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Abstract

The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While
broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of
these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high
affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial
candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random
sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with
target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests
confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding
Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide
could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of
using the synbody system to discover new antibacterial candidate agents.

Citation: Domenyuk V, Loskutov A, Johnston SA, Diehnelt CW (2013) A Technology for Developing Synbodies with Antibacterial Activity. PLoS ONE 8(1): e54162.
doi:10.1371/journal.pone.0054162

Editor: Tarek Msadek, Institut Pasteur, France

Received March 20, 2012; Accepted December 10, 2012; Published January 23, 2013

Copyright: � 2013 Domenyuk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from DARPA (http://www.darpa.mil/) under the 7 Day Biodefense Program to SAJ (grant number W911NF-10-1-
0299). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors declare competing financial interests with two provisional patents 11-1392-PRO and 11-739-PRO. This does not alter the
authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: chris.diehnelt@asu.edu

Introduction

While there is no perfect understanding of the forces directing

evolution of antibiotic resistance a prominent view holds that these

issues are in part the consequence of the widespread use of broad

spectrum antibiotics [1,2]. It has been proposed that next

generation antimicrobial treatments must focus on: developing

pathogen-specific antibiotics, greatly improving diagnostics, and

expanding the role of immunotherapy [3]. Along these lines, there

has been a resurgence of monoclonal antibody (mAbs) based

therapeutic development [4,5]. Historically, antibody therapies

were the first effective anti-infective agents (e.g. for pneumonia,

meningitis, erysipelas). However, their wide usage is restricted by

the high cost of development and production of pathogen specific

mAbs and the large number of current antimicrobial drugs on the

market. Other groups are developing antimicrobial peptides (APs)

as a means of avoiding resistance, as there have been few reports of

resistance arising to APs [6]. Despite numerous attempts to

develop new AP-based therapeutics using either natural [7,8],

optimized via amino acid substitutions [9–12] or dimeric peptides

[13,14], only a few products have reached the market [15]. APs

have two limitations. One is that there are relatively few for

development [16] (131 APs for Gram-negative bacteria and 283

for Gram-positive peptides in Antimicrobial Peptide Database,

February 2012). The second is that they generally have high

toxicity and broad activity, which is consistent with their

evolutionary origin [17].

Our group has previously developed a class of affinity agents

called synbodies that are produced by screening the target of

interest against a peptide microarray to discover low affinity

peptides that are then joined on a scaffold to produce high affinity,

highly specific binding agents [18–20]. Synbodies can be easily

modified to increase affinity [20,21], have an orthogonal

functional group that can be used for conjugation to a wide

variety of moieties, and should be ideal lead therapeutic

candidates. We sought to extend this platform to bacteria in an

attempt to create synbodies with specificity towards a target

pathogen that can function as new antibacterial candidates. By

targeting the bacterial surface, we should reduce the likelihood of

the target bacteria developing resistance.

The discovery platform is similar to the platform we have used

to develop synbodies to protein targets but with a few important

modifications: 1) whole bacteria are screened against the 10,000

random-sequence peptides microarray; 2) pathogen specific

peptides with binding or lytic action are identified from a

microarray functional screening assay and 3) combining binding

and lytic peptides produces synbodies with activity against a

particular pathogen (Figure 1A). By screening whole bacteria, we

have the ability to profile any possible pathogen without selecting

specific surface components, such as lipoteichoic acids, proteins

and peptidoglycans for Gram-positive bacteria or lipopolysaccha-

rides (LPS) for Gram-negative bacteria. The microarray based

functional assay distinguishes between peptides with antimicrobial

activity and those that bind without affecting growth providing a

large source of pathogen specific peptides that can be identified in
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a rapid manner. We hypothesize that this technology for

developing specific antibiotics to any pathogen will provide a

straightforward method for designing new compounds. As a test of

this system, we developed a synbody against Staphylococcus aureus

(SA), the Gram-positive bacteria that is one of the causative agents

of hospital acquired bacterial pneumonia [22] to demonstrate a

general method to create new antibacterial candidates.

Results

Bacterial Cell Binding to Peptide Microarrays
The basic elements of the synbody process are shown in

Figure 1A. In the first step, labeled bacteria are applied to the

peptide microarray, which consists of 10,000 peptides of 20aa

length. The composition of each peptide is known, but generated

by a random number generator using 19 aa (cysteine was omitted).

