist
neurons are symbols in a computational and cognitive sense.
Section “No Evidence for Distributed Representation” argues
that there is no neurophysiological evidence for distributed
representation because distributed representation is about dense
representation. Section “Conclusion” has the conclusions.

LOCALIST VS. DISTRIBUTED
REPRESENTATION

Definitions and What They Mean
Distributed representation is generally defined to have the
following properties (Hinton et al., 1986; Plate, 2002):

• A concept is represented by a pattern of activity over
a collection of neurons (i.e., more than one neuron is
required to represent a concept).

• Each neuron participates in the representation of more than
one concept.

By contrast, in localist representation, a single neuron
represents a single concept on a stand-alone basis. But that
doesn’t preclude a collection of neurons representing a single
concept. The critical distinction between localist units and
distributed ones is that localist units have “meaning and
interpretation” whereas the distributed ones don’t. Many authors
have pointed out this distinction.

• Elman (1995, p. 210): “These representations are distributed,
which typically has the consequence that interpretable
information cannot be obtained by examining activity of
single hidden units.”

• Thorpe (1995, p. 550): “With a local representation, activity
in individual units can be interpreted directly... with
distributed coding individual units cannot be interpreted
without knowing the state of other units in the network.”

• Plate (2002):“Another equivalent property is that in a
distributed representation one cannot interpret the meaning
of activity on a single neuron in isolation: the meaning of
activity on any particular neuron is dependent on the activity
in other neurons (Thorpe, 1995).”

Thus, the fundamental difference between localist and
distributed representation is only in the interpretation and
meaning of the units, nothing else. Therefore, any and all kinds of
models can be built with either type of representation; there are
no limitations as explained by Roy (2012).

Reviewing single cell studies, Roy (2012) found evidence that
single cell activations can have “meaning and interpretation,”
starting from the lowest levels of processing such as the retina.
Thus, localist representation is definitely used in the brain. Roy
(2013) found that multimodal invariant cells exist in the brain
that can easily identify objects and concepts and such evidence
supports the grandmother cell theory (Barlow, 1995, 2009; Gross,
2002). This paper builds on those previous ones and provides
further evidence for widespread use of localist representation
by examining columnar organization of the neocortex and the
evidence for category cells.

Other Characteristics of Distributed
Representation

(a) Representational efficiency – Distributed representation
is computationally attractive because it can store multiple
concepts using a small set of neurons. With n binary output
neurons, it can represent 2n concepts because that many
different patterns are possible with that collection of binary
neurons. With localist representation, n neurons can only
represent n concepts. In Section “Columnar Organization
in the Neocortex,” I explain that this property of distributed
representation could be its greatest weakness because such a
representation cannot be a feasible structure for processing
in the brain, given the evidence for columnar organization
of the neocortex.

(b) Mapping efficiency – Distributed representation allows
for a more compact overall structure (mapping function)
from input nodes to the output ones and that means
less number of connections and weights to train. Such
a mapping function requires less training data and will
generalize better.

(c) Resiliency – A distributed representation based mapping
function is resilient in the sense that degradation of a few
elements in the network structure may not disrupt or effect
the overall performance of the structure.

(d) Sparse distributed representation – A distributed
representation is sparse if only a small fraction of the n
neurons is used to represent a subset of the concepts. Some
argue that representation in the brain is sparse (Földiak,
1990; Olshausen and Field, 1997; Hromádka et al., 2008;
Yu et al., 2013).

McClelland et al. (1995), however, have argued that sparse
distributed representation doesn’t generalize very well and
that the brain uses it mainly for episodic memories in
the hippocampus. They also argue that dense distributed
representation is the only structure that can generalize well
and that the brain uses this dense form of representation
in the neocortex to learn abstract concepts. Bowers (2009)
summarizes this particular theory of McClelland et al. (1995) in
the following way: “On the basis of this analysis, it is argued that
sparse coding is employed in the hippocampus in order to store
new episodic memories following single learning trials, whereas
dense distributed representations are learned slowly and reside in
cortex in order to support word, object, and face identification
(among other functions), all of which require generalization (e.g.,
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to identify an object from a novel orientation).” The essence of
this theory is that only dense representations can generalize and
learn abstract concepts. And thus the only form of distributed
representation to consider is the dense one.

Distributed Processing vs. Distributed
Representation
The interactive activation (IA) model of McClelland and
Rumelhart (1981), shown in Figure 1, is a classic localist model.
The IA model is a localist model simply because the letter-feature,
letter and word units have labels on them, which implies that
they have “meaning and interpretation.” Although the model is
localist, it uses distributed and parallel processing. For example,
all of the letter units are computed in parallel with inputs
from the letter-feature layer. Similarly, all of the word units are
computed in parallel with inputs from the letter units layer. Thus,
both localist and distributed representation can exploit parallel,
distributed processing. The representation type, therefore, does
not necessarily place a restriction on the type of processing. And
localist representation can indeed parallelize computations.

