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Abstract. Similarly to the popular voter model, the Deffuant model describes
opinion dynamics taking place in spatially structured environments represented by
a connected graph. Pairs of adjacent vertices interact at a constant rate. If the
opinion distance between the interacting vertices is larger than some confidence
threshold ǫ > 0, then nothing happens, otherwise, the vertices’ opinions get closer
to each other. It has been conjectured based on numerical simulations that this
process exhibits a phase transition at the critical value ǫc = 1/2. For confidence
thresholds larger than one half, the process converges to a global consensus, whereas
coexistence occurs for confidence thresholds smaller than one half. In this article,
we develop new geometrical techniques to prove this conjecture.

1. Introduction

The past decade has experienced a rapidly growing interest in spatially explicit
models of social dynamics, where space takes the form of local interactions through
the edges of a graph representing either an actual physical space or a social network
where agents are located. See for instance the article of Castellano et al. (2009)
which gives a thorough review of over five hundreds, mostly very recent, research
papers published in this field. While there is a common effort from sociologists,
economists, psychologists, and statistical physicists to understand models of either
opinion, cultural or language dynamics, the field has so far been essentially ignored
by mathematicians, with the notable exception of the voter model introduced in-
dependently in Clifford and Sudbury (1973); Holley and Liggett (1975). In other
words, there is already a copious amount of numerical results in this important
topic but almost no analytical results to confirm or disprove these conjectures. At
the same time, stochastic spatial simulations are known to be difficult to interpret,
which suggests the need of rigorous mathematical analyses. The effort to obtain
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Figure 1.1. Realizations of the Deffuant model on the one-
dimensional torus with 400 vertices. Time goes down from time 0
to time 400, and the opinions are function of the brightness with
1 = white and 0 = black. In both realizations, the convergence
parameter is µ = 0.25 while the threshold is ǫ = 0.48 and 0.52,
respectively.

analytical results in the field of opinion and cultural dynamics has been initiated
by the author in Lanchier (2010, 2012) and pursued with co-workers in Lanchier
and Scarlatos (2012); Lanchier and Schweinsberg (2012) for the popular Axelrod
model for the dissemination of culture and in Lanchier and Neufer (2012) for a
spatial version of the majority rule model proposed by socio-physicist Galam to
describe public debates. This article goes in this direction by proving the main
conjecture about the model introduced by sociologist Deffuant and co-workers in
Deffuant et al. (2001). We refer to Section III.F in Castellano et al. (2009) for a
survey of this stochastic process.

In the one-dimensional Deffuant model, each vertex x ∈ Z is permanently occu-
pied by an agent characterized by an opinion, with the set of all possible opinions
ranging from zero to one. As in the voter model, pairs of adjacent vertices interact
at a constant rate, say one to fix the time scale, but unlike in the voter model, the
interaction is symmetric and results in an update of the process only if a certain
compatibility condition is satisfied. More precisely, if the opinion distance between
both vertices is larger than some confidence threshold ǫ > 0 at the time of the inter-
action, then nothing happens. Otherwise, the vertices follow a compromise strategy:
their opinions get closer to each other by the relative amount µ ∈ (0, 1/2]. Figure 1.1
gives simulation pictures of the model on the one-dimensional torus starting from
the configuration in which opinions are independent and uniformly distributed over
the interval [0, 1]. This defines a continuous-time Markov chain whose state space
consists of all functions that map Z into the interval [0, 1] and whose dynamics are
described by the Markov generator

Lf(η) =
∑

x∈Z

11{|η(x)− η(x − 1)| < ǫ} [f(σx η)− f(η)]
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where configuration σx η is defined by

(σx η)(z1) = η(z1) + µ (η(z2)− η(z1)) whenever {z1, z2} = {x, x− 1}

while the opinion at all other vertices is unchanged. The main conjecture about the
Deffuant model is that, regardless of the value of the convergence parameter µ, the
process approaches a global consensus when the confidence threshold is larger than
one half whereas coexistence occurs when the threshold is smaller than one half. In
other words, there is a dichotomy in the long-term behavior of the process with a
phase transition at ǫ = 1/2. This paper gives a rigorous proof of this conjecture that
mainly relies on new geometrical techniques, but we also refer to the recent paper
of Häggström (2012) who, shortly after the present article was written, proposed
an interesting alternative proof based on more traditional techniques.

To state rigorously our main result, we first point out that the meaning of con-
sensus in the case of the Deffuant model is different from the traditional notion of
consensus for the voter model since, at all times, the probability that two vertices
share the same opinion when starting from initial opinions which are independent
continuous random variables is equal to zero. Also, we say that the process con-
verges to a consensus if all pairs of adjacent vertices are ultimately compatible:

lim
t→∞

P (−ǫ < ηt(x)− ηt(x+ 1) < ǫ) = 1 for all x ∈ Z. (1.1)

Our proof is organized around three propositions. The first two state that, under
certain assumptions on the initial distribution, the process converges to a consensus
when the confidence threshold ǫ is strictly larger than one half but not when it is
strictly smaller than one half. More precisely, letting

Ωj =

{

x ∈ Z : for all integers n > 0 we have

1

2
− θ <

1

n

n−1
∑

y=0

η0(x+ j + y),
1

n

n
∑

y=1

η0(x− y) <
1

2
+ θ

} (1.2)

for all integers j ≥ 0 and all θ > 0, we have the following proposition.

Proposition 1.1. Assume that for all θ > 0,

P (card (Ω0 ∩ Z+) = ∞) = P (card (Ω0 ∩ Z−) = ∞) = 1. (1.3)

Then, for all µ > 0 and all ǫ > 1/2, the process converges to a consensus.

In contrast, letting F1 = {x ∈ Ω1 : |2η0(x) − 1| > 1− θ}, we have

Proposition 1.2. Assume that for all θ > 0,

P (card (F1 ∩ Z+) = ∞) = P (card (F1 ∩ Z−) = ∞) = 1. (1.4)

Then, for all µ > 0 and all ǫ < 1/2, coexistence occurs:

P (card {x ∈ Z : |ηt(x)− ηt(x+ 1)| > ǫ for all t ≥ 0} = ∞) = 1. (1.5)

Note that the conclusion (1.5) of Proposition 1.2 is somewhat stronger than the lack
of convergence to a consensus, since it also indicates that the number of opinion
clusters is infinite, and that each cluster is almost surely finite. In particular,
defining the critical value of the system as

ǫc = inf {ǫ ∈ [0, 1] : consensus (1.1) holds},
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the combination of both propositions implies that, for all initial distributions that
simultaneously satisfy condition (1.3) and condition (1.4), we have ǫc = 1/2. Also,
to deduce the conjecture, it suffices to prove that the configuration in which opinions
are independent and uniformly distributed indeed satisfies the two conditions above,
which is given by our third proposition.