We found that the (3-aminopropyl)triethoxysilane (APTES)

microarray surface chemistry used in earlier published reports of

screening proteins, antibodies and carbohydrates [18,23–25]

showed high levels of non-specific binding to the interstitial

regions of the array and low level binding to peptide spots when

whole bacterial cells were screened. To address these issues we

developed an alternative microarray surface chemistry using a

hyperbranched polymer that reduced non-specific binding and

increased the peptide density (Figure S1). We chose a diverse set of

bacteria to test the general applicability of this approach and

screened Gram-negative bacteria, Escherichia coli O111:B4 (EC)

and Pseudomonas aeruginosa (PA); and Gram-positive bacteria,

Streptococcus mutans (SM), Staphylococcus aureus (SA) and Bacillus

subtilis (BS) against the 10,000 peptide library. In order to identify

peptides that bound to the bacteria surface but did not affect the

function of the bacterial membrane, we used Cell Tracker Orange

(CTO), an internalizing dye that is activated upon entering

bacterial cells and remains inside intact cells. Each bacterium was

labeled with CTO and screened against the peptide microarray

with each experiment performed in duplicate at with four

technical replicates per peptide sequence. The raw images

represent the same area of five peptide microarrays processed

with different bacterial species (Figure 1B), which bind in a clearly

distinguished pattern. A competition experiment was also

performed in which the CTO labeled bacterium was screened in

the presence of 206 excess of un-labeled bacteria to confirm the

bacterial cell binding. Construction of scatter plots [25,26] for

both datasets (binding and competition) (Figure 2A) reveal

peptides with signals that are at least twofold higher than those

in the presence of excess un-labeled bacteria (black filled circles in

Figure 2A). Whole bacterial cell binding can clearly be seen in

Figure 2B, where EC binding to selected peptides (highlighted in

Figure 2A) was visualized by fluorescent microscopy. This assay is

a straightforward method to identify peptides that specifically bind

a pathogen and works well for both Gram-negative and Gram-

positive bacteria (Figure 2A,C).

Figure 1. Bacteria binding to peptide microarrays. (A) Workflow to develop pathogen specific antibiotics. Bacterial cells are applied to the
peptide microarray carrying dyes either in cytoplasm or on the membrane. Intracellular dye Cell Tracker Orange (CTO) identifies peptides that bind
bacterial cells without disrupting the cell membrane while the outer membrane label Alexa Fluor 555 identifies either intact or dead cells. Comparing
the profiles of a pathogen at the same peptide sequence enables the selection of peptides with binding or lytic activity. After in vitro validation,
linking together a peptide with antimicrobial activity and a specific binder for the pathogen produces a synbody. (B) Distinct profiles of CTO stained
E.coli O111:B4 (EC), P. aeruginosa (PA), S. aureus (SA), S. mutans (SM), B. subtilis (BS) on representative sub-array (48 peptides from 10,000 total). Cell
binding signals are depicted as a false color (green).
doi:10.1371/journal.pone.0054162.g001
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Identification of Antimicrobial Peptides on a Peptide
Microarray

While this technique works well to select peptides that

specifically bind surface components on the target bacteria, these

peptides might not have intrinsic antibacterial activity. As depicted

in Figure 1, this concept of the synbody involves combining a high

specificity binding peptide with a peptide that has high antibac-

terial activity, such as a naturally occurring antimicrobial peptide.

However, many naturally occurring APs function by disruption of

the bacterial membrane and have been evolutionarily optimized to

have broad activity and can be quite toxic [17]. We hypothesized

that we could use the peptide microarray to identify both binding

peptides and lytic peptides. To do so we used an N-hydro-

xysuccinimide (NHS) ester activated dye, AlexaFluor-555 (AF) to

label the primary amines present in the bacterial membrane.

Peptides that bind but do not disrupt the bacterial membrane

should have signal when detected with both CTO and AF

(CTO+AF+) while peptides with lytic activity cause CTO to leak

out of cells once the membrane is disrupted (CTO-AF+). The

binding/competition assay was performed with SA labeled with

both dyes and peptides that showed binding to SA-CTO (black

circles) were inspected on the scatter plot with AF data (Figure 3A).

Most of the peptides repeated in the AF data can be considered as

binder-candidates (CTO+AF+). However, there are additional

peptides (red circles) in this area that may also have lytic activity

(CTO-AF+). Examples of functional assay performance with other

bacteria EC, PA, BS, SM can be seen in Supplementary Figure

S2. Examples of microarray profiles of CTO and AF labeled

bacteria for four different peptides show that the profile of binding

peptides and lytic peptides can be clearly distinguished (Figure 3B).

We then analyzed this data to determine the specificity of binding

and lytic peptides across the five bacteria tested. Using a linear

classifier, we were able to identify specific binding (Figure 3C) as

well as lytic (Figure 3D) peptide-candidates for SA.