COLUMNAR ORGANIZATION IN THE
NEOCORTEX

Although the neocortex of mammals is mainly characterized
by its horizontal layers with different cell types in each layer,
researchers have found that there is also a strong vertical
organization in some regions such as the somatosensory,
auditory, and visual cortices. In those regions, the neuronal
responses are fairly similar in a direction perpendicular to
the cortical surface, while they vary in a direction parallel to
the surface (Goodhill and Carreira-Perpiñán, 2002). The set of

FIGURE 1 | Schematic diagram of a small subcomponent of the
interactive activation model. Bottom layer codes are for letter features,
second layer codes are for letters, and top layer codes are for complete
words, all in a localist manner. Arrows depict excitatory connections between
units; circles depict inhibitory connections. Adapted from Figure 3 of
McClelland and Rumelhart (1981), by permission of American Psychological
Association.

neurons in the perpendicular direction have connections between
them and form a small, interconnected column of neurons.
Lorente de Nó (1934) was the first to propose that the cerebral
cortex is formed of small cylinders containing vertical chains of
neurons and that these were the fundamental units of cortical
operation. Mountcastle (1957) was the first to discover this
columnar organization (that is, the clustering of neurons into
columns with similar functional properties) in the somatosensory
cortex of cats. Hubel and Wiesel (1959, 1962, 1968, 1977) also
found this columnar organization in the striate cortex (primary
visual cortex) of cats and monkeys.

A minicolumn, a narrow vertical chain of interconnected
neurons across the cortical layers, is considered the basic
unit of the neocortex. The number of neurons in these
minicolumns generally is between 80 and 100, but can be more
in certain regions like the striate cortex. A cortical column (or
module) consists of a number of minicolumns with horizontal
connections. A cortical column is a complex processing unit
that receives input and produces outputs. In some cases, the
boundaries of these columns are quite obvious (e.g., barrels in
the somatosensory cortex and ocular dominance columns in the
visual cortex), but not always (e.g., orientation columns in the
striate cortex).

Figure 2 shows the “ice cube” models that explain the spatial
structure of orientation columns, ocular dominance columns and
hypercolumns across layers of the striate cortex. An orientation
column has cells that have the same orientation (i.e., they respond
to an edge or bar of light with the same orientation) and
this columnar structure is repeated in the striate cortex for
different orientations and different spatial positions [receptive
fields (RFs)] on the retina. Tanaka (2003) notes that: “Cells
within an orientation column share the preferred orientation,
while they differ in the preferred width and length of stimuli,
binocular disparity, and the sign of contrast.” Hypercolumn
(macrocolumn) cells, on the other hand, respond to the same
spatial position (RF) in the retina, but have different orientation
preferences. Orientation preferences generally changes linearly
from one column to the next, but can have jumps of 90 or
180◦. A hypercolumn (macrocolumn) contains about 50–100
minicolumns. According to Krueger et al. (2008), the neocortex
has about 100 million minicolumns with up to 110 neurons in
each.

Direction of motion selectivity columns have been found in
the middle temporal (MT) visual area of macaque monkeys
(Albright et al., 1984; DeAngelis and Newsome, 1999). Figure 3
shows the distribution of preferred directions of 95 direction-
selective lateral intraparietal area (LIP) neurons of two male
rhesus monkeys from the study by Fanini and Assad (2009). Out
of the 614 MT direction selective neurons monitored by Albright
et al. (1984), 55% responded to moving stimuli independent of
color, shape, length, or orientation. The response magnitude and
tuning bandwidth of the remaining cells depended on stimulus
length, but not the preferred direction. They also found that “cells
with a similar direction of motion preference are also organized
in vertical columns and cells with opposite direction preferences
are located in adjacent columns within a single axis of motion
column.” Diogo et al. (2002) found direction selective clusters of
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FIGURE 2 | Orientation columns, ocular dominance columns, hypercolumns, and layers of the striate cortex. (A) Adapted from Figure 1 of Bressloff and
Carroll (2015). (B) Reprinted from Ursino and La Cara (2004), with permission from Elsevier.

FIGURE 3 | Distribution of preferred directions for 95
direction-selective LIP neurons of two male rhesus monkeys (filled
arrowheads for monkey H and open arrowheads for monkey R).
Adapted from Figure 6 of Fanini and Assad (2009), by permission of
The American Physiological Society.

cells in the visual area MT of the Cebus apella monkey that change
gradually across the surface of MT but also had some abrupt 180◦

discontinuities.
Tanaka (2003) found cells in the inferotemporal cortex (area

TE) that selectively respond to complex visual object features and
those that respond to similar features cluster in a columnar form.
For example, he found cells in a TE column that responded to
star-like shapes, or shapes with multiple protrusions in general.
Tanaka (2003) notes: “They are similar in that they respond to
star-like shapes, but they may differ in the preferred number
of protrusions or the amplitude of the protrusions.” Figure 4
shows types of complex objects (complex features) found (or
hypothesized) by Tanaka in TE columnar modules. He also notes:
“Since most inferotemporal cells represent features of object images
but not the whole object images, the representation of the image
of an object requires a combination of multiple cells representing
different features contained in the image of the object.”