Proposition 1.3. Assume that the initial opinions are independent and uniformly

distributed over the interval [0, 1]. Then, (1.3) and (1.4) hold.

From all three propositions, we conclude that

Theorem 1.4. If the initial opinions are independent and uniformly distributed

then, regardless of the value of µ > 0, the critical threshold ǫc = 1/2.

Since our proof relies on new geometrical techniques which are not standard in
the field of interacting particle systems, we start by giving a brief overview of our
approach in the next section. The details of the proof are then provided in the
subsequent sections, and organized in the same order as Propositions 1.1–1.3.

2. The broken line representation

The traditional technique used to study various aspects, such as the stationary
distributions, cluster size, and occupation times, of the voter model is duality. The
basic idea of duality is to deduce the individuals’ opinion at the current time from
the initial configuration of the system by keeping track of the opinion’s genealogy
going backwards in time, i.e., the spatial locations the opinion originates from. In
the case of the voter model, this genealogy, which is encoded in the so-called dual
process, simply consists of a system of coalescing random walks. In the case of
the Deffuant model, however, this technique fails due to the inclusion of a confi-
dence threshold: while keeping track of an opinion going backwards in time, upon
interaction with a neighbor, whether the genealogy branches or not to include the
neighbor’s opinion depends on whether or not the interacting pair is within the
confidence threshold which, in turn, depends on the initial configuration. This key
aspect of the model prevents us from defining a dual process. In particular, our
proof relies on new, mainly geometrical, tailor-made techniques that we have devel-
oped especially for the Deffuant model. The first step is a step of visualization that
allows to identify the state of the system at any given time with a doubly-infinite
broken line: for every space-time point (x, t) ∈ Z× R+ we define

ξt(x) =
∑

0≤y≤x−1

(2ηt(y)− 1) 11{x > 0} −
∑

x≤y≤−1

(2ηt(y)− 1) 11{x < 0},

and introduce the following process that we shall call profile

ζt : Z −→ Z× R defined by ζt(x) = (x, ξt(x)) for all x ∈ Z.

The profile ζt can be seen as a doubly-infinite sequence of points in the Euclidean
plane, and it is convenient, in order to get a visual representation, to connect consec-
utive points of this sequence by a line segment in order to obtain a doubly-infinite
broken line. We point out that this broken line always goes through the origin,
while the slope of the line segment connecting the points with first coordinates x
and x + 1 is equal to 2ηt(x) − 1. This indicates that the opinion at vertex x is
related to the slope of the corresponding line segment: centrist implies that the
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slope equals zero whereas extremist implies that the slope equals ±1. The main
reason for introducing this representation is that somewhat complicated properties
related to the opinion model can be translated into much simpler geometrical prop-
erties related to its broken line representation. To briefly explain the strategy of
our proof, we first let, for all θ > 0 and A = (a1, a2) ∈ Z× R,

D(A,+ θ) = {(z1, z2) ∈ R× R : z2 − a2 = θ (z1 − a1)}

D(A,− θ) = {(z1, z2) ∈ R× R : z2 − a2 = θ (a1 − z1)}

be the straight lines going through A with slope θ and −θ, respectively. These two
straight lines divide the Euclidean plane into four infinite triangles:

West (A, θ) = left triangle East (A, θ) = right triangle

North (A, θ) = upper triangle South (A, θ) = lower triangle.

From a topological point of view, we assume that West and East are closed sets
whereas North and South are open sets. The main objective of Section 3 is to
study certain dynamical properties of the profile. First, we will prove that, if the
left part of the profile starting at vertex x is initially contained in the left triangle
with corner ζ0(x), then the inclusion remains true at all times provided the profile
at vertex x is static. More precisely, conditioned on the events that

ζ0((−∞, x]) ⊂ West (ζ0(x), θ) and ζt(x) = ζ0(x) for all t > 0 (2.1)

the inclusion remains true at all times:

ζt((−∞, x]) ⊂ West (ζ0(x), θ) for all t > 0. (2.2)

Note that this last inclusion implies that the slope of the line segment connecting
vertices x and x + 1 is bounded in absolute value by θ, hence the opinion at x is
within distance θ of the centrist opinion at all times. This property will be used in
Section 5 together with the fact that (1.2) can be simply written as

Ωj = {x ∈ Z : ζ0(Z) ⊂ West (ζ0(x), θ) ∪ East (ζ0(x+ j), θ)}

and obvious symmetry properties to prove that, for all ǫ < 1/2, there exists θ
small such that vertices that belong to the set F1 are never compatible with their
right neighbors. This is the key to proving the lack of convergence to a consensus
and thus Proposition 1.2. The consensus part given by Proposition 1.1 is more
challenging. Since in this case all vertices eventually interact with their neighbors,
the main difficulty is to prove a property of the type (2.1) implies (2.2) in the
more general case when the opinion at each vertex is not static. This is the second
objective of Section 3 where we prove that, whenever

ζ0(Z) ⊂ West (ζ0(x), θ) ∪ East (ζ0(x), θ), (2.3)

we have, uniformly over all realizations of the Deffuant dynamics,

ζt(Z) ⊂ West (ζt(x), 3θ) ∪ East (ζt(x), 3θ) for all t > 0. (2.4)

This will be used in Section 4 to prove that, for all ǫ > 1/2, there exists θ small
such that vertices in the set Ω0 keep interacting with their neighbors to spread
an almost centrist opinion, which is the key to proving convergence of the system
to a consensus and Proposition 1.1. More precisely, the fact that Ω0 is almost
surely infinite induces a partition of Z into finite intervals whose boundaries are
arbitrarily close to the centrist opinion at all times, and thus compatible with all
other vertices when ǫ > 1/2. These boundaries act as sources from which the
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centrist opinion spreads, which implies that all the opinions in any given finite
region reach eventually a consensus.

To deduce that ǫc = 1/2 when starting with opinions which are independent and
uniformly distributed, the last step is to establish Proposition 1.3, which is carried
out in Section 6 where we study certain asymptotic properties of the initial profile
using random walk estimates to get conditions like (2.1) and (2.3). The connection
with random walks is obtained by thinking of the spatial structure Z as a doubly-
infinite temporal structure, in which case the initial profile can be seen as the
concatenation of the realizations of two symmetric random walks, both starting at
zero at time 0 and both having increments which are uniformly distributed over the
interval (−1, 1), but with one random walk evolving forward in time and the other
one evolving backwards in time. Using this approach and dissecting the random
walk trajectory at some specific random times, we prove that, for all integers j, the
random set Ωj is almost surely infinite. Since the event that x ∈ Ω1 is independent
of the slope of the line segment connecting x and x+ 1, there exist infinitely many
vertices in the set Ω1 with initial opinion arbitrary close to one of the two extremist
opinions, which implies that the set F1 also is almost surely infinite.

