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Abstract 

 

Most current models of delay discounting multiply the nominal value of a good whose receipt is 

delayed, by a discount factor that is some function of that delay. This article reviews the logic of 

a theory that discounts the utility of delayed goods by adding the utility of the good to the 

disutility of the delay. In limiting cases it approaches other familiar models, such as hyperbolic 

discounting. In non-limit cases it makes different predictions, generally requiring, inter alia, a 

magnitude effect when the value of goods is varied. A different theory is proposed for 

conditioning experiments. In it utility is computed as the average reinforcing strength of the 

stimuli that signal the delay. Both theories are extended to experiments in which degree of 

preference is measured, rather than adjustment to iso-utility values. 

 

Keywords: additive utilities, adjusting procedure, delay discounting, magnitude 

effect, preference procedure, Thurstone scaling
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The arithmetic of discounting 

All popular models of delay discounting assume that a proper covering model computes 

the current value of a delayed good by multiplying the amount-to-be discounted by some fraction 

that is a function of time: vDisc =  vNom f(d), where vDisc is the current discounted valuation of a 

good that will be delivered in the future, vNom is the nominal value of the good—the value that it 

would have if delivered immediately, and f(d) is some function of d, the delay interval. Classic 

instances of f(d) are exponential, hyperbolic, and hyperbolic-power functions of time, all seen in 

this journal issue.  

This preference for a multiplicative form undoubtedly stems from the interests rates 

charged or bequeathed by banks, which must provide some measure of scale invariance:  The 

proportional discount, PDisc = vDisc / vNom must be independent of the dollar value of the deferred 

good. If for some fixed period of time PDisc = 0.5, then vDisc(100) = 50; vDisc(1000) = 500, and so 

on. There is no magnitude effect: The discount factor is f(d), not f(d, vNom). If there were a 

magnitude effect—say that large vNom were discounted at lower rates than smaller ones—then an 

individual or association could make a profit by consolidating loans and receiving a better rate 

from the bank, part of which savings the financier would pocket. In like manner, if banks did not 

use the exponential discount function, it would again be possible to make money-pumps out of 

them. In this case, the financier would manage debts in time, rather than amount. If, for instance, 

banks used hyperbolic discounting, the financier would profit by marketing slowly discounted 

long-term debt against highly discounted short-term debt. Although such options are common in 

the stock market where values fluctuate moment-to-moment, banks must guarantee a fixed return 

on investment. The only discount function whose rate is independent of time is the exponential 

function. Market forces would quickly drive hyperbolic bank rates toward the exponential. 

Another historic influence on the choice of multiplicative functions has been the 

economists’ and game theorists’ models of expected value for probabilistic discounting (e.g., 
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Tversky & Kahneman, 1992; Von Neumann & Morgenstern, 2007). The use of a form analogous 

to the standard one for delay discounting (viz., vDisc =  vNom f(p)) persists despite the many 

paradoxes that arise from such computations of expected value and expected utility (Allais, 

1979; Harless & Camerer, 1994; Schoemaker, 1982; Segal, 1987).  

The constraints on brain and behavior are not the same as the constraints on banks. The 

evolutions of all are particular to their niches. It therefore makes some sense to liberalize our 

intuitions, letting the nature of the models of human behavior diverge from those normative for 

banks and economic theory. Whereas there are infinite numbers of ways we may posit more 

complex models for human behavior (see, e.g., Doyle, 2013), there are only a few ways that they 

might be simpler. In particular, consider the hypothesis that humans do not multiply the value of 

a good by a function of its psychological delay. Instead, humans form a notion of the utility of a 

good, and they form a notion of the disutility of waiting a certain length of time for it, and simply 

add those two.  

On the one hand this may seem like a stupid suggestion, as the dimensional units do not 

seem to be the same, and numbers could go negative, and isn’t it like adding apples and oranges? 