In general, neuroscientists have discovered the columnar
organization in many regions of the mammalian neocortex.
According to Mountcastle (1997), columnar organization is just
one form of modular organization in the brain. Mountcastle
(1997) notes that the modular structure varies “in cell type and

number, in internal and external connectivity, and in mode of
neuronal processing between different large entities.” DeFelipe
(2012) states that “The columnar organization hypothesis is
currently the most widely adopted to explain the cortical processing
of information. . .” although there are area and species specific
variations and some species, such as rodents, may not have
cortical columns (Horton and Adams, 2005). However, Wang
et al. (2010) found similar columnar functional modules in
laminated auditory telencephalon of an avian species (Gallus
gallus). They conclude that laminar and columnar properties of
the neocortex are not unique to mammals. Rockland (2010) states
that columns (as modules) are widely used in the brain, even in
non-cortical areas.

Columnar Organization – Its Functional
Role and as Evidence for Localist
Representation
Neuroscience is still struggling to understand the functional
role of columnar organization in cortical processing (Horton
and Adams, 2005; DeFelipe, 2012). Here I offer a macro level
functional explanation for columnar organization and the way
it facilitates fast and efficient processing of information. I
also explain why distributed representation (population coding)
is inconsistent with and infeasible for the type of superfast
processing required in certain parts of the neocortex (and perhaps
for other parts of the brain also), where such superfast processing
is facilitated by the columnar organization. And columnar
organization could be the most extensive neuroscience evidence
we have so far for the widespread use of localist representation in
the brain.

What the columnar organization reveals is a massively parallel
search mechanism – a mechanism that, given an input, searches
in parallel for a match within a discrete set of explicitly coded
features (concepts). In other words, it tries to match the input,
in parallel, to one of the component features in the discrete
set, where each such component feature is encoded separately
by one or more minicolumns. And the search is parallelized
for all similar inputs that arrive simultaneously at a processing
stage. That is, each input that arrives at the same time at a
processing stage, is processed immediately and separately in a
parallel mode. To make this type of parallelized search feasible
for multiple inputs, it provides a dedicated macrocolumn (such

Frontiers in Psychology | www.frontiersin.org 5 February 2017 | Volume 8 | Article 186

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00186 February 15, 2017 Time: 17:22 # 6

Roy A Purely Abstract Cognitive System

FIGURE 4 | Columnar modules of region TE. Adapted from Figures 3 and 7 of Tanaka (2003), by permission of Oxford University Press.

as a hypercolumn), that encodes the same set of discrete features
in its minicolumns, to each and every input (e.g., a RF) so that
it can be processed separately in parallel. Horton and Adams
(2005) describe a hypercolumn as a structure that contains “a
full set of values for any given set of receptive field parameters.”
The discrete set of explicit features (concepts) – which range
from simple features (e.g., line orientation) to complex and
invariant ones (e.g., a star-like shape) and where the set of features
depends on the processing level – is, of course, learned over
time.

Thus, the defining principle of columnar organization is
this parallel search for a matching explicit feature within a
discrete set, given an input, and performing such searches for
multiple inputs at the same time (in parallel), where such parallel
searches for multiple inputs are facilitated by deploying separate
dedicated macrocolumns for each input. This same parallel
search mechanism is used at all levels of processing as necessary.
This mode of processing is, without question, very resource
intensive. However, this mode of processing is an absolute
necessity for the neocortex (and elsewhere in the brain) wherever
there is a need for incredibly fast processing.

What’s really unique about columnar organization is the fact
that it creates a discrete set of features (concepts) that are
explicit. The features are explicit in the sense that they are
interpretable and can be assigned meaning. And that organizing
principle provides direct evidence for widespread use of localist
representation in the cortex and perhaps other areas of the brain
(Page, 2000; Roy, 2012, 2013). Here’s an explanation from a
computational point of view why columnar organization works
that way and why distributed representation, especially dense
distributed representation which is hypothesized to be used in
the neocortex (McClelland et al., 1995; Poggio and Bizzi, 2004;
Bowers, 2009), is not compatible with the processing needs. In
dense distributed representation, concepts are coded by means
of different patterns of activation across several output units
(neurons) of a network. If such a pattern vector, which can
code for any number of concepts, is transmitted to another
system, that system would have to know how to decode that
pattern vector and determine what the concept is. That means
that the receiving system would require a decoding processor
(a decoder) to understand an incoming pattern vector encoded

by signals from a population of neurons. If the columnar
organization were to use dense distributed representation to
code for features and concepts, it would have to deploy
millions of such decoders. That obviously would add layers
of processing and slow down the processing of any stimulus.
Explicit features, encoded by one or more neurons in cortical
columns, make the interpretation (decoding) task simple for
subsequent processes. Thus, learning of explicit features by the
columnar organization could be mainly about simplification of
computations and to avoid a complex decoding problem at every
stage of processing.

CATEGORY CELLS

There is significant evidence at this point that animal brains,
from insects to humans, have the ability to generalize and create
abstract categories and concepts and encode and represent them
in single cells or multiple cells, where each group of such cells is
dedicated to a single category or concept. This reveals a lot about
mental representation in the brain. This aspect of abstraction and
representation of such abstractions has been ignored and denied
in the distributed representation theory.