3. Preliminary results: dynamical properties of the profile

In this section, we prove that (2.1) implies (2.2) and that (2.3) implies (2.4)
relying on new geometrical arguments. First, we let

Tr (A,B,C) = {µA · A+ µB ·B + µC · C such that µA, µB, µC ≥ 0

and µA + µB + µC = 1} for A,B,C ∈ R
2

denote the triangle with corners A, B and C. In addition,

D(A,B) is the straight line going through A and B,

slope D(A,B) is the slope of the straight line D(A,B),

A ≪ B means that A is below B, i.e., the second coordinate of A is
smaller than or equal to the second coordinate of B,

A ≪ D(B,C) means that A is below D(B,C), i.e., point A belongs to the
lower half plane delimited by the straight line D(B,C).

It will be convenient to use an idea of Harris (1972) and think of the model as being
generated by the graphical representation that consists of the following independent
processes: for all x ∈ Z, let Nt(x) be a Poisson process with intensity one, and

Λ(x) = {t : Nt−(x) 6= Nt(x)}

be the arrival times of this Poisson process. Then, adding one dimension for time,
we define a percolation structure by drawing a double arrow between x−1 and x at
time t ∈ Λ(x) to indicate that both vertices interact, which may or may not result
in an update depending on whether the vertices’ opinions are compatible or not.
Here and later, we use the word compatible to indicate that the opinion distance
between both vertices is smaller than the confidence threshold. We start with two
preliminary results that will be applied repeatedly later.

Lemma 3.1. For all (z, t) ∈ Z× R, we have

ζt(z) ∈ Tr (ζt−(z − 1), ζt−(z), ζt−(z + 1)).
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Proof: We fix a time t > 0 and, to avoid trivialities, assume that t ∈ Λ(z0). Then,
only the opinions at the vertices z0 − 1 and z0 may be updated and

ηt(z0 − 1) + ηt(z0) = σz0 ηt−(z0 − 1) + σz0 ηt−(z0)

= ηt−(z0 − 1) + ηt−(z0)

regardless of the compatibility of the vertices, hence ζt(z) = ζt−(z) for all z 6= z0.
In particular, the lemma holds for all z 6= z0. Similarly, we have

ζt(z0) = ζt−(z0) whenever |ηt−(z0 − 1)− ηt−(z0)| ≥ ǫ.

It remains to deal with the (only nontrivial) case when vertices z0 − 1 and z0 are
compatible at time t− and interact at time t, or equivalently when

t ∈ Λ(z0) and |ηt−(z0 − 1)− ηt−(z0)| < ǫ.

In this case, ζt(z0) 6= ζt−(z0) but we have

ξt(z0) = ξt(z0 − 1) + (2ηt(z0 − 1)− 1)

= ξt−(z0 − 1) + (2σz0 ηt−(z0 − 1)− 1)

= ξt−(z0 − 1) + (2 (1− µ) ηt−(z0 − 1) + 2µ ηt−(z0)− 1).

Decomposing 1 = µ+ (1 − 2µ) + µ and 1− µ = (1− 2µ) + µ, this becomes

ξt(z0) = µ ξt−(z0 − 1) + (1− 2µ) (ξt−(z0 − 1) + (2ηt−(z0 − 1)− 1))

+ µ (ξt−(z0 − 1) + (2ηt−(z0 − 1)− 1) + (2ηt−(z0)− 1))

= µ ξt−(z0 − 1) + (1− 2µ) ξt−(z0) + µ ξt−(z0 + 1).

Since µ+ (1− 2µ) + µ = 1, it follows that

ζt(z0) = µ ζt−(z0 − 1) + (1− 2µ) ζt−(z0) + µ ζt−(z0 + 1).

Since in addition µ ≤ 1/2, all three coefficients in this linear combination are
nonnegative, from which we deduce that the point ζt(z0) can be expressed as a
barycenter with nonnegative weights of the three corners, therefore it belongs to
the corresponding triangle. This completes the proof. �

Lemma 3.2. Let C ⊂ R× R be a convex set, z1 < z2, and assume that

ζs(z1) = ζ0(z1) and ζs(z2) = ζ0(z2) for all s ≤ t and ζ0((z1, z2)) ⊂ C.

Then, we have ζs((z1, z2)) ⊂ C for all s ≤ t.

Proof: As in the proof of Lemma 3.1, times at which the process is not updated
can be ignored, therefore it suffices to prove the following: whenever

s ∈ Λ(z0) ∩ (0, t) and |ηs−(z0 − 1)− ηs−(z0)| < ǫ

we have the implication

ζs−((z1, z2)) ⊂ C implies ζs((z1, z2)) ⊂ C.

Note that z0 cannot be equal to z1 or z2 since the profile at these two vertices is not
updated before time t by assumption, while the case when z0 /∈ (z1, z2) does not
affect the configuration of the profile in the convex set. To prove the implication
in the case when z0 ∈ (z1, z2), note that

ζs(z) = ζs−(z) ∈ C for all z ∈ (z1, z2), z 6= z0

while to deal with vertex z = z0, we use

ζs−(z0 − 1), ζs−(z0), ζs−(z0 + 1) ∈ C
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the convexity of C, and Lemma 3.1 to deduce that

ζs(z0) ∈ Tr (ζs−(z0 − 1), ζs−(z0), ζs−(z0 + 1)) ⊂ C.

This completes the proof of the lemma. �

Proposition 3.3. (2.1) ⇒ (2.2), i.e., whenever

ζ0((−∞, x]) ⊂ West (ζ0(x), θ) and ζt(x) = ζ0(x) for all t > 0

the inclusion remains true at all times:

ζt((−∞, x]) ⊂ West (ζ0(x), θ) for all t > 0.

Proof: This follows from Lemma 3.2 since West (ζ0(x), θ) is convex. �

Proposition 3.4. (2.3) ⇒ (2.4), i.e., whenever

ζ0(Z) ⊂ West (ζ0(x), θ) ∪ East (ζ0(x), θ)

we have, uniformly over all realizations of the Harris’ graphical representation,

ζt(Z) ⊂ West (ζt(x), 3θ) ∪ East (ζt(x), 3θ) for all t > 0.

As mentioned in Section 2, the proof of Proposition 3.4 is more challenging because
it is no longer assumed that the profile at the common corner of the left and right
triangles is static. In particular, the profile is no longer contained in the union
of the left and right triangles. The first step is to show that the profile cannot
simultaneously intersect the upper triangle and the lower triangle, which again
relies on Lemma 3.1. This is done in the following lemma.