Figure 2. Demonstration of bacteria binding to peptide microarrays. (A) Binding data of CTO stained EC (x axes) plotted vs negative control
(y axes). Both axes show raw median fluorescent signal at 543 nm on a logarithmic scale. Green lines delimit the twofold change. Dark dots outside of
two-fold change are binder-candidates. (B) EC binding to peptides annotated in (A) on custom polymer microarray detected by fluorescent
microscopy. Upper left image is negative control (non-binding peptide EFSN). Scale – 100 mm. (C) Binding and competition dataset for SM and SA.
Annotated dark dots are peptide-binders for EC selected in (A) and demonstrate binding specificity.
doi:10.1371/journal.pone.0054162.g002
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Validation of in vitro Activity of Microarray Selected
Peptides

We then tested the correlation between peptides with micro-

array predicted activity and their ability to inhibit bacterial growth

in vitro. Based on their microarray profile, we chose 40 peptides

that were identified as binding peptides, lytic peptides, or non-

binding peptides for EC, PA, SA, SM, and BS and tested each

peptide in a standard bacterial growth inhibition assay. In this

manner, we could assess the performance of the selection process.

Peptides were screened at 100 mM (Figure 4A) and the number of

peptides that inhibited bacterial growth greater than 50% is shown

in Table 1 along with the average inhibition of each group. As can

be seen, more than 50% of peptides that were predicted to have

lytic activity from the microarray assay had inhibitory activity in

vitro and those peptides showed stronger growth inhibition

compared to either peptide binders or non-binding peptides.

The correlation between inhibitory activity of immobilized

peptides and their behavior in solution was quite good considering

that the density of peptide immobilized on a microarray is quite

high. It is possible that the high avidity of the peptide on the

microarray causes some peptides to have a lytic phenotype when

immobilized but not have activity when free in solution. We next

determined the minimum inhibitory concentration (MIC) for a

subset of peptides that showed growth inhibition (Table S1). From

these data, it can be seen that a number of peptides showed broad

bacterial inhibition while other peptides had little to no activity.

Microarray predicted properties of peptides were additionally

confirmed by growing bacterial cultures on the plates after mixing

with lytic or binding peptides (Figure 4B). Peptides that were

predicted to be lytic from the microarray screen inhibited bacteria

growth while binding peptides did not. Based on these results, the

microarray screen does select peptides with antibacterial activity.

Evaluation of a S. aureus Synbody
To develop a S. aureus synbody, we combined a peptide with

activity against SA and a SA specific binding peptide (Figure 5A)

similar to the approach described in [27,28]. Peptide

RWRRHKHFKRPHRKHKRGSC (peptide RW) was selected

Figure 3. Selection of binding and lytic peptides from microarray screening. (A) Scatter plots comparing binding/competition data for SA
with intracellular stain CTO (left) and membrane label AF (right). Both axes show raw median fluorescent signal at 543 nm on a logarithmic scale.
Green lines delimit the twofold change. Peptide-binders (dark dots) are selected out of twofold change on x axes as those where CTO-cells were
competed with excess of non-stained cells and repeated with AF labeled cells. Other peptides out of twofold change on x axes at SA-AF (red dots) are
considered lytic as they were not detected with CTO. (B) Microarray binding of CTO stained vs AF labeled EC, PA, SA, SM and BS for peptides HWK,
RWR, DRI, HPW (spotted in duplicate). L = lytic peptide (CTO-AF+). B = binding peptide (CTO+AF+). N = no binding. (C) Specificity and uniqueness of
bacterial profiles at peptide microarray in binding peptides dataset (D) and for lytic peptides dataset. SA data presented in Venn diagrams have had
SM and BS binding peptides filtered out.
doi:10.1371/journal.pone.0054162.g003
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for its activity for SA and PA, while peptide DRIFHKMQHK-

PYKIKKRGSC (peptide DR) was selected for its high binding to

SA on the peptide microarray. This synbody had two times higher

antibacterial activity for SA than the original lytic peptide yet did

not inhibit growth of E. coli or S. mutans (Table 2). This was not

observed for P. aeruginosa where the MIC of the synbody is roughly

the same as that of the lytic peptide. While the synbody had

activity against B. subtilis, this bacterium was the most susceptible

to growth inhibition by individual peptides (Table S1). We also

tested the antibacterial activity against three species of bacteria

that were not included in the selection process: the closely related

commensal bacteria Staphylococcus epidermidis; and two other Gram-

negative bacteria, Escherichia coli O157:B7 and Burkholderia

thailandensis. It was found (Figure S3) that the synbody inhibited

the growth of S. epidermidis (MIC = 1.75 mM) and E. coli O157:B7

(MIC = 14 mM) while it did not inhibit the growth of B.

thailandensis, which is resistant to many antibacterial peptides

[29]. Analysis of bacterial growth kinetics (Figure 5B) illustrates the

advantage of the synbody over the original peptides at 25 mM

concentration of each. Noticeable growth of S. aureus in the

presence of the peptide RW was detected after 4 hours incubation,

while in the presence of synbody noticeable growth was detected

only after 16 hours. Interestingly, a mixture (not conjugate) of the

two original peptides RW and DR also shows improved activity,

with bacterial growth suppressed for 9 hours. However, a mixture

of peptides is still less effective than the synbody.