The Evidence for Abstract Category Cells
Regarding the ability to create abstract categories, Freedman and
Miller (2008) notes (p. 312): “Categorization is not an ability
that is unique to humans. Instead, perceptual categorization and
category-based behaviors are evident across a broad range of
animal species, from relatively simple creatures like insects to
primates.” Researchers have found such abstraction capability in
a variety of studies of animals and insects. Wyttenbach et al.
(1996), for example, found that crickets categorize the sound
frequency spectrum into two distinct groups – one for mating
calls and the other for signals of predatory bats. Schrier and Brady
(1987), D’amato and Van Sant (1988) and others have found that
monkeys can learn to categorize a large range of natural stimuli.
Roberts and Mazmanian (1988) found that pigeons and monkeys
can learn to distinguish between animal and non-animal pictures.
Wallis et al. (2001) recorded from single neurons in the prefrontal
cortex (PFC) of monkeys that learned to distinguish whether
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two successively presented pictures were same or different.
Fabre-Thorpe et al. (1998) found that monkeys can accurately
categorize images (food vs. non-food, animal vs. non-animal)
with remarkable speed in briefly flashed stimuli. They conclude:
“Overall, these findings imply that rapid categorization of natural
images in monkeys must rely, as in humans, on the existence of
abstract categorical concepts.”

Merten and Nieder (2012) found single neurons in the
PFC of two rhesus monkeys that encoded abstract “yes” and
“no” decisions from judgment about the presence or absence
of a stimulus. They note the following (p. 6291): “we report
a predominantly categorical, binary activation pattern of “yes”
or “no” decision coding.” Rolls et al. (1997) found viewpoint-
independent spatial view cells in the vicinity of the hippocampus
in monkeys. These cells responded when the monkey looked
toward a particular view, independent of the place where the
monkey is or its head direction. Vogels (1999) found single cells
in the anterior temporal cortex of two rhesus monkeys that were
involved in distinguishing trees from non-trees in color images.
About a quarter of those neurons responded in a category-specific
manner (that is, either trees or non-trees). And the responses
were mostly invariant to stimulus transformation, e.g., to changes
in position and size.

Lin et al. (2007) report finding “nest cells” in the mouse
hippocampus that fire selectively when the mouse observes a
nest or a bed, regardless of the location or the environment. For
example, they found single cells that drastically increased the
firing rate whenever the mouse encountered a nest. If the mouse
looked away from the nest, that single cell became inactive. In
testing for invariance, they note (p. 6069): “Together, the above
experiments suggest that the responses of the nest cell remained
invariant over the physical appearances, geometric shapes,
design styles, colors, odors, and construction materials, thereby
encoding highly abstract information about nests. The invariant
responses over the shapes, styles, and materials were also observed
in other nest cells.”

Other single cell studies of the monkey visual temporal
cortex have discovered neurons that respond selectively
to abstract patterns or common, everyday objects (Fujita
et al., 1992; Logothetis and Sheinberg, 1996; Tanaka, 1996;
Freedman and Miller, 2008). Freedman and Miller (2008)
summarize these findings from single cell recordings
quite well (p. 321): “These studies have revealed that the
activity of single neurons, particularly those in the prefrontal
and posterior parietal cortices (PPCs), can encode the
category membership, or meaning, of visual stimuli that the
monkeys had learned to group into arbitrary categories.”

Different types of faces, or faces in general, represent a type of
abstract categorization. Face-selective cells have been a dominant
area of investigation in the last few decades. Bruce et al. (1981)
were the first ones to find face selective cells in the monkey
temporal cortex. Rolls (1984) found face cells in the amygdala
and Kendrick and Baldwin (1987) found face cells in the cortex
of the sheep. Gothard et al. (2007) studied neural activity in
the amygdala of monkeys as they viewed images of monkey
faces, human faces and objects on a computer monitor. They
found single neurons that respond selectively to images from

each category. They also found one neuron that responded to
threatening monkey faces in particular. Their general observation
is (p. 1674): “These examples illustrate the remarkable selectivity
of some neurons in the amygdala for broad categories of stimuli.”
Tanaka (2003) also observed single cell representation of faces
and observes: “Thus, there is more convergence of information to
single cells for representations of faces than for those of non-face
objects.”

On the human side, in experiments with epileptic patients,
Fried et al. (1997) found some single medial temporal lobe
(MTL) neurons that discriminate between faces and inanimate
objects and others that respond to specific emotional expressions
or facial expression and gender. Kreiman et al. (2000),
in similar experiments with epileptic patients, found MTL
neurons that respond selectively to categories of pictures
including faces, houses, objects, famous people and animals
and they show a strong degree of invariance to changes in
the input stimuli. Kreiman et al. (2000) report as follows:
“Recording from 427 single neurons in the human hippocampus,
entorhinal cortex and amygdala, we found a remarkable degree
of category-specific firing of individual neurons on a trial-by-trial
basis. . .. Our data provide direct support for the role of human
medial temporal regions in the representation of different categories
of visual stimuli.” Recently, Mormann et al. (2011) analyzed
responses from 489 single neurons in the amygdalae of 41
epilepsy patients and found that individual neurons in the right
amygdala are particularly selective of pictures of animals and that
it is independent of emotional dimensions such as valence and
arousal.