Lemma 3.5. Assume (2.3). Then, for all t ≥ 0,

ζt(Z) ∩ South (ζ0(x), θ) = ∅ or ζt(Z) ∩ North (ζ0(x), θ) = ∅. (3.1)

Proof: The key is to prove conjointly (3.1) and the fact that the part of the pro-
file that has moved outside the left and right triangles is connex. To make this
statement rigorous, we introduce the collections of subsets

Cx = {(z1, z2) ∩ Z : z1 ≤ x ≤ z2}

ΥNorth (t) = {z ∈ Z : ζt(z) ∈ North (ζ0(x), θ)}.

In particular, ∅ ∈ Cx. Then, we will prove that either

ζt(Z) ∩ South (ζ0(x), θ) = ∅ and ΥNorth (t) ∈ Cx (3.2)

holds or the dual property obtained by exchanging North and South holds. Before
proving that the dynamics preserve (3.2) or its dual property, we observe that both
equalities in (3.1) hold simultaneously at time 0 while we also have

ΥNorth (0) = ΥSouth (0) = ∅ ∈ Cx

therefore both (3.2) and its dual property hold at time 0. Let t ∈ Λ(z0) and assume
that (3.2) holds at time t− just before the process is updated. First, whenever

ζt−(z0 − 1), ζt−(z0), ζt−(z0 + 1) ∈ North (ζ0(x), θ)

the updated point ζt(z0) also belongs to the upper triangle according to Lemma 3.1
since the upper triangle is convex, hence property (3.2) holds trivially. The same
holds if all three points belong to the left triangle or all three points belong to the
right triangle. Second, whenever

ζt−(z0 − 1) ∈ West (ζ0(x), θ) and ζt−(z0 + 1) ∈ North (ζ0(x), θ)
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the intermediate point ζt−(z0) belongs to either the left triangle or the upper tri-
angle. Since the union of these two triangles is convex, the first equality in (3.2)
holds at time t. Also, since the connexity property holds at time t−

z0 = min ΥNorth (t−) or z0 = min ΥNorth (t−)− 1

hence ΥNorth (t) ∈ Cx that z0 ∈ ΥNorth (t) or not, which proves that (3.2) holds at
time t. The same holds if the two neighbors of the point to be updated belong to
the upper triangle and the right triangle, respectively, at time t−. To conclude, we
examine the remaining case when

ζt−(z0 − 1) ∈ West (ζ0(x), θ)

ζt−(z0) ∈ North (ζ0(x), θ)

ζt−(z0 + 1) ∈ East (ζ0(x), θ)

which imposes z0 = x. The connexity property is useful in this case. If the updated
point remains in the upper triangle then (3.2) holds trivially at time t, whereas if
the updated point jumps outside the upper triangle one has

ΥNorth (t) = ∅ and ΥSouth (t) ∈ {∅, {x}}

since ΥNorth (t−) = {x} by connexity. This implies that

ζt(Z) ∩ North (ζ0(x), θ) = ∅ and ΥSouth (t) ∈ {∅, {x}} ⊂ Cx

which gives the dual property of (3.2). This completes the proof. �

Returning to the proof of Proposition 3.4, assume first that ζt(x) = ζ0(x). In this
case, the proof of Lemma 3.5 implies that the profile at time t is contained in the
union of the left and right triangles therefore, following the lines of the proof of
Proposition 3.3, we deduce that

ζt(Z) ⊂ West (ζt(x), θ) ∪ East (ζt(x), θ)

⊂ West (ζt(x), 3θ) ∪ East (ζt(x), 3θ) for all t > 0.

To deal with the case ζt(x) 6= ζ0(x), we may assume that ξt(x) > ξ0(x) without loss
of generality in view of the obvious symmetry of the problem. The idea is to break
down the evolution of the process at some random times going backwards in time,
and then deduce relevant properties that hold between these consecutive random
times going forward in time. Let

s(x) = sup {s < t : ξs−(x) < ξ0(x) ≤ ξs(x)},

be the last time before time t the profile at x jumps above ζ0(x),

m(x) = max {ξs(x) : s ∈ (s(x), t)}

t(x) = inf {s ∈ (s(x), t) : ξs(x) = m(x)}

and denote by D(x) the straight line

D(x) = D(ζt(x)(x− 1), ζt(x)(x+ 1)).

In a similar way, we define recursively for j ≥ 1

s(x+ j) = sup {s < t(x+ j − 1) such that

ξs−(x + j) < ξt(x+j−1)(x + j) ≤ ξs(x + j)},
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the last time before t(x+ j − 1) the profile at x+ j jumps above D(x+ j − 1),

m(x+ j) = max {ξs(x+ j) : s ∈ (s(x+ j), t(x+ j − 1))}

t(x+ j) = inf {s ∈ (s(x+ j), t(x+ j − 1)) : ξs(x+ j) = m(x+ j)}

and denote by D(x+ j) the straight line

D(x+ j) = D(ζt(x+j)(x+ j − 1), ζt(x+j)(x+ j + 1)).

Also, let D′(x) be the straight line parallel to D(x) going through ζt(x)(x). Finally,
we introduce the intersection points

A = D′(x) ∩ D(ζ0(x), θ) and Aj = D′(x) ∩ D((x+ j, 0),∞)

for all j ∈ Z, where a line with infinite slope means a vertical line, and let

m = max {j ≥ 0 : Aj /∈ East (ζ0(x), θ)}

B = D((x+m+ 1, 0),∞) ∩ D(ζ0(x),−θ).

The proof of Proposition 3.4 relies on Lemmas 3.6–3.10.

Lemma 3.6. For 0 ≤ j ≤ m− 1, slope (D(x+ j)) ≤ slope (D(x+ j + 1)).

Proof: Since ξt(x)(x) > ξ0(x), point ζs(x) jumps up at time s = t(x) so

ζt(x+1)(x) ≪ ζt(x)(x) = (x,m(x)) ≪ D(x) (3.3)

according to Lemma 3.1. Also, by definition of s(x + 1) and t(x + 1),

ζt(x+1)(x+ 1) = (x+ 1,m(x+ 1)) ≫ ζt(x)(x+ 1) ∈ D(x). (3.4)

In case m = 0, we are done. Otherwise,

A1 /∈ East (ζ0(x), θ) therefore ξt(x+1)(x+ 1) ≥ ξt(x)(x+ 1) > ξ0(x+ 1)

which implies that ζs(x+ 1) jumps up at time s = t(x+ 1). In particular,

ζt(x+1)(x+ 1) ≪ D(x + 1) (3.5)

according again to Lemma 3.1. We deduce that

slope (D(x)) ≤ slope (D(ζt(x+1)(x), ζt(x+1)(x + 1))) ≤ slope (D(x + 1))

where the first inequality follows from (3.3) and (3.4), and the second inequality
follows from (3.5). This proves the result at step j = 0. In case m = 1, the proof is
complete, otherwise the exact same reasoning as above gives the result at the next
step. The lemma follows from a simple induction. �

Lemma 3.7. For all j = 1, 2, . . . ,m,

ζs(x+ j) ≫ D(x) for all s(x+ j) ≤ s ≤ t(x+ j − 1).

