Spiral laser beams in inhomogeneous media

Alex Mahalov,¹ Erwin Suazo,^{1,2} and Sergei K. Suslov^{1,*}

¹School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287-1804, USA

²School of Mathematical Sciences, University of Puerto Rico, Mayaguez, Puerto Rico 00681-9000, USA

*Corresponding author: sks@asu.edu

Received June 3, 2013; accepted June 16, 2013;

posted June 18, 2013 (Doc. ID 191472); published July 25, 2013

Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned. © 2013 Optical Society of America

OCIS codes: (000.3860) Mathematical methods in physics; (080.0080) Geometric optics; (080.2710) Inhomogeneous optical media.

http://dx.doi.org/10.1364/OL.38.002763

Green function and generalized Fresnel integrals. In the context of quantum mechanics, a one-dimensional (1D) linear Schrödinger equation for generalized driven harmonic oscillators,

$$i\psi_t = -a(t)\psi_{xx} + b(t)x^2\psi - ic(t)x\psi_x$$

$$-id(t)\psi - f(t)x\psi + ig(t)\psi_x, \qquad (1)$$

(a, b, c, d, f, and g are suitable real-valued functions of time t only), can be solved by the integral superposition principle:

$$\psi(x,t) = \int_{-\infty}^{\infty} G(x,y,t)\psi(y,0)\mathrm{d}y, \qquad (2)$$

where

$$G(x, y, t) = [2\pi\mu_0(t)]^{-1/2} \times \exp[i(\alpha_0(t)x^2 + \beta_0(t)xy + \gamma_0(t)y^2 + \delta_0(t)x + \varepsilon_0(t)y + \kappa_0(t))], \quad (3)$$

for certain initial data $\psi(x, 0) = \varphi(x)$ (see [<u>1</u>–<u>4</u>] and the references therein for more details).

The intrinsic connection between Hamiltonian mechanics and the process of wave propagation is anything but a new idea [5,6]. Yet, in paraxial optics, when the time variable t represents the coordinate, say s, in the direction of wave propagation, Eqs. (2) and (3) can be thought of as a generalization of the Fresnel integral [7–10].

In the paraxial approximation, a 2D coherent light field in a parabolic inhomogeneous medium with coordinates $(\mathbf{r}, s) = (x, y, s)$ is described by the following equation for the complex field amplitude:

$$iA_{s} = -a(A_{xx} + A_{yy}) + b(x^{2} + y^{2})A$$

- $ic(xA_{x} + yA_{y}) - 2idA$
- $(xf_{1} + yf_{2})A + i(g_{1}A_{x} + g_{2}A_{y}),$ (4)

where $a, b, c, d, f_{1,2}$, and $g_{1,2}$ are real-valued functions of the coordinate in the direction of wave propagation s. The latter equation can be reduced to the standard form

$$-i\chi_{\tau} + \chi_{\xi\xi} + \chi_{\eta\eta} = c_0(\xi^2 + \eta^2)\chi, \qquad (5)$$

0146-9592/13/152763-04\$15.00/0

 $(c_0 = 0, 1)$ by the following Ansatz:

$$A = \mu^{-1} e^{i(\alpha(x^2+y^2)+\delta_1x+\delta_2y+\kappa_1+\kappa_2)} \chi(\xi,\eta,\tau),$$

where $\xi = \beta(s)x + \varepsilon_1(s)$, $\eta = \beta(s)y + \varepsilon_2(s)$, and $\tau = \gamma(s)$ (see Lemma 1 of [10] for a detailed statement).

The corresponding 2D Fresnel integral for inhomogeneous media in the linear and quadratic approximation is obtained in [10] (which may include intensity fluctuations from a random phase modulation). The Gaussian– Hermitian beams are given by separation of the variables

$$A_{nm}(\mathbf{r},s) = \frac{e^{i(\kappa_1 + \kappa_2) + 2i(n+m+1)\gamma}}{\sqrt{2^{n+m}n!m!\pi}}\beta$$

$$\times e^{i(\alpha(x^2 + y^2) + \delta_1 x + \delta_2 y) - (\beta x + \varepsilon_1)^2/2 - (\beta y + \varepsilon_2)^2/2}$$

$$\times H_n(\beta x + \varepsilon_1)H_m(\beta y + \varepsilon_2), \qquad (6)$$

in terms of solutions of certain Ermakov-type systems, which are known in quadratures [2] [see Eqs. (9)–(14) below for an important explicit special case].