In reviewing these findings, Gross (2000) observes:
“Electrophysiology has identified individual neurons that
respond selectively to highly complex and abstract visual stimuli.”
According to Pan and Sakagami (2012), “experimental evidence
shows that the PFC plays a critical role in category formation and
generalization.” They claim that the prefrontal neurons abstract
the commonality across various stimuli. They then categorize
them on the basis of their common meaning by ignoring their
physical properties. These PFC neurons also learn to create
boundaries between significant categories.

Can We Believe these Studies? Are They
Truly Category-Selective Cells?
These studies, that claim category-selective response of single
cells, are often dismissed because, in these experiments, the cells
are not exhaustively evaluated against a wide variety of stimuli.
Desimone (1991) responds to that criticism with respect to face
cell studies: “Although they do not provide absolute proof, several
studies have tried and failed to identify alternative features that
could explain the properties of face cells.” For example, many
studies tested the face cells with a variety of other stimulus,
including textures, brushes, gratings, bars and edges of various
colors, and models of complex objects, such as snakes, spiders,
and food, but there was virtually no response to any such stimulus
(Bruce et al., 1981; Perrett et al., 1982; Desimone et al., 1984;
Baylis et al., 1985; Rolls and Baylis, 1986; Saito et al., 1986). In
fact, each such face cell responded to a variety of faces, including
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real ones, plastic models, and photographs of different faces (e.g.,
monkey, human). Rolls and Baylis (1986) found that many face
cells actually respond to faces over more than a 12-fold range in
the size. Others report that many face cells respond over a wide
range of orientations in the horizontal plane (Perrett et al., 1982,
1988; Desimone et al., 1984; Hasselmo et al., 1989). Desimone
(1991) concludes: “Taken together, no hypothesis, other than face
selectivity, has yet been advanced that could explain such complex
neuronal properties.”

Are Category-Selective Cells Part of a
Dense Distributed Representation? If So,
Do We Need Exhaustive Testing to Find
that Out?
A dense distributed representation uses a small set of neurons to
code for many different concepts. The basic idea is compressed
encoding of concepts using a small physical structure. This also
means that different levels of activations of these neurons will
code for different concepts. In other words, for any given concept,
most of the neurons in such a representation should be active
at a certain level. If that is the case and if a so-called “category-
selective” cell is actually a part of a dense representation, then
stimuli that belong to different abstract concepts should activate
the so-called “category-selective” cell quite often. There is no
need for exhaustive testing with different stimuli to find that the
“category-selective” cell is part of a dense representation. Testing
with just a few different types of stimuli should be sufficient to
verify that a cell is either part of a dense representation that codes
for complex concepts or codes for a lower level feature. And that’s
what is usually done in these neurophysiological studies and that
should be sufficient. That doesn’t mean that rigorous testing is
not required. It only means that we don’t need exhaustive testing
to establish that a cell is selective of certain types of stimuli.

MULTISENSORY INTEGRATION IN THE
BRAIN

Research over the last decade or so has produced a large
body of evidence for multisensory integration in the brain
and even in areas that were previously thought to be strictly
unisensory or unimodal. Ghazanfar and Schroeder (2006)
claim that multisensory integration extend into early sensory
processing areas of the brain and that neocortex is essentially
multisensory. Stein and Stanford (2008) observes that many areas
that were previously classified as unisensory contain multisensory
neurons. This has been revealed by anatomical studies that show
connections between unisensory cortices and by imaging and
ERP studies that reveal multisensory activity in these regions.
Klemen and Chambers (2012), in a recent article, notes that
there is now “broad consensus that most, if not all, higher, as well
as lower level neural processes are in some form multisensory.”
The next two sections examine some specific evidence for
multisensory integration.

The Evidence for Multisensory
Integration in Various Parts of the Brain
Neurons in the lateral intraparietal (LIP) area of the PPC are
now known to be multisensory, receiving a convergence of eye
position, visual and auditory signals (Andersen et al., 1997).
Ventral intraparietal area (VIP) neurons have been found to
respond to visual, auditory, somatosensory and vestibular stimuli,
and for bi- or tri-modal VIP neurons, RFs driven through
different modalities usually overlap in space (Duhamel et al.,
1998). Graziano et al. (1999) found neurons in the premotor
cortex that responded to visual, auditory and somatosensory
inputs. Maier et al. (2004) found that the function of these
neurons appear to be ‘defense’ related in the sense that
monkeys (and humans) are sensitive to visual, auditory and
multisensory looming signals that indicate approaching danger.
Morrell (1972) reported that up to 41% of visual neurons
could be driven by auditory stimuli. Single unit recordings in
the IT cortex of monkeys performing a crossmodal delayed-
match-to-sample task shows that the ventral temporal lobe
may represent objects and events in a modality invariant way
(Gibson and Maunsell, 1997). Saleem et al. (2013) recorded
from mice that traversed a virtual environment and found that
nearly half of the primary visual cortex (V1) neurons were
part of a multimodal processing system that integrated visual
motion and locomotion during navigation. In an anatomical
study, Budinger and Scheich (2009) show that the primary
auditory field AI in a small rodent, the Mongolian gerbil,
has multiple connections with auditory, non-auditory sensory
(visual, somatosensory, olfactory), multisensory, motor, “higher
order” associative and neuromodulatory brain structures. They
observe that these connections possibly mediate multimodal
integration processes at the level of AI. Some studies have
shown that auditory (Romanski and Goldman-Rakic, 2002),
visual (Wilson et al., 1993; O’Scalaidhe et al., 1999; Hoshi et al.,
2000), and somatosensory (Romo et al., 1999) responsive neurons
are located within the ventrolateral prefrontal cortex (VLPFC),
suggesting that VLPFC is multisensory.