Proof: Since ζt(x)(x+ 1) ∈ D(x), the definition of s(x+ 1) implies that

ζs(x+ 1) ≫ D(x) for all s(x+ 1) ≤ s ≤ t(x),

which proves the result at step j = 1. Now, fix j < m and assume that

ζs(x+ j) ≫ D(x) for all s(x+ j) ≤ s ≤ t(x+ j − 1). (3.6)

Using as previously that ζt(x+j)(x+ j + 1) ∈ D(x+ j), we obtain

ζs(x + j + 1) ≫ D(x + j) for all s(x+ j + 1) ≤ s ≤ t(x+ j). (3.7)

Also, from (3.6) and the fact that ζs(x + j) jumps up at time s = t(x+ j),

ζt(x+j)(x + j) ≫ D(x) and ζt(x+j)(x+ j) ≪ D(x+ j). (3.8)
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Using (3.7)-(3.8) and the fact that

slope (D(x + j)) ≥ slope (D(x))

according to Lemma 3.6, we deduce that

ζs(x+ j + 1) ≫ D(x) for all s(x+ j + 1) ≤ s ≤ t(x+ j).

The lemma follows by induction. �

Lemma 3.8. The integer m is finite.

Proof: First, we observe that

x− := sup {z < x : Nt(z) = 0} > −∞

x+ := inf {z > x : Nt(z) = 0} < +∞.

In addition, Lemma 3.2 implies that for all s ≤ t

ζs(z) ∈ West (ζ0(x), θ) ∪ East (ζ0(x), θ) for all z /∈ (x−, x+).

This and Lemma 3.7 indicate that x+m < x+ < ∞. �

Lemma 3.9. For all 0 ≤ i ≤ j ≤ m,

ζs(x+ j) ≫ D(Ai, B) for all t(x + i) ≤ s ≤ t(x+ i− 1)

where we assume that t(x− 1) = sup {s ≤ t : ζs(x) 6= m(x)}.

Proof: The result is proved by induction going forward in time starting with i = m
which is possible because m < ∞ by Lemma 3.8. According to Lemma 3.7,

ζs(x+m) ≫ Am for all s ∈ [t(x+m), t(x+m− 1)]

⊂ [s(x+m), t(x +m− 1)],

which implies the result at step i = m. Now, fix i > 0 and assume that

ζs(x+ j) ≫ D(Ai, B) for all t(x+ i) ≤ s ≤ t(x+ i− 1)

for all j = i, i+ 1, . . . ,m. This implies that

ζt(x+i−1)(x+ j) ≫ D(Ai−1, B) for all j = i, i+ 1, . . . ,m. (3.9)

In other respects, according to Lemma 3.7,

ζs(x+ i− 1) ≫ Ai−1 for all t(x+ i− 1) ≤ s ≤ t(x + i− 2), (3.10)

while, according to Lemma 3.5,

ζs(x+m+ 1) ≫ B for all t(x+ i − 1) ≤ s ≤ t(x+ i− 2). (3.11)

Combining (3.9)-(3.11), and applying Lemma 3.2, we obtain

ζs(x+ j) ≫ D(Ai−1, B) for all t(x+ i− 1) ≤ s ≤ t(x+ i− 2),

for all j = i− 1, i, . . . ,m, which proves the result at step i− 1. �

Lemma 3.10. The slope of D(A0, B) is larger than −3θ.
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ζ0(x)

B′

B

A0
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A′

D(ζ0(x), θ)

D(ζ0(x),−θ)

D(A0,−θ)

D′(x)

Figure 3.2. Picture related to the proof of Lemma 3.10.

Proof: Since m < ∞, the line D′(x) intersects D(ζ0(x), θ) above ζ0(x). Using
obvious symmetry, we deduce that both

D′(x) ∩ D(ζ0(x), θ) ≫ ζ0(x) and D′(x) ∩ D(ζ0(x),−θ) ≫ ζ0(x)

therefore the absolute value of the slope of the straight line D(x) is strictly less
than θ. The rest of the proof is based on a simple geometric construction, which is
depicted in Figure 3.2. First, we recall that

A = D′(x) ∩ D(ζ0(x), θ)

B = D((x +m+ 1, 0),∞) ∩ D(ζ0(x),−θ)

and introduce the other intersection points

A′ = D(A0,−θ) ∩ D(ζ0(x), θ) and B′ = D(A′,∞) ∩ D(ζ0(x),−θ).

Since the absolute value of the slope of D(x) is bounded by θ,

A′ ∈ [ζ0(x), A] and so B′ ∈ [ζ0(x), B].

This implies that the absolute value of the slope of D(A0, B) is smaller than the
absolute value of the slope of D(A0, B

′) which is 3θ since

(ζ0(x), A0, A
′, B′) is a trapezoid

and the straight lines D(B′, ζ0(x)), D(ζ0(x), A
′), D(A′, A0) have slope ±θ. �

Taking i = 0 in Lemma 3.9 gives

ζs(x+ j) ≫ D(A0, B) for all t(x) ≤ s ≤ t(x− 1) and j = 0, 1, . . . ,m.

In fact, this holds for all j ≥ 0 since by Lemma 3.5 the profile does not intersect
the lower triangle. In particular, a new application of Lemma 3.2 implies that

ζt(x+ j) ≫ D(ζt(x), B) for all j ≥ 0. (3.12)

Now, according to Lemma 3.10, we also have

slope (D(ζt(x), B)) ≥ slope (D(A0, B)) ≥ −3θ since ζt(x) ≪ A0. (3.13)
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Combining (3.12)-(3.13), and using obvious symmetry looking at the left side of
the profile rather than the right side, we deduce that

ζt(Z) ⊂ West (ζt(x), 3θ) ∪ East (ζt(x), 3θ).

This completes the proof of the proposition.

4. Proof of Proposition 1.1

Relying on the results of Section 3, we now prove convergence to a consensus
when the confidence threshold is larger than one half and (1.3) holds. The proof
relies on Proposition 3.4 which is used to show the existence of infinitely many
vertices with opinions arbitrarily close to the centrist opinion at all times. In
particular, when ǫ > 1/2, these vertices are compatible with their neighbors at all
times and act as sources from which an almost centrist opinion spreads.