It couldn’t work. On the other hand, have you ever noticed how increasing the jackpot payoff on 

lotteries increases the number of purchasers far beyond the lotteries’ expected value? This could 

not happen if the gamblers were rational and computed expected value. We shake our heads at 

their innumeracy; but perhaps it is our models of rationality that we should be shaking our heads 

at. If humans operated according to an additive function on probability and amount, the huge 

utility of the megamillions they might win could easily overwhelm the additive disutility of the 

small probability of getting it. Pascal’s middle-aged wager (Pascal's Wager, 2014)—to give up 

the fast life because, if there is even a snowball’s chance in hell of going to heaven, then 

heaven’s infinite value was worth the gamble—might make some sense if he was adding 

utilities; but much less if computing expected value. To infer that gamblers are benighted 

because they do not adhere to our standards of rational man, or that because one class of people 

has steeper discount functions than another, that they are impulsive—short-changes our 

opportunity for understanding what they value and how they make trade-offs. Gamblers 
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knowingly pay to play; and sometimes smaller-sooner really is better; just think back to when 

you weren’t middle-aged. 

Doing the numbers 

How to make this work? To add numbers, they must have the same dimensions. It is a 

long tradition in psychophysics to recognize that animals process stimuli in ways that are 

typically non-linear functions of their magnitude. Doubling the energy of a light or intensity of a 

tone does not double their brightness or loudness. Power transformations provide a standard and 

flexible scheme for recoding stimulus magnitude. Let us see how this works for the utility of 

money. 

Twice as much of a thing is seldom twice as good. Certainly it could be the case that 

twice as much money as you have in your pocket might be just what you need to get in to the 

show, and then it might be more than twice as good. But twice as many bananas as you bought 

today would just go brown, twice as much sugar would make your coffee too sweet, and twice as 

much supper would just make you sick. Twice as much income would be very good indeed; but 

would it be twice as good? Would it make you exactly twice as happy? The curve that relates 

delight to dollars is called a utility function. 

The utility of a good (a commodity) such as the types used in delay-discounting studies 

typically have the property called decreasing marginal utility. Twice as much of the thing makes 

you somewhat less than twice as happy. Here marginal means the derivative, the slopes of the 

curves in Figure 1, where the utility—think goodness—of a commodity is plotted on the y-axis, 

and its nominal value on the x-axis. The slopes of the two curves (their derivatives) decrease 

with increasing values of the abscissae. In this paper I refer to the x-axis as value, and measure it 

in terms of dollar-value. The name of the units for utilities is utiles, which through happenstance 

rhymes with smiles. The straight line has a slope of ½: the rate of change in U(x) as a function of 

x is simply k = ½. It is constant for all values of x and thus exemplifies constant marginal utility. 

The first curved function below it is U(x) =  √kx. The margin—the derivative of utility as a 

function of x—is ½ √(k/x). The marginal utility is decreasing: The slope gets flatter as a function 
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of x, decreasing proportionately less as x gets larger (as the inverse square root of x in this case). 

The bottom function is logarithmic: U(x) = ln(kx). Its derivative is 1/x, so more of a thing gets 

better at an even slower rate.  

 

 

Figure 1. Exemplary utility functions for money. 

 

The linear utility function is the one implicitly assumed in the vast majority of delay 

discounting studies, which discount dollar value. The second was proposed almost 300 years ago 

by Cramers as the utility function for money (Pulskamp, 2013). It is consistent with the idea that 

the utility of new money increases as an inverse function of the utility of the money that we 

already have. The logarithmic function is consistent with Bernoulli’s supposition that utility 

grows in inverse proportion to the amount of money that we already have. It is the most extreme 

marginal discounting that we are likely to encounter, so forms the lower bound on plausible utility 

functions. Power functions converge on the logarithmic function as the power approaches 0.  

We can represent these functions in general as U(v) = (kv v)α. The power α (alpha) is 1 in 

the case of linear discounting, ½ in the case of Cramer discounting, and approaches zero in the 

case of logarithmic discounting. The coefficient kv is necessary because value may be measured 
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in many units—cents, dollars, Euros, pounds—but the utility of four quarters should not be very 

different from the utility of one dollar bill. This coefficient kv has units of per ¢ or per $, etc. 