The Evidence for Modality-Invariant
Single Cell Representation in the Brain
Here, I review some of the evidence for modality-invariant single
cells in the brain of humans and non-human.

Fuster et al. (2000) were the first to find that some PFC
cells in monkeys integrate visual and auditory stimuli across
time by having them associate a tone of a certain pitch for
10 s with a color. PFC cells responded selectively to tone and
most of them also responded to colors as per the task rules.
They conclude that PFC neurons are part of an integrative
network that represent cross modal associations. Romanski
(2007) recorded from the VLPFC of rhesus macaques as they
were presented with audiovisual stimuli and found that some
cells in VLPFC are multisensory and respond to both facial
gestures and corresponding vocalizations. Moll and Nieder
(2015) trained carrion crows to perform a bimodal delayed paired
associate task in which the crows had to match auditory stimuli
to delayed visual items. Single-unit recordings from the area
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nidopallium caudolaterale (NCL) found memory signals that
selectively correlated with the learned audio-visual associations
across time and modality. Barraclough et al. (2005) recorded
from 545 single cells in the temporal lobe (upper and lower
banks of the superior temporal sulcus (STS) and IT) from
two monkeys to measure the integrative properties of single
neurons using dynamic stimuli, including vocalizations, ripping
paper, and human walking. They found that 23% of STS
neurons that are visually responsive to actions are modulated
significantly by the corresponding auditory stimulus. Schroeder
and Foxe (2002), using intracranial recordings, have confirmed
multisensory convergence in the auditory cortex in macaque
monkeys. Using single microelectrode recordings in anesthetized
monkeys, Fu et al. (2003) confirmed that such convergence in the
auditory cortex occurs at the single neuron level.

In some experiments, reported in Quian Quiroga et al. (2009)
and others, they found that single MTL neurons can encode
an object-related concept irrespective of how it is presented –
visual, textual, or sound. They checked the modality invariance
properties of a neuron by showing the subjects three different
pictures of the particular individual or object that a unit responds
to and their spoken and written names. In these experiments,
they found a neuron in the left anterior hippocampus that fired
selectively to three pictures of the television star Oprah Winfrey
and to her written and spoken name (Quian Quiroga et al.,
2009, p. 1308). The neuron also fired to a lesser degree to a
picture of actress Whoopi Goldberg. And none of the other
responses of the neuron were significant, including to other
text and sound presentations. They also found a neuron in the
entorhinal cortex of a subject that responded (Quian Quiroga
et al., 2009, p. 1308) “selectively to pictures of Saddam Hussein as
well as to the text ‘Saddam Hussein’ and his name pronounced by
the computer. . ... There were no responses to other pictures, texts,
or sounds.”

Quian Quiroga (2012, p. 588) found a hippocampal neuron
which responded selectively to pictures of Halle Berry, even when
she was masked as Catwoman (a character she played in a movie).
And it also responded to the letter string “HALLE BERRY,” but
not to other names. They also found that a large proportion of
MTL neurons respond to both pictures and written names of
particular individuals (or objects) and could also be triggered by
the name of a person pronounced by synthesized voice. Hence,
they conclude: “These and many other examples suggest that MTL
neurons encode an abstract representation of the concept triggered
by the stimulus.” Quian Quiroga et al. (2008) estimate that 40% of
MTL cells are tuned to such explicit representation.

Suthana and Fried (2012, p. 428) found an MTL neuron that
responded to a picture of the Sydney Opera House but not to 50
other landmarks. It also responded to “many permutations and
physically different representations of the Sydney Opera House,
seen in color, in black and white, or from different angles.”
The same neuron also responded to the written words “Sydney
Opera.” Nieder (2013) found single neurons in a parieto-frontal
cortical network of non-human primates that are selectively
tuned to number of items. He notes that: “Such ‘number neurons’
can track items across space, time, and modality to encode
numerosity in a most abstract, supramodal way.”