Figure 4. Validation of microarray predicted lytic activities of peptides. (A) Relative growth inhibition of EC, PA, SA, SM and BS by peptides
HWK, RWR, DRI, HPW, HKH at 100 mM. End-point measurement after 18 h. ‘‘+ C’’ - positive control kanamycin, 100 mM. L – microarray predicted lytic
activity of peptide B – binding activity of peptide. N – no microarray profile. The error bars are standard deviations of triplicate measurements. (B)
Cultures were plated after 5 minute incubation with 100 mM of binding or lytic peptides. Pictures were taken after 24 hours growth. Upper plate is
negative control for each strain. Peptide-binders: DRI for SA; KQK for BS. Lytic peptides: RWR for SA; HRK for BS.
doi:10.1371/journal.pone.0054162.g004

Table 1. Summary of in vitro growth inhibition screening of microarray selected peptides.

Actual versus Predicted Inhibition Average Inhibition

Bacteria Peptide Binders Lytic Peptides Non-Binders Peptide Binders Lytic Peptides Non-Binders

E. coli 0/11 5/11 1/11 0% 76% 50%

P. aeruginosa 0/17 6/14 0/7 0 82% 0%

S. aureus 0/8 6/8 0/22 0% 84% 0%

S. mutans 4/22 8/12 0/4 41% 68% 0%

B. subtilis 0/4 13/15 3/19 0% 80% 77%

doi:10.1371/journal.pone.0054162.t001
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The lytic activity of the synbody and the peptide RW was tested

by adding each to a S. aureus culture at ,1/3 of log phase at

,1.76109 CFU/ml (Figure 5C). The growth of S. aureus in the

presence of the peptide plateaus while bacteria treated with

synbody shows a gradual reduction in OD after synbody addition.

This suggests a bacteriostatic rather than bactericidal effect of the

synbody given that the synbody was added at a concentration that

was 7 times the MIC. To further clarify this effect, we performed a

kill curve kinetic study of the synbody and each peptide (Table S2).

As can be seen, kanamycin has a rapid bactericidal effect (.3 log10

reduction in CFU/mL) when added at 2 times and 4 times the

MIC. However, neither the synbody nor the individual peptides

had a bactericidal effect at 4 times the MIC. Thus, we conclude

that the synbody has a bacteriostatic rather than a bactericidal

effect on S. aureus.

The Synbody Inhibits S. aureus Induced Cell Death
To ensure that the synbody was not highly toxic like many

antimicrobial peptides, we tested the synbody for toxicity against

mammalian cells using a standard hemolytic assay against murine

red blood cells (Figure 6A) and a growth inhibition assay against

human kidney cells (HEK293) (Figure 6B). It was found that the

Figure 5. In vitro characterization of S. aureus synbody. (A) Structure of S. aureus synbody. (B) Bacterial growth of S. aureus over time after
treatment with peptides or synbody. Measurements were taken hourly. Data points represent the average of three independent experiments.
Starting S. aureus concentration is ,26105 CFU/mL. (C) Test of lytic activity of lytic peptide and synbody. S. aureus was grown until ,1.76109 CFU/
mL and the peptide or synbody was added to the final concentration of 100 mM at time zero. Data points represent the average of three independent
experiments.
doi:10.1371/journal.pone.0054162.g005

Table 2. MIC values of S. aureus binding peptide, inhibitory peptide, and synbody.

Gram-positive Bacteria Gram-Negative Bacteria

S. aureus S. mutans B. subtilis E. coli O111:B4 P. aeruginosa

DRIFHKMQHKPYKIKKRGSC N.I. N.I. N.I. N.I. N.I.

RWRRHKHFKRPHRKHKRGSC 2861.5 mM N.I. N.I. N.I. 2762.3 mM

Synbody 1460.8 mM N.I. 1461.1 mM N.I. 2261.8 mM

N.I. = no inhibition.
doi:10.1371/journal.pone.0054162.t002
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synbody did not lyse mouse red blood cells or inhibit the growth of

HEK293 cells. These data demonstrate that we can combine a

peptide with rather broad growth inhibition activity with a peptide

that specifically binds S. aureus to produce a synbody without a

widespread toxic effect.

After this preliminary toxicity test, we wished to determine if the

synbody could protect mammalian cells from bacterial induced

cell death. We used a model system where human embryonic

kidney cells (HEK293) were co-cultured with S. aureus to simulate

S. aureus infection of kidney cells in transplants [30]. Cell viability

was determined by cellular ATP content and was normalized to

100% for the cells alone control. We tested a range of conditions at

which S. aureus can grow in tissue culture media and found that

there was significant decline in HEK293 viability with as little as

1.256103 CFU/ml of S. aureus. The final experimental setup

consisted of 1.256106 CFU/ml of SA (10006 higher than

minimal harmful concentration of bacteria) added alone or with

synbody or the individual peptides added to at 25 mM. A 180 mM

solution of PenStrep was used as a positive control and provided

complete protection in this assay. Treatment with the individual

peptides offered no protection from S. aureus induced cell death

while the synbody treated cells maintained about 70% cell viability

(Figure 6C). The protective effect of the synbody on human cells

was confirmed using light microscopy after 24 hours of treatment

(Figure 6D). Large colonies of S. aureus and dead cells are clearly

seen in the untreated image while the synbody treated sample has

few colonies of S. aureus present. These results demonstrate that the

synbody has a protective effect against a simulated S. aureus

infection.