Oscillating and breathing laser beams. For a 1D paraxial wave equation with quadratic refractive index,

$$2iA_s + A_{xx} - x^2 A = 0, (7)$$

an important class of Gaussian–Hermitian modes can be presented as follows:

$$A_n(x,s) = e^{i(\alpha x^2 + \delta x + \kappa) + i(2n+1)\gamma} \sqrt{\frac{\beta}{2^n n! \sqrt{\pi}}} \\ \times e^{-(\beta x + \varepsilon)^2/2} H_n(\beta x + \varepsilon),$$
(8)

where $H_n(x)$ are the Hermite polynomials [11] and

$$\alpha(s) = \frac{\alpha_0 \cos 2s + \sin 2s(\beta_0^4 + 4\alpha_0^2 - 1)/4}{\beta_0^4 \sin^2 s + (2\alpha_0 \sin s + \cos s)^2},$$
 (9)

$$\beta(s) = \frac{\beta_0}{\sqrt{\beta_0^4 \sin^2 s + (2\alpha_0 \sin s + \cos s)^2}},$$
 (10)

© 2013 Optical Society of America

$$\gamma(s) = -\frac{1}{2}\arctan\frac{\beta_0^2 \tan s}{1 + 2\alpha_0 \tan s},\tag{11}$$

$$\delta(s) = \frac{\delta_0(2\alpha_0 \sin s + \cos s) + \epsilon_0 \beta_0^3 \sin s}{\beta_0^4 \sin^2 s + (2\alpha_0 \sin s + \cos s)^2},$$
 (12)

$$\varepsilon(s) = \frac{\varepsilon_0(2\alpha_0\,\sin\,s + \cos\,s) - \beta_0\delta_0\,\sin\,s}{\sqrt{\beta_0^4\sin^2s + (2\alpha_0\,\sin\,s + \cos\,s)^2}},\tag{13}$$

$$\kappa(s) = \sin^2 s \frac{\varepsilon_0 \beta_0^2 (\alpha_0 \varepsilon_0 - \beta_0 \delta_0) - \alpha_0 \delta_0^2}{\beta_0^4 \sin^2 s + (2\alpha_0 \sin s + \cos s)^2} + \frac{1}{4} \sin 2s \frac{\varepsilon_0^2 \beta_0^2 - \delta_0^2}{\beta_0^4 \sin^2 s + (2\alpha_0 \sin s + \cos s)^2}.$$
 (14)

The real- or complex-valued parameters α_0 , $\beta_0 \neq 0$, $\gamma_0 = 0, \ \delta_0, \ \varepsilon_0, \ \text{and} \ \kappa_0 = 0$ are initial data of the corresponding Ermakov-type system [2,12,13]. A direct Mathematica verification can be found in Media 1. (Harmonic motion of cold trapped atoms is experimentally realized [14].)

These explicit solutions that are omitted in all textbooks on quantum mechanics (see [13,15]) provide a new multiparameter family of oscillating Gaussian-Hermitian beams in parabolic (self-focusing fiber) waveguides, which deserve an experimental observation; special cases were theoretically studied earlier in [8,16]. Examples are shown on Figs. 1 and 2. (Particular solutions in terms of Airy functions can be obtained in analogy with [5, 17-19].)

Spreading solutions. The homogeneous paraxial wave equation,

$$2iB_s + B_{xx} = 0, (15)$$

can be transformed by the substitution

$$B(x,s) = \frac{1}{(s^2+1)^{1/4}} \exp\left(\frac{isx^2}{2(s^2+1)}\right) A\left(\frac{x}{\sqrt{s^2+1}}, \arctan s\right),$$
(16)

into the inhomogeneous form in Eq. (7) (see [12] and the references therein). Composition of Eqs. (8) and (16) results in multiparameter solutions to parabolic Eq. (15):

Fig. 1. Breathing Gaussian mode.