THE EXISTENCE OF A SINGLE
CELL-BASED PURELY ABSTRACT AND
LAYERED COGNITIVE SYSTEM AND
TIES TO GROUNDED COGNITION

Sections “Category Cells and Multisensory Integration in the
Brain” on category cells and multisensory, modality-invariant
cells provide significant biological evidence for the existence of
a single cell-based purely abstract cognitive system in the brain.
The multisensory cells are abstract in the sense that they integrate
information from more than one sensory process. And since
the multisensory neurons are also present in what are generally
considered to be unisensory areas, such an abstract cognitive
system is well-spread out in various parts of the brain and not
confined to a few areas. This does not mean that cognition in
appropriate cases is not grounded in sensory-motor processes
(Barsalou, 2008, 2010; Pezzulo et al., 2013). In this section,
I extend a well-known abstract model of cognition and show
how abstract cognition could be connected to modality-based
representations, memory and sensory processes and invoke them
as necessary. And it is fair to claim, based on the biological
evidence, that both the abstract and non-abstract systems co-exist
in the brain and are tightly integrated.

Let’s now examine an often referenced abstract model of
cognition from Collins and Quillian (1969) shown in Figure 5.
Rogers and McClelland (2004, 2008) uses the same model to
illustrate how distributed representation might be able to create
the same semantic structure. Figure 5 shows a possible way of
storing semantic knowledge where semantics are based on a
hierarchy of abstract concepts and their properties. Given the
evidence for category and multisensory abstract cells, this model
now looks fairly realistic. In this tree structure, nodes represent
abstract categories or concepts and arrows reflect properties
of that category or concept. For example, the node bird has
arrows for the properties feathers, fly, and wings. The arrows
point to other nodes that represent these properties, which are
also abstract concepts. The semantic tree shows the hierarchical
relationship of these abstract concepts and categories. For
example, plant and animal are subcategories of living thing. Here,
nodes pass down their properties to the descendant nodes. For
example, salmon inherits all the properties of fish (scales, swim,
and gills) and also the properties of animal (move, skin) and living
thing (grow, living). The properties of higher level concepts reflect
the common properties of lower level concepts. The tree produces
propositions such as: living things grow; a plant is a living thing; a
tree is a plant; and an oak is a tree. It therefore follows that an oak
can grow.

This model can be easily extended to include modality-
based representations, memory and sensory processes including
simulations. For example, the robin node could be a multimodal
invariant abstraction that is activated by the physical appearance
of a robin (or its picture), by its singing and by the written or
spoken name “robin.” However, multisensory integration exists
at many levels of processing. For example, there could be a
multisensory neuron that integrates information from just the
visual and auditory systems. That is, it fires with the physical
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FIGURE 5 | A taxonomic hierarchy of the type used by Collins and Quillian (1969). Adapted from Figure 2, Rogers and McClelland (2008) reproduced with
permission.

appearance of a robin (or its picture) and/or when it sings. Many
other combinations of sensory information are possible – two at
a time, three at a time and so on.

Thus, there could be a layered structure of abstractions in the
brain, starting with bi-modals, then tri-modals and so on. And
Section “Multisensory Integration in the Brain” cites evidence for
such different levels of abstractions. One can think of this layered
structure of abstractions in terms of an inverted tree (similar
to Figure 5) culminating in a single, high-level multimodal
abstraction such as the robin node of Figure 5. Inversely, one
can think of the robin node having deep extensions into lower
levels of modality invariant neurons through an extended tree
structure. The lowest level bi-modal invariant nodes, in turn,
could be coupled with modal-based representations, memories
and sensory processes. A modal representation of a robin in the
visual system could have links to a memory system that has one
or more generic pictures of robins in different colors and thereby
provide access to the imagery part of cognition (Kosslyn et al.,
2006). A visual system can also trigger a simulation of the bird
flying (Goldman, 2006).

In summary, a purely abstract cognitive system could be
tightly integrated with the sensory system and the integration
could be through the layered level of abstractions that various
multisensory neurons provide. In other words, the conjecture
is that a purely abstract cognitive system co-exists with a
sensory-based cognition system and perhaps is mutually
dependent. For example, the fastest way to trigger the
visualization of robins on hearing some robins singing in
the background could be through the multisensory (bi-modal)
neurons embedded in the sensory systems. The abstract
cognitive system could, in fact, provide the connectivity
between the sensory systems and be the backbone of
cognition in its various forms. So the second part of this
Barsalou (2008, p. 618) statement is very consistent with
the claims in this section: “From the perspective of grounded
cognition, it is unlikely that the brain contains amodal symbols;
if it does, they work together with modal representations to create
cognition.” And Sections “Multisensory Integration in the Brain

and The Existence of a Single Cell-Based Purely Abstract and
Layered Cognitive System and Ties to Grounded Cognition”
answers another Barsalou question (p. 631): “Can empirical
evidence be found for the amodal symbols still believed by many to
lie at the heart of cognition?”