The functions shown in Figure 1 are not just hypothetical. Using magnitude estimation 

techniques, Galanter (1962) found the power of the utility function for money to be around 0.4. 

Harinck and associates (Harinck, Van Dijk, Van Beest, & Mersmann, 2007) used category 

scaling to estimate the happiness resulting from finding money, and their data were consistent 

with a power function having an exponent of 0.3. Thus, the assumption underlying traditional 

delay discounting tasks is empirically false. What of the assumption underlying the perception of 

time (delay) in these tasks?   

A similar transformation on time is necessary, U(t) = (kt t)β. The estimation of elapsed 

time over small intervals is a power function with exponent just under 1 (Allan, 1983; Eisler, 

1976). But when dealing with estimates of future-time over much longer intervals, the exponent 

shrinks. The difference between today and a week from now is psychologically larger than the 

difference between 40 and 41 weeks from now. In an experiment in the context of delay 

discounting, Zauberman and associates (Zauberman, Kim, Malkoc, & Bettman, 2009) had 

subjects scale the perceived magnitude of future times, and reported the data shown in Figure 2.  

 

 

Figure 2. Magnitude estimates of psychological distance to future date. Data from Zauberman 

eand associates (2009). The curve is a power function with exponent 0.25. 
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Adding it all up. According to our additive utility hypothesis, the utility of a good with a 

nominal value of v delivered at time t, U(v, t), is the weighted combination of these functions on 

amount and delay.  

U v,t( ) =w kvv( )α − (1−w) ktt( )β      (1) 

The parameter w is the weight that the individual places on the utility of the good, in 

comparison to the disutility of waiting (0 < w < 1). Some people may be more patient, or more 

focused on the value of the good (large w); others may be on a tighter time schedule or place 

lower value on the good (small w). Because a delay in receiving a good is a disutility, the second 

term in Equation 1 subtracts from the utility of the good. Consider two instances of Equation 1. 

In the first the value is called vNom, delivered at a delay of t = d; in the second it is called vDisc 

and is delivered at a delay of t = 0: 

 U vNom ,d( ) =w kvvNom( )α − (1−w) ktd( )β  

 U vDisc ,0( ) =w kvvDisc( )α  

The adjusting-amount procedure varies the value of vDisc until the subject is indifferent 

between these two utilities. (It is also possible to adjust the delay to the deferred good with a 

fixed value for the immediate good (e.g., Green, Myerson, Shah, Estle, & Holt, 2007); those 

models are left as an exercise for the student.) We may model this indifference as equality 

between the two utilities: 

 U vDisc ,0( ) =U vNom ,d( )  

substituting,  

 w kvvDisc( )α =w kvvNom( )α − (1−w) ktd( )β  

On the right is the current utility of the deferred good whose street value is vNom. On the 

left is the utility of the good delivered immediately, whose value vDisc has been adjusted until its 
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utility equals that of the deferred good. It is dollar value, however, not utilities that are measured 

in all experiments. To compute what those must be, divide each side by the coefficients wkv
α: 

vDisc
α = vNom

α − kdβ       (2) 

The coefficient k compacts a combination of the coefficients from Equation 1: 

k =
1−w( )
w

kt
β

kv
α

      (3a) 

This is convenient, as estimation of the constituent parameters would be difficult. 

Equation 3a makes clear that the rate of discounting the utility of a delayed good, k, represents 

the relative weight on time compared to that on the good in question, along with some arbitrary 

scale factors associated with the units in which the variables are represented. In the case that the 

right-hand side of Equation 2 is negative, there is no immediate amount that is small enough, and 

the offer is rejected.  

The original derivation of this theory included the powers as coefficients of k (Equation 

3b). It remains an empirical question which version will provide the most parsimonious account 

of individual differences by rendering the parameters more orthogonal. (I’m betting on 3b). 

k =
1−w( )
w

kt
β

kv
α

α
β

      (3b) 

Finally, to deliver the prediction in terms of the currency of the experiment, raise each 

side of Equation 2 to the power 1/α (keeping α > 0): 

vDisc = vNom
α − kdβ( )1/α       (4) 

This is the key equation of the additive utility model. In the case that the disutility of 

waiting exceeds the utility of the nominal amount offered, kdβ > vNom
α , then vDisc = 0.  