Discussion

Here we demonstrate a simple and general method for

screening bacteria on peptide microarrays. We have shown that

a variety of bacteria can be panned and simultaneously screened

for peptides that bind the bacteria or lyse them, using a two dye

system. When these peptides are resynthesized and tested in

solution, over half manifest the phenotype selected on the array.

When a SA specific binding peptide was combined in one synbody

with a broadly lytic peptide, the specificity and activity was

improved. This improved synbody was relatively non-toxic on

mammalian cells in culture. Finally, we show that the synbody is

also effective in an in vitro assay for protecting human cells against

S. aureus.

The rise of multiple sources of antibiotic resistance creates

urgency not only in the development of new antibiotics but on the

development of new systems of producing antibiotic candidates.

Figure 6. Testing of synbody toxicity and demonstration of a protective effect on human cells in co-culture with S. aureus. (A)
Hemolytic activity of SA synbody and individual peptides on mouse red blood cells. (B) Test of synbody cytotoxicity for HEK293 cells versus original
peptides. The synbody was added to cells for 48 hours and cell viability was measured by BrdU proliferation assay. (C) Viability of HEK293 cells in co-
culture with S. aureus with and without synbody treatment, as measured by cellular ATP content measurement. Data are normalized to the cellular
ATP content of cells only. Synbody (25 mM), peptide (25 mM) or antibiotic control (180 mM) was added to co-culture immediately after mixing. The
error bars represent the standard deviation of triplicate measurements. (D) Light microscopy (106) of cells only, cells in co-culture with S. aureus for
24 hours, cells treated with 25 mM RW peptide and cells treated with 25 mM synbody.
doi:10.1371/journal.pone.0054162.g006
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We are focusing on technologies to create species specific

antibiotics that would be difficult to develop resistance to. Ideally,

this technology could be applied in a systematic method that is

both rapid and cost effective. In this work, we have demonstrated

the feasibility of such a system to quickly develop an antimicrobial

synbody that has a relatively narrow specificity for Staphylococcus

aureus.

While others have detected antimicrobial activity on cellulose-

tethered peptides using bacteria transformed with luciferase gene

[31,32] our method offers several advantages over this method: (i)

the functional assay allows detection of lytic peptides as well as

peptide-binders directly on microarrays; (ii) the small peptide

library was characterized prior to spotting, in contrast to peptides

synthesized directly on the cellulose support which are not

characterized prior to use; (iii) the hyperbranched polymer surface

has higher sensitivity than other surfaces; and finally, (iv) bacteria

can be profiled in as little as 2 hours. The unique combination of

bacterial profiling on a microarray with subsequent selection of

binding versus lytic peptides enables a very straightforward process

for selection of pathogen specific candidates. The technology for

designing a synbody based on a pathogen’s microarray profile that

combines two or more peptide characteristics is fundamentally

new to the antimicrobial field. The flexibility of the platform

suggests that it would be possible to use this system to develop

antibacterial candidates to almost any pathogen in a rapid

manner. It should also be possible to improve the activity and

possibly specificity of the synbody for a target bacterium. As has

been demonstrated with proteins [18,20] combining two or more

peptides can produce synbodies with much higher affinity. A

simple mutagenesis protocol to improve peptide features for

binding proteins has also been presented [21] which may also be

applicable to bacteria. While peptide therapeutics have issues with

in vivo stability and pharmacokinetics, there are numerous

advances that have been made in the stabilization of peptide

therapeutics, that make the synbody approach a viable source of

new antibacterial candidates.

Materials and Methods

Animal experiments were conducted following an animal use

protocol (1099R) which was reviewed and approved by the

Arizona State University Institutional Animal Care and Use

Committee. Human tissue culture experiments were approved by

Arizona State University Institutional Review Board (Protocol #
0508000152).

Microarray peptides were synthesized by Alta Biosciences Ltd.

(Birmingham, UK). Lead peptides were synthesized in-house or by

Sigma Aldrich by using Fmoc chemistry and purified to 95% by

HPLC. Spectrophotometric measurements were carried out by

using a NanoDropH ND-1000, SpectraMax 190 and M5

(Molecular Devices). Microarrays were scanned with ProScanAr-

ray HT microarray scanner (Perkin Elmer).