$$\begin{aligned} B_n(x,s) &= \left[((2\alpha_0 s + 1)^2 + \beta_0^4 s^2) \right]^{-1/4} \\ &\times \sqrt{\frac{\beta_0}{2^n n! \sqrt{\pi}}} \exp\left(\frac{ix^2 ((4\alpha_0^2 + \beta_0^4)s + 2\alpha_0)}{2((2\alpha_0 s + 1)^2 + \beta_0^4 s^2)}\right) \\ &\times \exp\left(ix \frac{(2\alpha_0 s + 1)\delta_0 + s\beta_0^3 \varepsilon_0}{(2\alpha_0 s + 1)^2 + \beta_0^4 s^2}\right) \\ &\times \exp\left(is \frac{(2\alpha_0 s + 1)(\beta_0^2 \varepsilon_0^2 - \delta_0^2) - 2s\beta_0^3 \delta_0 \varepsilon_0}{2((2\alpha_0 s + 1)^2 + \beta_0^4 s^2)}\right) \\ &\times \exp\left(-i\left(n + \frac{1}{2}\right) \arctan\left(\frac{\beta_0^2 s}{2\alpha_0 s + 1}\right)\right) \\ &\times \exp\left(-\frac{(\beta_0(x - \delta_0 s) + \varepsilon_0(2\alpha_0 s + 1))^2}{2((2\alpha_0 s + 1)^2 + \beta_0^4 s^2)}\right) \\ &\times H_n\left(\frac{\beta_0(x - \delta_0 s) + \varepsilon_0(2\alpha_0 s + 1)}{\sqrt{(2\alpha_0 s + 1)^2 + \beta_0^4 s^2}}\right). \end{aligned}$$
(17)

-122 - 0421 - 1/4

Their direct Mathematica verification is also provided in Media 1 (see also [8]).

Breathing spiral laser beams. By the Ansatz $\Psi(X, Y, T) = \chi(\xi, \eta, \tau), T = -\tau$, and

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos \omega \tau & -\sin \omega \tau \\ \sin \omega \tau & \cos \omega \tau \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}, \quad (18)$$

($\omega = \text{constant}$), Eq. (5) with $c_0 = 1$ can be transformed to the equation of motion for the isotropic planar harmonic oscillator in a perpendicular uniform magnetic field (in the rotating frame of reference):

$$i\Psi_T + \Psi_{XX} + \Psi_{YY} = (X^2 + Y^2)\Psi + i\omega(X\Psi_Y - Y\Psi_X).$$
 (19)

The latter equation was solved in the early days of quantum mechanics by Fock [20,21] in polar coordinates, $X = R \cos \Theta$ and $Y = R \sin \Theta$:

$$\Psi(R,\Theta,T) = \sqrt{\frac{n!}{\pi(n+|m|)!}} e^{-iET} \\ \times e^{im\Theta} R^{|m|} e^{-R^2/2} L_n^{|m|}(R^2), \\ E = 4n + 2(|m|+1) - m\omega,$$
(20)

 $(m = \pm 0, \pm 1, \dots, n = 0, 1, \dots)$ in terms of Laguerre polynomials [11]. This wave function coincides, up to

Fig. 2. Bending and breathing Gaussian mode.

a simple factor, with the one for a flat isotropic oscillator without magnetic field. Therefore, its development in terms of Eq. (6) for standard harmonics is a 2D special case of the multidimensional expansions from [11] (see also [22,23] and the references therein).

As a result, by back substitution one arrives at a general family of spiral solutions in inhomogeneous media. For example, the 2D paraxial wave equation ($\omega = 0$),

$$2iA_s + A_{xx} + A_{yy} = (x^2 + y^2)A,$$
 (21)

possesses the following Gaussian–Laguerre modes:

$$\begin{aligned} A_n^m(x, y, s) &= \beta \sqrt{\frac{n!}{\pi (n+m)!}} \\ &\times e^{i(\alpha (x^2+y^2)+\delta_1 x+\delta_2 y+\kappa_1+\kappa_2)} e^{i(2n+m+1)\gamma} \\ &\times (\beta (x\pm iy)+\varepsilon_1\pm i\varepsilon_2)^m e^{-(\beta x+\varepsilon_1)^2/2-(\beta y+\varepsilon_2)^2/2} \\ &\times L_n^m((\beta x+\varepsilon_1)^2+(\beta y+\varepsilon_2)^2), \qquad m \ge 0, \end{aligned}$$

$$(22)$$

by the explicit action of Schrödinger's group (see [10,12] and the references therein for classical accounts). Here, Eqs. (9) through (14) are utilized for real or complex parameters α_0 , $\beta_0 \neq 0$, $\delta_0^{(1,2)}$, and $\varepsilon_0^{(1,2)}$ (the last two sets may be different). Examples are shown in Figs. 3 and 4. **Spreading and rotating solutions.** The homo-

geneous parabolic equation,

$$2iB_s + B_{xx} + B_{yy} = 0, (23)$$

and Eq. (21) are related by the transformation

$$B(x, y, s) = \frac{1}{(s^2 + 1)^{1/2}} \exp\left(\frac{is(x^2 + y^2)}{2(s^2 + 1)}\right) \times A\left(\frac{x}{\sqrt{s^2 + 1}}, \frac{y}{\sqrt{s^2 + 1}}, \arctan s\right).$$
(24)

Fig. 3. Breathing Gaussian mode: surface where the intensity $|A|^2$ changes by the factor *e*.