As the value of α approaches 0, the power-utility function for the good may be 

represented by a power series (see the appendix). In that case, and invoking Equation 3b for the 

expansion of k, Equation 4 may be written as: 
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vDisc = vNome
− "k dβ       (5) 

The series expansion of this exponential (see the appendix) is the familiar: 

vDisc =
vNom
1+ !k dβ

       (6) 

This traditional form is thus consistent with a very concave or logarithmic utility function 

for money and its additive combination with the disutility of delay. Because the utility of the 

good does not enter Equations 5 and 6, they are useful whenever value is not independently 

varied along with delay, giving the same results as Equation 4 (with changes in the parameter 

values), but saving the now redundant parameter α. The rates of discounting in Equations 5 and 

6 are independent of vNom, so they predict no magnitude effect. This derivation of the hyperboloid 

predicts that the rate of decay k’ will be inversely proportional to the power β (see the appendix).  

Equation 5 is interesting because it returns the bankers’ discount function, corrected for 

nonlinearity in the future-time function. It has been suggested as a discounting model by Ebert 

and Prelec (2007). It restores bankers’ rationality to discounting decisions if we assume a steeply 

curved utility function for money α à 0, and a nonlinear valuation of future-time. Their article is 

interesting because it demonstrates how the temporal discount function (in particular, the value 

of β) is readily subject to manipulation. We may infer that some of the large heterogeneity in 

discounting that is found in typical studies may be due to idiosyncratically perturbed future 

perspectives of the subjects (term papers or rents imminent in one case, an endless summer lying 

ahead in another). If so, standard framing instructions may help control this unwonted variability. 

Alternatively, using existing techniques (see, e.g., Zauberman et al., 2009), future perspective 

might be measured and used as a covariate. 

According to the additive discount model of Equation 4, the apparent rate of discounting 

will depend on the magnitude of the value that is discounted. Imagine discounting a good of 

large value where vNom
α >> kdβ . Then the additive temporal disutility would be relatively 

negligible, and discounted value would essentially equal the nominal value. The utility of heaven 

is essentially the same whether it comes in days or in decades. For the same reason the state of 
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the planet 100 years from now is so distant that no economic models with sensible exponential 

discount rates would counsel expending many resources abating climate change today 

(Dasgupta, 2006). But there are some individuals for whom the utility of a viable planet for their 

children’s children is so great that reductions in carbon emission are of focal importance despite 

their deferred payoff. This makes sense in the additive model, without invoking the issue of 

intergenerational equity (Portney & Weyant, 1999). Conversely, for goods of little value time 

becomes of the essence, with any delay deadly to the enterprise.  

The problem of scale invariance 

All standard discounting models of the form vDisc =  vNom f(d) are scale invariant over the 

nominal value: They must predict discounting at the same rate for all values. When the delay 

vDisc is 0, then the proportional value of the nominal good as a function of delay is  

PDisc = vDisc / vNom = f(d), for all vNom. This is also true of Equations 5 and 6. This is counter to 

the facts of human delay discounting, so all such models must deal with that invalidation by ad 

hoc adjustments of the discount rate k. Equation 4 shows how a model with parameter invariance 

can predict scale variance.  

Figure 3 shows representative predictions of the model with α = 0.09, β = 0.65, and k = 

0.007 for time measured in months. Overlaying the curves are classic data from Green and 

associates (Green, Myerson, & McFadden, 1997). Note that at 20 years PDisc ≈ 0.2 for $100 and 

≈ 0.4 for $100K. The failure of scale invariance becomes more obvious than that visible in 