Lemma 4.1. Assume that ǫ > 1/2 and (1.3) holds. Then

lim
t→∞

P (−ǫ < ηt(x) − ηt(x+ 1) < ǫ) = 1 for all x ∈ Z.

Proof: First, we let x ∈ Z, fix θ > 0 such that 4θ < min(2ǫ− 1, ǫ), and define

x− = sup {z ∈ Ω0 : z < x} and x+ = inf {z ∈ Ω0 : z > x}.

Condition (1.3) implies that

P (x− > −∞) = P (x+ < +∞) = 1 therefore x+ − x− := K < ∞ a.s.

Now, take a denominated vertex z ∈ Z and assume that vertices z and z − 1 are
compatible. Then, the opinion at vertex z after n interactions is given by

(σn
z ηt)(z) = µ (σn−1

z ηt)(z − 1) + (1 − µ) (σn−1
z ηt)(z)

= µ (σn−1
z ηt)(z − 1) + µ(1 − µ) (σn−2

z ηt)(z − 1)

+ (1 − µ)2 (σn−2
z ηt)(z)

= µ (σn−1
z ηt)(z − 1) + µ(1 − µ) (σn−2

z ηt)(z − 1) + · · ·

+ µ(1− µ)n−1 ηt(z − 1) + (1− µ)n ηt(z).

(4.1)

In other respects, since x− ∈ Ω0, according to Proposition 3.4, we have

2× |ηt(x−)− ηt(x− + 1)| = |(2ηt(x−)− 1)− (2ηt(x− + 1)− 1)|

≤ 1 + 3θ < 2ǫ
(4.2)

so vertices x− and x− + 1 are compatible at all times. In addition,

| 2 (σn
x
−
+1ηt)(x−)− 1| < 3θ for all n ≥ 0

again by Proposition 3.4. Therefore, applying (4.1) to vertex z = x−+1, we deduce
that there exists an integer N ≥ 0 fixed from now on such that

|2 (σN
x
−
+1ηt)(x− + 1)− 1| ≤ (1− (1 − µ)N )× 3θ + 2× (1 − µ)N

≤ (3 +K−1) θ.
(4.3)

We say that pattern 1 occurs from time t to time t + s whenever the graphical
representation of the process restricted to the interval [x−, x+] consists, between
these two times, of a succession of exactly N interactions between vertex x− and
vertex x− + 1, and no other interaction in the interval. Then, writing τ1 = σN

x
−
+1,
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whenever pattern 1 occurs between time t and time t + s, it follows from the
evolution rules of the process and inequality (4.3) that

|2ηt+s(x− + 1)− 1| = |2 (τ1 ηt)(x− + 1)− 1| ≤ (3 +K−1) θ

ηt+s(z) = ηt(z) for all z ∈ (x− + 1, x+).

This, together with the argument used to obtain (4.2), indicates that, each time
pattern 1 occurs, the opinion at x− + 1 is compatible with the opinion at x− + 2
and close to the centrist opinion. Now, we say that pattern 2 occurs in some time
interval whenever we see N times in a row the succession of pattern 1 and an
interaction between vertices x− + 1 and x− + 2, and then pattern 1 once more.
More generally, patterns are defined recursively with pattern k being N times in a
row the succession of pattern k − 1 and an interaction between vertex x− + k − 1
and vertex x− + k, and then pattern k − 1 once more. Since K is almost surely
finite, pattern K occurs infinitely often. In particular, defining recursively

τ1 = σN
x
−
+1 and τk = τk−1 ◦ (σx

−
+k ◦ τk−1)

N for k = 2, 3, . . . ,K

and applying successively the argument used for (4.2) show that

|2ηt+s(x− + k)− 1| = |2 (τK ηt)(x− + k)− 1| ≤ (3 + k ×K−1) θ ≤ 4θ

for all k = 1, 2, . . . ,K and some t+ s < ∞. Therefore, for all z1, z2 ∈ [x−, x+],

2× |ηt+s(z1)− ηt+s(z2)| = |(2ηt+s(z1)− 1)− (2ηt+s(z2)− 1)|

≤ 8θ < 2ǫ.
(4.4)

In view of the evolution rules of the system, (4.4) remains true after time t+ s. In
particular, the result follows by taking z1 = x and z2 = x+ 1. �

5. Proof of Proposition 1.2

In this section, we rely on Proposition 3.4 to show the lack of convergence to a
consensus whenever condition (1.4) holds and the confidence threshold is smaller
than one half. The idea is to rely on the existence of infinitely many vertices with
initial opinion arbitrary close to one of the two extremist opinions and whose neigh-
bors’ opinions are close to the centrist opinion at all times. When the confidence
threshold ǫ < 1/2, such vertices are never updated.

Lemma 5.1. Assume that ǫ < 1/2 and (1.4) holds. Then

P (card {x ∈ Z : |ηt(x) − ηt(x+ 1)| > ǫ for all t ≥ 0} = ∞) = 1.

Proof: First, we fix θ > 0 such that 2θ < 1− 2ǫ, and recall that

F1 = {x ∈ Z : x ∈ Ω1 and |2η0(x) − 1| > 1− θ}.

See Figure 5.3 for a picture. Since the set F1 is almost surely infinite according to
(1.4), it suffices to show that, for all x in this set and all t ≥ 0,

|ηt(x) − ηt(x+ 1)| > ǫ and |ηt(x) − ηt(x− 1)| > ǫ. (5.1)

Note that (5.1) follows from the claim: for all x ∈ F1 and all times t ≥ 0,

|ξt(x+ 1)− ξt(x)| > 1− θ and

ζt(Z) ⊂ West (ζ0(x), θ) ∪ East (ζ0(x+ 1), θ).
(5.2)
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x + 1

ξ0(x)

x

> 1− θ

ξ0(x + 1)

Figure 5.3. Picture of the event x ∈ F1

Indeed, (5.2) implies that |2ηt(x± 1)− 1| < θ, so by the triangle inequality

2× |ηt(x) − ηt(x ± 1)| = |(2ηt(x) − 1)− (2ηt(x ± 1)− 1)|

= |(ξt(x+ 1)− ξt(x)) − (2ηt(x± 1)− 1)|

≥ ||ξt(x+ 1)− ξt(x)| − |2ηt(x ± 1)− 1||

> |1− θ − θ| = 1− 2θ > 2ǫ

(5.3)

which gives (5.1). Now, let s ∈ Λ(z0) and assume that (5.2) holds at t = s−.

• If z0 < x then, according to Proposition 3.3, we have

ζs((−∞, x]) ⊂ West (ζ0(x), θ)

therefore (5.2) holds at time t = s.