Bacteria
Escherichia coli O111:B4 (ATCC) was grown at 37uC in Difco

nutrient broth medium for non-fastidious organisms (Becton,

Dickinson and Company 231000). Bacillus subtilis 1A423, Pseudo-

monas aeruginosa PAO-1 and Staphylococcus aureus UAB637 (kindly

provided by Center for Infectious Diseases and Vaccinology

(CIDV), the Biodesign Institute at Arizona State University (ASU))

were grown at 37uC in Luria-Bertani broth medium (LB, Fisher)

under aerobic conditions. Streptococcus mutans UAB147 Serotype C

(kindly provided by CIDV, ASU) and Streptococcus pneumoniae were

grown at 37uC in Todd-Hewitt (TH, Fisher) broth medium with

5% horse blood under anaerobic conditions. Escherichia coli

O157:H7 (ATCC) and Burkholderia thailandensis (ATCC) were

cultured in Mueller-Hinton broth medium (MH, Fisher) while

Staphylococcus epidermidis was cultured in TH broth medium.

Peptide Microarray Preparation
Prior to spotting of the peptide library, polymer slides were

prepared by: 1) Cleaning glass slides with Piranha solution (70:30

v/v mixture of concentrated H2SO4 and 30% H2O2. WARNING:

Piranha solution should be handled with caution and can detonate

if mixed with significant quantities of oxidizable organic materials)

for at least 1 hour at low rotation, followed by rinsing with H2O

and drying. 2) Slides were silanized in 1% solution of 3-

glycidoxypropyl-trimethoxysilane in anhydrous toluene for

30 minutes at 40uC, and washed with toluene (3 times). 3) Slides

were cured for 40 minutes at 120uC. 4) Slides were coated with a

solution of 6 mg/mL polyethylenimine in 10% ethanol for 1 hour

at room temperature with agitation. 5) Slides were activated with

sulfo-SMCC (Pierce Biotechnology, Rockford, IL, USA; Cat#
22622) to create a maleimide-activated surface. 6) The peptide

library was then printed using a contact spotter on the activated

slides. The maleimide-activated surface reacts with the sulfhydryl

group on the peptide’s terminal cysteine to orient the peptides on

the surface.

Microarray Assays
Before probing, the slides were treated with 90% trifluoroacetic

acid (TFA) to remove non-immobilized peptides, blocking groups

and probable organic impurities followed by dimethylfuran

(DMF), ethanol and deionized water washing. Then, the slides

were placed in a humidified chamber and blocked for 1 hour at

room temperature with buffer [3% bovine serum albumin (BSA),

0.014% mercaptohexanol and 0.05% Tween-20 in 16Tris

buffered saline (TBS)].

Turbidity of overnight cultures was measured at OD600. The

CFU/mL value was calculated according to the McFarland

Equivalence Turbidity standard (Remel, R20421). Cell cultures

were diluted to 86108 and washed 2 times with 16 phosphate

buffered saline (PBS) buffer with 0.05% FBS (Fetal Bovine Serum,

Invitrogen 10091-130). CTO staining solution was prepared by

adding 500 mL of pre-warmed appropriate media with 10 mM

CTO to one tube of washed cells and incubated in foil wrapped

tube for 1 hour at 37uC at 250 rpm. Alexa Fluor 555 NHS ester

(Invitrogen A32755) labeling solution was prepared by adding the

500 mL of 16TBS/FBS with the content of one pre-packed dye

vial dissolved in 10 mL DMSO to washed cells. The sample was

incubated in a foil wrapped tube for 1 hour at room temperature

with agitation. After staining/labeling, cells were washed with

16TBS/FBS. The amount of dyes and incubation times vary for

different pathogens and needed to be found experimentally.

After blocking the slides were washed with 16TBS-T (1630

inversion in a Coplin jar) and water (3630 inversions in a Coplin

jar). The slides were then dried by centrifugation at 1500 rpm for

2 minutes. Agilent hybridization chambers were used to ensure the

interaction of the solution (108 labeled cells in 16TBS with 0.03%

SodimM azide, 3% BSA and 0.05% Tween 20 in total 450 mL)

with the microarrays. To subtract false positive non-specific signals

driven by dye binding, we conducted competitions with 206
excess of un-labeled cells. Each microarray assay was performed in

triplicate. The slides were incubated for 1 hour at 37uC in the

rotator (Agilent Technologies). Then slides were washed with

16TBS-T (3630 inversions in a Coplin jar) and water (3630

inversions in a Coplin jar); the solution was changed each time.
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Finally, the slides were dried by centrifugation at 1500 rpms for

2 minutes and scanned.