Figure 3 when delay discount experiments are done in real-time. Imagine being in a real-time 

delay-discount experiment where you must wait 20 minutes for a unit payoff. What will you take 

immediately rather than that delayed amount? In all likelihood you would discount it steeply, 

especially if it is small, and the discount function would plummet invisibly close to one of the y-

axes in Figure 3 (see Johnson, Hermann, & Johnson, 2014). The disutility of waiting depends on 

what is bundled with it: If it is life as usual, the weight on time will be small; if it is solitary 

confinement in a laboratory, it will be large (Paglieri, 2013).  
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Figure 3. The time course of Equation 2 as a function of magnitude and delay of a hypothetical 

payoff. Despite the apparently steeper discounting of small amounts, the three key 

parameters of Equation 2 were the same across all panels. Data from (Green, Myerson, & 

McFadden, 1997).  

 

Disutilities  

What if we are threatened with a loss, rather than promised a gain? The arithmetic should 

continue to work if we couch the problems correctly. (Such couching is the creative part of doing 

this kind of arithmetic, as it involves modeling how the subjects frame the losses and gains. 

Tversky & Kahneman, 1981). Suppose that you are offered the ability to pay to decrease the cost 
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of a future assessment of 200 dollars. The simplest framing of this decision is to ask for what 

value x the disutility of paying it now would just balance the disutility of paying $200 after a 

delay of d months. Of course, you must also assume that you have the money in your account to 

be able to pay—call that vAcct. This situation recasts Equation 2 as vAcct
α − vDisc

α = vAcct
α − vNom

α + kdβ . 

Now the utility of the delay is positive, as we are willing to pay to delay: witness credit cards. 

After rearranging, this framing leads to Equation 2 and thence 4. Figure 4 shows the model 

aligned with data from the third experiment of Estle, Green, Myerson, and Holt (2006). They 

show a large magnitude effect for gains, reflected in a relatively large value for α, and a smaller 

one for losses (the magnitude effect was not found to be significant for losses in the analysis of 

parameters from individual data). Losses showed a smaller rate of discounting (k) than wins. 

Perhaps a better framing of the arithmetic will reveal an invariance lurking behind this apparent 

difference; or perhaps different α’s and k’s for wins and losses tells us something distinctive and 

irreducible about the utility of gains and losses. 

 

 

Figure 4. The discount functions for gains and losses, from Estle et al. (2006). The circles depict 
gains of $40,000 (filled) or $200 (unfilled). The squares depict large and small losses, 
following the same convention. The curves are from Equation 2 (divided by the magnitude 
of loss or win), with α = 0.135, β = 0.49, and k = 0.42 for gains and 0.25 for losses. 
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A very convincing absence of magnitude effects was found in a recent study (Green, 

Myerson, Oliveira, & Chang, 2014) for subjects choosing between immediate and deferred 

payments (losses) over a large range of amounts. Why should there be no magnitude effect for 

payments in general, if that is the case—as other studies (e.g., Mitchell & Wilson, 2010) also 

find? One possibility is that the (dis)utility function for losses really has a near-zero power α, 

corresponding to the lowest curve in Figure 1. Once a person has incurred some debt, additional 

debt is just another drop in the bucket—in for a penny, in for a pound—and best not to think too 

hard on it. Perhaps the debt becomes in some sense imaginary once it exceeds the current vAcct. 

Why was there then a (small) magnitude effect for losses in two experiments in the former (Estle 

et al., 2006) study? Possibly in the 50% of the cases when the receipts conditions preceded the 

payments condition, that primed the subjects to be more sensitive to magnitudes.  

 

When the data suffice to support 3 parameters, the additive utility model provides more 

useful information than some other models. It tells us how nonlinearities in psychological time 

and in the utility of goods may interact to determine choice. It prevents us from confusing 

different discount rates with differences in time horizons or in marginal utilities of the deferred 

good. Figure 5 shows how this might happen (note the logarithmic x-axis). Because the utility 

function for money is straighter (although still quiet curved), the additional amounts available by 

waiting are worth waiting for. But in the case of the very curved utility function for food, a large 

number of additional bananas or pizzas or pudding will add very little additional utility. Thus the 

food curve drops quickly—not because the discount rate is higher (it is not: k is the same for all 

curves)—but because the subjects are not greedy for amounts that add very little quality to their 

lives (as reflected in the different values of α).  