• If z0 = x then property (5.2) holds trivially at time t = s since there is
no update due to an incompatibility at time s− between vertex x− 1 and
vertex x as shown in (5.3).

By symmetry, (5.2) holds at time t = s when z0 ≥ x + 1. Since by definition the
property also holds initially for all vertices x ∈ F1, the proof is complete. �

6. Proof of Proposition 1.3

To complete the proof of our main result, Theorem 1.4, it remains to establish
Proposition 1.3. In particular, throughout this section, it is assumed that the initial
opinions are independent and uniformly distributed over the interval [0, 1]. Recall
from Section 2 that, to prove (1.3) and (1.4), it is convenient to think of the spatial
structure Z as a doubly-infinite temporal structure, in which case the initial profile
can be seen as the concatenation of the realizations of two symmetric random walks,
one evolving forward in time and the other one evolving backwards in time. Both
random walks start at zero at time 0 and have increments which are uniformly
distributed over the interval [−1, 1]. The first step is to prove that the future of
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the initial profile starting at the current time x is contained in the corresponding
right triangle with positive probability. This is done in the following lemma.

Lemma 6.1. For all x ∈ Z and all θ > 0,

P (ζ0([x,∞)) ⊂ East (ζ0(x), θ)) = c(θ) > 0.

Proof: Since {ξ0(z) : z ≥ x} is a martingale with |ξ0(z + 1)− ξ0(z)| < cz = 2,

P (ζ0([x+ v,∞)) 6⊂ East (ζ0(x), θ))

= P (ζ0(z) /∈ East (ζ0(x), θ) for some z ≥ x+ v)

= P (ξ0(z) /∈ (ξ0(x)− θ (z − x), ξ0(x) + θ (z − x)) for some z ≥ x+ v)

≤ 2× P (ξ0(z) > ξ0(x) + θ (z − x) for some z ≥ x+ v)

≤ 2× P (ξ0(z) > θz for some z ≥ v)

≤ 2×
∑

z≥v exp(−(θz)2 (2 c21 + · · ·+ 2 c2z)
−1)

= 2×
∑

z≥v exp(−θ2z/8)

where the last inequality follows by applying the Azuma-Hoeffding inequality. In
particular, there exists a finite integer v = v(θ) fixed from now on such that

P (ζ0([x+ v,∞)) 6⊂ East (ζ0(x), θ)) ≤ 1/2.

By conditioning on the first v increments being small, we deduce

P (ζ0([x,∞)) ⊂ East (ζ0(x), θ)) = P (ζ0(z) ∈ East (ζ0(x), θ) for all z ≥ x)

≥ P (ζ0(z) ∈ East (ζ0(x), θ) for all z ≥ x |

2η0(x+ z)− 1 ∈ (−θ, θ) for z = 1, . . . , v)

× P (2η0(x+ z)− 1 ∈ (−θ, θ) for z = 1, . . . , v)

≥ θv P (ζ0(z) ∈ East (ζ0(x), θ) for all z ≥ x+ v) ≥ θv (1− 1/2) > 0.

This completes the proof. �

Similarly, the past of the initial profile starting at time x is contained in the corre-
sponding left triangle with positive probability, as show in the following lemma.

Lemma 6.2. For all x ∈ Z and all θ > 0,

P (ζ0((−∞, x]) ⊂ West (ζ0(x), θ)) = c(θ) > 0.

Proof: Using obvious symmetry, we have

P (ζ0((−∞, x]) ⊂ West (ζ0(x), θ)) = P (ζ0([x,∞)) ⊂ East (ζ0(x), θ)).

The result then follows from Lemma 6.1. �

From Lemmas 6.1–6.2 and the fact that the events

ζ0((−∞, x]) ⊂ West (ζ0(x), θ)

ζ0([x+ j,∞)) ⊂ East (ζ0(x+ j), θ)
(6.1)

are independent, it follows that the set Ωj is almost surely nonempty. To prove that
this set is almost surely infinite, the main problem is that events in (6.1) for different
values of x are not independent, and the basic idea of the proof is to show that a
bad event at x has no effect on the occurrence of the event that y ∈ Ωj provided
both times are far enough from each other. This idea is expressed rigorously in
terms of almost surely finite random times. For an illustration of the random times
introduced in Lemmas 6.3–6.4 below, we refer the reader to Figure 6.4.
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Z

ξ0(xn)

xn

xn+1 = τ (xn)

σ(xn)

Figure 6.4. Random times σ(x) and τ(x)

Lemma 6.3. For all x ∈ Z and all θ > 0,

σ(x) := inf {z ≥ x : ζ0((−∞, x]) ⊂ West ((z, ξ0(x)), θ)} < ∞ a.s.

Proof: Using the same argument as in the proof of Lemma 6.1, we obtain

P (σ(x) > x+ v) = P (ζ0((−∞, x]) 6⊂ West ((x+ v, ξ0(x)), θ))

≤ P (ζ0([x + v,∞)) 6⊂ East (ζ0(x), θ))

≤ 2×
∑

z≥v exp(−θ2z/8)

= 2× (1− exp(−θ2/8))−1 exp(−θ2v/8).

In particular, σ(x) is almost surely finite. �

Lemma 6.4. For all x ∈ Z and all θ > 0,

τ(x) := inf {z ≥ σ(x) : ζ0([z,∞)) ⊂ East ((σ(x), ξ0(x)), θ)} < ∞ a.s.

Proof: First, we observe that for all v ≥ 0

East (ζ0(x), θ/2) ∩
{

(x+ 2v,∞)× R
}

⊂ East ((x+ v, ξ0(x)), θ) ∩
{

(x+ 2v,∞)× R
}

.

In particular, using again the Azuma-Hoeffding inequality, we obtain

P (τ(x) > x+ 2v | σ(x) ≤ x+ v)

≤ P (ζ0([x+ 2v,∞)) 6⊂ East ((x+ v, ξ0(x)), θ))

≤ P (ζ0([x+ 2v,∞)) 6⊂ East (ζ0(x), θ/2))

≤ 2×
∑

z≥2v exp(−θ2z/32)

= 2× (1− exp(−θ2/32))−1 exp(−θ2v/16).
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This, together with the proof of Lemma 6.3, implies that

P (τ(x) > x+ 2v) ≤ P (τ(x) > x+ 2v and σ(x) ≤ x+ v) + P (σ(x) > x+ v)

≤ 2× (1− exp(−θ2/32))−1 exp(−θ2v/16)

+ 2× (1 − exp(−θ2/8))−1 exp(−θ2v/8).