Microarray scanning and data analysis
Microarrays were scanned by using a Perkin-Elmer ProSca-

nArray HT Microarray Scanner with the 488, 543 and 633 nm

excitation lasers at 100% power and 70% photomultiplier tube

gain. Detection was done at 570 nm for Cell Tracker Orange and

AF555, at 508 nm for SYTO 9 and at 670 nm for DRAQ5. All

scanned images were analyzed by using GenePix Pro 6.0 software

(Axon Instruments, Union City, CA, USA). Upon careful visual

inspection, bad spots were eliminated by flagging them absent.

Median spot intensities were used in further analyses. Image-

processed data were imported from GenePix for the following

statistical analysis of microarray data to GeneSpring 7.2 (Agilent,

Inc., Palo Alto, CA, USA). For correct analysis, each slide was

normalized either to 50th percentile or by subtracting the local

background from median intensity at each spot. Measurements of

less than 0.01 were set to 0.01. The microarray profiles collected

for each bacterial strain were compared by using scatter plots

[25,26]. Binding assay data were plotted versus competition assay

data for each dye separately. Peptides that demonstrated at least 2

times higher intensity in binding assay were considered for

subsequent analysis. Peptides with signals at both CTO and

AF555 dyes (CTO+AF+) were considered as binders. Lytic

peptides were selected as those with no signal in the CTO channel

and signal in the AF555 channel (CTO-AF+). In order to

distinguish specific peptide-binders and APs candidates the profiles

of different strains were compared by Venn diagrams.

Fluorescent Microscopy
For the microscopic detection of bacterial binding to the peptide

microarray we printed custom slides with 10–20 peptides of

interest. All procedures of microarray preparation and processing

were the same as described above. After the last wash, 50 mL of

16PBS was applied to the slides and spread under a cover slip.

Binding was evaluated using fluorescent microscopy (Olympus

BX61), at 660 magnification with immersion oil with Cy3

excitation laser. Digital images were collected using factory-

supplied software DP Controller 2.2.1.227 Olympus Corporation.

Synbody Synthesis
Bivalent synbody was synthesized via a modified divergent solid

phase peptide synthesis using Fmoc-Lys(ivDde)-OH as the scaffold

using the protocols outlined in [19]. Synthesis was performed by

removal of the Fmoc-protecting group followed by synthesis of

peptide 1 on a-amino group of Lysine through stepwise addition of

Fmoc amino acids. Upon completion of peptide 1 synthesis, the N-

terminal Fmoc group was substituted with Boc group prior to

deprotection of the Ne-(ivDde) protecting group. The stepwise

assembly of peptide 2 was then accomplished at Ne-lysine position

using stepwise addition of Fmoc-protected amino acids on the

peptide synthesizer. The final protected synbody was treated with

cleavage cocktail for 2 hours at room temperature and precipitat-

ed in cold diethyl ether. The solid was separated from diethyl ether

by centrifugation and the top phase decanted off and pellet re-

suspended with another addition of dry diethyl ether. The cooling

and centrifugation processes were done in triplicate, as the

construct was dried and dissolved in water for HPLC purification.

Finally, the synbody was purified by HPLC and quality was

analyzed by MALDI mass spectrometry.

Minimum Inhibitory Concentration (MIC) and Kill Curve
Kinetic Analysis

MIC determinations were conducted utilizing the broth

microdilution assay according to the Clinical and Laboratory

Standard [33] in Mueller-Hinton (MH; Fisher) broth medium at

3562uC for EC, BS, PA, SA; in MH II (cation adjusted) with 5%

horse blood for SM. CFU number controls and survivors control

in bactericidal kinetics were conducted in MH agar for EC, BS,

PA, SA; in MH II agar with 5% sheep blood for SM. For time kill

curve studies, aliquots from each sample-treated well were

removed at the indicated time point, diluted with 16 PBS, and

serial dilutions of each sample were plated on agar plates. The

plates were incubated overnight and bacterial colonies were

counted. The results reported are the average of two experiments.

Hemolytic assay
The protocol was adopted from Shin et al [34]. Female BALB/

C mice were obtained from Charles River and housed in barrier

isolation caging with food and water provided ad libitum. Mouse

blood samples were collected via submandibular venipuncture

using a 5.0 mm lancet (MEDIpoint, Inc., Mineola, NY) into

heparinized tubes. All animal experiments were conducted

following an animal use protocol (1099R) that was reviewed and

approved by the Arizona State University Institutional Animal

Care and Use Committee. Briefly, fresh mice erythrocytes were

rinsed three times with PBS, centrifuged for 15 minutes at 900 g

and resuspended in PBS. Samples (100 mL) of the suspension (4%

in PBS, v/v) were plated in 96-well microtiter plates, after which

100 mL of the appropriate concentration peptide dissolved in PBS

was added. Plates were incubated for 1 hour at 37uC and then

centrifuged at 1000 g for 5 minutes. Aliqots (100 mL) of the

supernatant were transferred to 96-well plates, where hemoglobin

release was monitored using a microplate reader (Molecular

Devices) by measuring the absorbance at 414 nm. Percent

hemolysis was calculated by the following formula: % hemolysi-

s = [(A414in the peptide solution – A414in PBS)/(A414in 0.1%

Triton-X 100 – A414in PBS)] 6100. Zero and 100% hemolysis

were determined in PBS and 0.1% Triton-X 100, respectively.