 



Running head:  ADDING UTIITIES 15 

 

 

Fig. 5. The discount functions for three commodities, from Charlton and Fantino (2008). The x-

axis has been logarithmically transformed to increase clarity of presentation. Equation 4 

drew the lines, with only the utility function for goods varying. Food satiated most 

quickly (α = 0.04), followed by books, and money was slowest to satiate (α = 0.14). 

 

Rat economics  

Animals less verbal than humans deal poorly with hypothetical stipulations of delays to 

amounts of reinforcement. They must be conditioned to choose between stimuli associated with 

particular amounts and delays. The simplest exponential delay of reinforcement gradient, 

averaged over the duration of the stimulus, estimates its conditioned strength:  

s(v,d)∝u v( )1− e
−kd

kd
      (7) 

In deriving Equation 7, the area under the exponential trace from the onset of the stimulus 

until the delivery of the reinforcer is summed (the numerator of Equation 7 over k) and divided 

by its duration d to compute its average strength. The exponential form of the gradient is based 
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on some evidence and argument (e.g., Johansen, Killeen, Russell, et al., 2009; Johansen, Killeen, 

& Sagvolden, 2009). In the limit as d à 0, s(v,d) à u(v). 

The conditioned reinforcing strength, s(v,d), is proportional to the strengthening effect of 

that amount of reinforcement, u(v), delivered at that delay. The function u(v) is typically  

concave (e.g., Killeen, 1985): 16 pellets are less than twice as reinforcing as 8 pellets. Equation 7 

is a multiplicative, not additive model, however, therefore no magnitude effect is predicted—or 

found (Oliveira, Green, & Myerson, 2014). The discount parameter k is a measure of the 

steepness of the delay of reinforcement gradient. The curves drawn by Equation 7 are 

indistinguishable from those drawn by Equation 6 (Killeen, 2011, Eqs. 2 & 3). Equation 7 places 

all the emphasis on the conditioned reinforcement strength of the stimulus signaling the options, 

but for nuance, the role of direct reinforcement of the choice response by the delayed primary 

reinforcer may be taken into account (Killeen, 2011). 

 

Preference 

Some experiments use a different paradigm to assay delay discounting: They measure the 

proportion of responses for one good over another without adjusting to indifference. This yields 

a very different dependent variable. There is no reason that degree of preference should follow a 

hyperbolic function, or even a relative measure of strength (despite some misguided suggestions 

that it should, e.g., Killeen, 2011). If I repeatedly gave you the choice between $100 and $200 I 

would be quite surprised if you chose the larger amount only 2/3 of the time. If I repeatedly gave 

you the choice between $100 and $120 I would be at least as surprised if you chose the larger 

amount only 55% of the time. Animals should always choose what they most prefer, assuming 

that they can make that judgment. But concurrent reinforcement schedules, in which degree of 

preference is routinely measured, is a confusing situation. Entering such a situation, clear and 

near-exclusive preferences are soon degraded (Crowley & Donahoe, 2004). How to apply the 

arithmetic of discounting here? It is worth assaying a classic off-the-shelf model of confusion, 

Thurstone scaling (Thurstone, 1927) incorporated into signal detection theory as its foundational 
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model. Other models of schedule confusion are available (e.g., Nevin, 1981) and worth 

exploring.  

Thurstone’s confusion model represents the utility of packages of goods and delays not as 

exact values, but as distributions around a mean. Adjustment procedures titrate some parameter 

so that the distributions of utilities of two packages of goods-plus-delays align at a common 

mean. Preference procedures leave them as two distributions on a line of utility, partially 

overlapping. The probability that one package, say s(v1,d1) , will seem better than another, say, 

s(v2,d2 ) , at the moment of choice is most concisely given by a cumulative normal distribution:  

p O1( ) =Φ s(v1,d1)− s(v2,d2 )−b,σ( )      (8) 

The probability of choosing Option 1 is a cumulative normal function (Φ) of the 

difference between the two strengths, less a bias parameter b, with a standard deviation of σ 

(sigma). When sigma is very small, the function is a step-function, the subject always preferring 

the better (say, the large delayed option) until a parameter (say, its delay) becomes sufficiently 

large that it prefers the alternative option. As σ gets larger, the function flattens into an ogive. A 

logistic distribution would work as well as the normal here. Figure 6 shows an exemplary 

application of Equation 8, employing Equation 7 to measure strength, and keeping b = 0. 