This completes the proof. �

With Lemmas 6.1–6.4 in hands, we are now ready to prove that the set Ω0 is infinite
for almost all realizations of the initial profile. For simplicity, we give the details of
the proof only for this set and will explain in Lemma 6.7 how to deduce the result
for the set Ωj with j > 0. First, we introduce the Bernoulli random variables

h(x,+) = 11 {ζ0([x,+∞)) ⊂ East (ζ0(x), θ)}

h(x,−) = 11 {ζ0((−∞, x]) ⊂ West (ζ0(x), θ)}

and observe that we have the equivalence

x ∈ Ω0 if and only if h(x,+) = h(x,−) = 1.

Lemma 6.5. For all x ∈ Z, we have

P (h(τ(x),−) = 1 | x /∈ Ω0) ≥ c(θ) > 0.

Proof: By definition of σ(x) in Lemma 6.3,

ζ0((−∞, x]) ⊂ West ((σ(x), ξ0(x)), θ)

from which it follows that, for all (z, r) ∈ East ((σ(x), ξ0(x)), θ)

ζ0((−∞, x]) ⊂ West ((σ(x), ξ0(x)), θ) ⊂ West ((z, r), θ).

Since in addition (τ(x), ξ0(τ(x))) ∈ East ((σ(x), ξ0(x)), θ), we deduce that

ζ0((−∞, x]) ⊂ West ((τ(x), ξ0(τ(x))), θ).

Therefore, recalling the definition of h(τ(x),−), we conclude that

P (h(τ(x),−) = 1 | x /∈ Ω0)

= P (ζ0((−∞, τ(x)]) ⊂ West ((τ(x), ξ0(τ(x))), θ) |

x /∈ Ω0 and ζ0((−∞, x]) ⊂ West ((τ(x), ξ0(τ(x))), θ))

≥ infz∈Z P (ζ0((−∞, z]) ⊂ West (ζ0(z), θ)) = c(θ) > 0

where the last equality follows from Lemma 6.2. �

Lemma 6.6. For all x ∈ Z, we have

P (h(τ(x),+) = 1 | h(τ(x),−) = 1 and x /∈ Ω0) ≥ c(θ) > 0.

Proof: Recalling the definition of τ(x), we have

ζ0([τ(x),∞)) ⊂ East ((σ(x), ξ0(x)), θ).

Moreover, h(τ(x),−) only depends on the value of the initial opinions located
strictly to the left of τ(x) whereas h(τ(x),+) only depends on the initial opin-
ions located to the right of vertex τ(x). Also, the occurrence of h(x,+) = 0 is due
to parts of the profile located between vertex x and vertex

inf {z ≥ x : ζ0([z,∞)) ⊂ East (ζ0(x), θ)}
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which is smaller than τ(x). It follows that

P (h(τ(x),+) = 1 | h(τ(x),−) = 1 and x /∈ Ω0)

= P (ζ0([τ(x),∞)) ⊂ East (ζ0(τ(x)), θ) |

ζ0([τ(x),∞)) ⊂ East ((σ(x), ξ0(x)), θ))

≥ infz∈Z P (ζ0((−∞, z]) ⊂ East (ζ0(z), θ)) = c(θ) > 0

where the last equality follows from Lemma 6.1. �

Lemma 6.7. For all θ > 0, we have

P (card (Ω0 ∩ Z+) = ∞) = P (card (Ω0 ∩ Z−) = ∞) = 1.

Proof: According to Lemmas 6.5 and 6.6, for all x ∈ Z,

P (τ(x) ∈ Ω0 | x /∈ Ω0) = P (h(τ(x),−) = h(τ(x),+) = 1 | x /∈ Ω0)

= P (h(τ(x),+) = 1 | h(τ(x),−) = 1 and x /∈ Ω0)

× P (h(τ(x),−) = 1 | x /∈ Ω0) ≥ c(θ)2 > 0.

(6.2)

To deduce that, with probability one, Ω0∩Z+ is infinite, we introduce the sequence
starting at some x0 ∈ Z and defined recursively by the relationship

xn+1 := max (τ(xn), xn + 1) for all n ≥ 0.

Note that xn < xn+1 < ∞ for all n ≥ 0 by Lemmas 6.3 and 6.4. Moreover, by the
definition of the random times σ(x) and τ(x) in these lemmas, we have

xn /∈ Ω0 if and only if τ(xn) ≥ xn + 1 if and only if xn+1 = τ(xn).

In particular, applying inequality (6.2) to vertex x = xn, we have

P (xn+1 ∈ Ω0 | xn /∈ Ω0) = P (τ(xn) ∈ Ω0 | xn /∈ Ω0) ≥ c(θ)2 > 0,

hence, with probability one,

card (Ω0 ∩ Z+) ≥ card {n ≥ 0 : xn ∈ Ω0} = ∞.

The second part of the lemma follows from obvious symmetry. �

Lemma 6.8. For all integers j > 0 and for all θ > 0, we have

P (card (Ωj ∩ Z+) = ∞) = P (card (Ωj ∩ Z−) = ∞) = 1.

Proof: This is similar to the proofs of Lemmas 6.3–6.7 using the random times

σj(x) = inf {z ≥ x+ j : ζ0((−∞, x]) ⊂ West ((z, ξ0(x)), θ)}

τj(x) = inf {z ≥ σj(x) such that

ζ0([z,∞)) ⊂ East ((σj(x), ξ0(x)), θ) ∩ East (ζ0(x+ j), θ)}

in place of σ(x) and τ(x). Note that, σ0(x) = σ(x) and τ0(x) = τ(x) since

East ((σ(x), ξ0(x)), θ) ∩ East (ζ0(x), θ) = East ((σ(x), ξ0(x)), θ).

The proofs of Lemmas 6.3–6.4 easily extend to show that

P (σj(x) < ∞) = P (τj(x) < ∞) = 1 for all x ∈ Z.

Then, defining recursively xn+1 = τj(xn) starting from an arbitrary x0 ∈ Z again
induces an increasing sequence of integers since the random times are finite and

τj(x) ≥ σj(x) ≥ x+ j > x for all j > 0.
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Finally, the arguments in the proofs of Lemmas 6.5–6.7 imply that

P (xn+1 ∈ Ωj | xn /∈ Ωj) = P (τj(xn) ∈ Ωj | xn /∈ Ωj) ≥ c(θ)2 > 0,

which shows that Ωj ∩ Z+ is almost surely infinite. The complete result again
follows relying on the obvious symmetry properties of the initial profile. �

Lemma 6.9. For all θ > 0, we have

P (card (F1 ∩ Z+) = ∞) = P (card (F1 ∩ Z−) = ∞) = 1.

Proof: This follows from Lemma 6.8 with j = 1 since the event x ∈ Ω1 is in-
dependent of the slope of the line segment between vertices x and x + 1. �
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