Cytotoxicity assay
HEK293 (Human Embryonic Kidney cells were purchased

from ATCC) (105/mL cells) were seeded in individual wells of a

microtitre plate and incubated for 24 hours at 37uC with 5%

carbon dioxide in EMEM supplemented with 10% fetal bovine

serum and Penicillin/Streptomycin. Cells were then challenged

with synbody or peptides from 0.05 to 100 mM for either 24 or

48 hours. Cell viability was measured spectrophotometrically

(450 nm) following the addition a peroxidase-conjugated anti-

BrdU antibody, subsequent TMB degradation by peroxidase and

stopping by acidic solution, as per the manufacturer’s recommen-

dations (Cell Proliferation ELISA, BrdU, Chemicon (Millipore)).

Human tissue culture experiments were approved by Arizona

State University Institutional Review Board.

Co-culture of human embryonic kidney cells (HEK293)
and S. aureus

Done accordingly to protocol [35] with modifications. Bacteria

were grown on Mueller-Hinton (MH; Fisher) broth medium at

37uC for overnight. The bacteria were then harvested by

centrifugation and the pellet suspended in Eagle Minimum

Essential Medium (EMEM) supplemented with 10% fetal bovine

serum without antibiotics. The bacterial density was adjusted to
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108 CFU/mL (stock). Serial dilutions of this concentration were

prepared for further experiments.

HEK293 cells were cultured in complete EMEM (Minimum

Essential Medium Eagle Media) supplemented with 10% fetal

bovine serum and Penicillin/Streptomycin for 2 days in 75 cm2

cell culture flasks (Greiner) at 37uC in humidified atmosphere

containing 5% CO2. For experiments, the cells were harvested

through trypsin-EDTA treatment, seeded into 96 well tissue

culture plates ‘‘Microtest’’ (Falcon) at concentration 46105 cells/

mL. After 24 hours, the culture medium was replaced by either

fresh EMEM without antibiotics (negative control) or S. aureus

dilutions. To make the test conditions for the Synbody more

restrictive, 10006 excess of minimal harmful concentration of S.

aureus (1.256106 CFU/mL) was chosen for the set up of the co-

culture system. Synbody and peptides RW and DR (25 mM) were

added at 1 minute after starting the co-culture. After 24 hours of

co-culture, the cell viability was determined visually and on the

basis of a luminescence ATP detection assay ‘‘ATPlite’’ (Perkin

Elmer). For the measurement of cellular ATP the cells were lysed

(50 mL of mammalian cells lysis solution to 100 mL of cell

suspension) for 5 minutes in an orbital shaker at 700 rpm. After

lysis, a 50 mL of substrate solution containing Luciferase/Luciferin

was added to react with released ATP. After 5 minutes incubation

in an orbital shaker at 700 rpm, the emitted light was measured

with a luminometer (Clarity, BioTek Instruments, Inc.). The ATP

standard sample provided in ATPlite kit was diluted and measured

to build a standard curve. Luminescence was converted to the

cellular ATP content (nM) using the standard curve. The cellular

viability under test conditions was expressed as percent of an

untreated control (HEK293 cells).

Supporting Information

Figure S1 Peptide microarray surface chemistry.
(TIF)

Figure S2 Efficacy of functional assay for distinguishing
of binding and lytic peptides directly on microarray.
AF555-NHS labeled EC, PA, BS, SM (x axis) plotted versus

themselves in competition with 206 excess of non-labeled cells (y

axis). Both axes show raw median fluorescent signal at 543 nm on

a logarithmic scale. Green lines delimit the twofold change.

Annotated dark dots are peptide-binders detected previously with

CTO for each strain specifically. Peptides are classified ‘‘Binders’’

if repeated with AF (CTO+AF+) out of twofold compared to

negative control. Other peptides in this area (red dots) have profile

‘‘CTO-AF+’’ and classified ‘‘Lytic’’. Annotated peptides (black

filled circles) within 2-fold change were ignored as CTO false

positive signals. Note that some overlap in properties binder/lytic

is possible when signal ratio AF/CTO is exceeding 1.5 for the

peptide classified as binders and getting less than 2 for lytic

peptides.

(TIF)

Figure S3 Bacterial growth inhibition assay for synbody
(red), peptides DR (green) and RW (black) for A) S.
epidermidis B) E. coli O157:B7 C) B. thailandensis.
(TIF)

Table S1 MIC values for selected inhibitory peptides
for each bacterium.
(DOCX)

Table S2 Kill curve kinetic studies of S. aureus binding
peptide, inhibitory peptide, and synbody.
(DOCX)
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