Although both parameters drove the SHR rats toward a steeper function, it is possible to 

construct steep functions with either of the parameters. Equation 8 may also be used for human 

preferences, substituting U vi ,di( ) for s(vi, di). A version of the Thurstone model has been used to 

study memory (White & Wixted, 1999). Davison and Nevin (1999) have used a similar logistic 

model to develop a general theory of the relations among responses stimuli and reinforcers.  
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Fig. 6. Data from Fox, Hand, and Reilly (2008), who offered two strains of rats (WKY and SHR) 

the choice of 1 pellet delivered immediately or 3 after the delay indicated on the x-axis. 

In deploying Equation 7 for only two amounts, it sufficed to set u(1) = 1 and u(3) = 3, but 

this will not always be the case. Because these measures of reinforcing strength do not cancel 

when differences (rather than ratios) are taken, there will be a kind of magnitude effect found 

with this model. Doubling both amounts will move the distributions apart (akin to reducing σ) so 

that preferences on either side of the indifference point will get more extreme. It is notable that 

all of the reports of magnitude effects (or reverse magnitude effects) with rats used the 

preference paradigm (Oliveira et al., 2014, Table 3), whereas there was no evidence of 

magnitude effects in non-verbal animals using the adjustment paradigm.  

Discussion 

Arithmetic is relatively easy, but deciding what to add requires a sense of how the 

organism evaluates the options available to it, and how those might be affected by the framing of 

the experimental paradigm. It requires experimentation with the math, as much as with the rats. 

Therefore all of the above models should be viewed as hypotheses. The readers are invited to do 

their own sums. In addition they might test some of the qualitative predictions of this simple but 

strange approach, some of which are found in (Killeen, 2009). Serious evaluation of the models 

requires analyses of data from individual subjects, as averaging curvilinear functions can 

mislead. Green, Myerson, and their collaborators provide many examples of the proper ways to 

analyze such data.
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Appendix 

The limit as α  à  0. 

Restating Equation 2: 

vDisc
α = vNom

α − kdβ       (A1) 

The Maclaurin series expansion of vα is (Burington, 1948, p. 44): 

vα =1+α ln(v)+
α ln(v)( )2

2!
+ ...    (A2) 

For small values of α all but the first two terms of the series may be ignored, as higher powers of 

α quickly become minuscule. Substituting those into Equation A1: 

1+α ln(vDisc )=1+α ln(vNom )− kd
β     (A3) 

Rearranging: 

ln(vDisc )= ln(vNom )−
k
α
dβ      (A4) 

Exponentiating: 

vDisc = vNome
−
k
α
dβ

      (A5) 

Here is where taking Equation 3b as the proper expansion of k is useful, as the parameter alpha 

cancels out of the exponent, avoiding division by zero in the limiting case: 

vDisc = vNome
−k 'dβ       (A6) 

with 

!k =
1−w( )
wβ

kt
β

kv
α

      (A7) 

Reducing to the hyperboloid 

Equation A6 may be written as: 
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vDisc =
vNom
e !k dβ

       (A8) 

Notice that if v in Equation A2 is e, then it may be written as: 

 

eα =1+α +α
2

2!
+ ...       (A9) 

In this case, α = "k dβ . Then substituting the first two terms for the denominator of Equation A8, 

that may be written as: 

vDisc =
vNom
1+ !k dβ

       (A10) 

 

This is the standard hyperboloid discounting function. Note that k’ has β in its denominator 

(Equation A7). This derivation of the hyperboloid therefore predicts that the discount rate will be 

inversely proportional to the exponent β. 
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