ON THE “MEANING AND
INTERPRETATION” OF SINGLE NEURON
RESPONSE

I come back to the issue of “meaning and interpretation” of the
response of a single neuron, an issue that is crucial to the claims
of both localist representation and a purely abstract cognitive
system. Instead of getting into a philosophical discussion on
meaning of the term “meaning,” it would be better if we grounded
the discussion in neurophysiology. In neurophysiology, the
purpose of testing single neurons with different stimuli is to find
the correlation between the response and the collection of stimuli
that causes it. This is the “meaning and interpretation” of the
response to an external observer such as a scientist. From an
internal point of view of the brain, the firing of a neuron can
have a cascading effect and trigger other neurons to fire and this
generates extra information or knowledge. This is best explained
with reference to Figure 5 and the discussions in Sections
“Multisensory Integration in the Brain and The Existence of a
Single Cell-Based Purely Abstract and Layered Cognitive System
and Ties to Grounded Cognition.” For example, when we see
a robin, it would fire a bi-modal neuron that associates the
physical appearance of a robin with its singing. This and other
multisensory neurons would, in turn, cause the multimodal
invariant robin node of Figure 5 to fire. That firing, in turn, would
cause the other associated nodes of Figure 5 to fire, such as the
nodes bird, animal, living thing and their associated properties.
What this means is that the brain activates and collects a body of
knowledge after seeing the robin. And that body of knowledge,
from multiple cell activations, is the composition of internal
meaning of robin in the brain. And that whole body of knowledge
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can be activated by any and all of the sensory modalities. And
that body of knowledge is the sense of “meaning” internal to the
brain. And we observe this body of knowledge when we find
the multisensory and abstract neurons in the brain. Of course,
a simple line orientation cell or a color detection cell may not
activate such a large body of abstract knowledge internally in the
brain. But these cells still have both internal and external meaning
in a similar sense.

LOCALIST REPRESENTATION AND
SYMBOLS

An obvious question is, in what way is localist representation
symbolic? I explain it here in a computational sense without
getting into a philosophical discussion of symbols. One can
think of the neurons, in parts of the brain that use localist
representation, as being a unit of memory in a computing
system that is assigned to a certain variable. The variables in
this case range from a purely abstract concept (e.g., a bird) to
something as concrete as a short line segment with a certain
orientation. And when any of these neurons fire, it transmits a
signal to another processor. These processors could, in turn, be
neurons in the next layer of a sensory cortex, in the working
memory of the PFC or any other neurons it is connected to.
Thus, a localist neuron not only represents a variable in the
computing sense, but also does processing at the same time.
And, in this computational framework, the so-called variables
represented by the localist neurons have meaning inside the brain
and are also correlated with stimuli from the external world,
as explained in Section “Localist Representation and Symbols.”
Hence, these localist neurons are symbols both in the computing
sense and because they are correlated with certain kinds of
external stimuli.

NO EVIDENCE FOR DISTRIBUTED
REPRESENTATION

As mentioned in Section “Other Characteristics of Distributed
Representation,” McClelland et al. (1995) have argued that
sparse distributed representation does not generalize very well
and that the brain uses it mainly for episodic memories
in the hippocampus. They also argue that dense distributed
representation is the only structure that can generalize well
and that the brain uses this dense form of representation
in the cortex to learn abstract concepts. And thus the only
form of distributed representation to consider is the dense
one. But no one has found a dense form of coding anywhere
in the brain. In a recent review article, Panzeri et al. (2015)
summarize the findings of population coding studies as follows
(p. 163): “. . . a small but highly informative subset of neurons
is sufficient to carry essentially all the information present in the
entire observed population.” They further observe that (pp. 163–
164): “This picture is consistent with the observed sparseness of

cortical activity (Barth and Poulet, 2012) (at any moment only
a small fraction of neurons are active) and is compatible with
studies showing that perception and actions can be driven by
small groups of neurons (Houweling and Brecht, 2008).” These
observations are also supported by other studies (Olshausen
and Field, 1997; Hromádka et al., 2008; Ince et al., 2013;
Yu et al., 2013). And these findings are quite consistent with
findings on multisensory neurons that indicate that a lot of
information can be coded in a compact form by a small set of
neurons.

CONCLUSION

Neurophysiology has provided a significant amount of
information about how the brain works. Based on these
numerous studies, one can generalize and claim that the brain
uses single cells (or a collection of dedicated cells) to encode
particular features and abstract concepts at various levels of
processing. One can also claim, based on the evidence for
multisensory neurons and category cells, that the brain has a
purely abstract and layered cognitive system that is also based
on single cell encoding. And that abstract cognitive system, in
turn, is connected to the sensory processes and memory. The
combined abstract and non-abstract cognitive systems provide
the backbone for cognition in its various forms. Parts of the
abstract system are also embedded in the sensory systems and
provide fast connectivity between the non-abstract systems. This
kind of architecture has real value in terms of simplification,
concreteness, automation, and computational efficiency. It
essentially automates the recognition of familiar patterns at every
processing layer and module and delivers such information to
other layers and modules in a simplified form.

Cells that encode features and abstract concepts have meaning
and interpretation at the cognitive level. Thus, these cells provide
easy and efficient access to cognitive level information. Thus far,
we have had no clue where cognitive level information was in the
brain. These neurophysiological studies are slowly revealing that
secret. It could be claimed that these feature and abstract concept
cells provide the fundamental infrastructure for cognition and
thought.

From these neurophysiological studies, it appears that, at
an abstract level, the brain is a massively parallel, distributed
computing system that is symbolic. It employs symbols from the
earliest levels of processing, such as with discrete sets of feature
symbols for line orientation, direction of motion and color, to the
highest levels of processing, in the form of abstract category cells
and other modality-invariant concept cells.
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