Fig. 4. Breathing and rotating Gaussian mode: surface where the intensity $|A|^2$ changes by the factor *e*.

Examples of spiral laser beams in a uniform medium are discussed in [24-26] (see also [8,16]).

A multiparameter solution is given by

an2 an2

$$B_n^m(x, y, s) = \frac{e^{is(\delta_0^{(1)^2} + \delta_0^{(2)^2})/(2(1+2\alpha_0))}}{\sqrt{(2\alpha_0 s + 1)^2 + \beta_0^4 s^2}} \\ \times \exp\left(-i(1+m+2n)\arctan\left(\frac{s\beta_0^2}{1+2\alpha_0 s}\right)\right) \\ \times \exp\left(i\frac{\alpha_0(x^2+y^2)+x\delta_0^{(1)}+y\delta_0^{(2)}}{2\alpha_0 s + 1}\right) \\ \times \exp\left[-\frac{(\beta_0(x-\delta_0^{(1)}s)+\epsilon_0^{(1)}(2\alpha_0 s + 1))^2}{2(2\alpha_0 s + 1+i\beta_0^2 s)(1+2\alpha_0 s)}\right] \\ \times \exp\left[-\frac{(\beta_0(y-\delta_0^{(2)}s)+\epsilon_0^{(2)}(2\alpha_0 s + 1))^2}{2(2\alpha_0 s + 1+i\beta_0^2 s)(1+2\alpha_0 s)}\right] \\ \times \left[\frac{\beta_0(x+iy)-(\delta_0^{(1)}+i\delta_0^{(2)})s}{\sqrt{(2\alpha_0 s + 1)^2 + \beta_0^4 s^2}} + \frac{(\epsilon_0^{(1)}+i\epsilon_0^{(2)})(2\alpha_0 s + 1)}{\sqrt{(2\alpha_0 s + 1)^2 + \beta_0^4 s^2}}\right]^m \\ \times L_n^m \left[\frac{(\beta_0(x-\delta_0^{(1)}s)+\epsilon_0^{(1)}(2\alpha_0 s + 1))^2}{(2\alpha_0 s + 1)^2 + \beta_0^4 s^2}\right]. \tag{25}$$

A similar effect of superfocusing of proton beams in a thin monocrystal film was discussed in [27] (validity of the 2D harmonic crystal model had been confirmed by Monte Carlo computer experiments). Among other quantum mechanical analogs, the minimum-uncertainty squeezed states for atoms and photons in a cavity are reviewed in [28]. (See also [6,10,19,29] and the references therein for extensions to nonlinear geometrical optics; an optoacoustic experiment is proposed in [30].)

In summary, we present multiparameter solutions to homogeneous and inhomogeneous paraxial wave equations which may be of interest in adaptive optics of (partially) coherent beams propagating through an atmospheric turbulence $[\underline{17,31}-\underline{33}]$ and deserve an experimental observation.

We thank Eugeny Abramochkin and Christoph Koutschan for help and Kamal Barley for graphics enhancement. This research was partially supported by AFOSR grant FA9550-11-1-0220.

References

- R. Cordero-Soto, R. M. Lopez, E. Suazo, and S. K. Suslov, Lett. Math. Phys. 84, 159 (2008).
- N. Lanfear, R. M. López, and S. K. Suslov, J. Russ. Laser Res. 32, 352 (2011).
- 3. E. Suazo and S. K. Suslov, J. Russ. Laser Res. 33, 63 (2012).
- 4. S. K. Suslov, Proc. Am. Math. Soc. 140, 3067 (2012).
- 5. V. A. Fock, *Electromagnetic Diffraction and Propagation Problems* (Pergamon, 1965).
- 6. S. N. Vlasov and V. I. Talanov, Radiophys. Quantum Electron. **38**, 1 (1995).
- M. Born and E. Wolf, *Principles of Optics*, 7th ed. (Pergamon, 1999).
- 8. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, *Theory of Waves* (Nauka, 1979) [in Russian].
- V. V. Dodonov and V. I. Man'ko, in *Invariants and the Evolution of Nonstationary Quantum Systems* (Nova Science, 1989), p. 103.
- 10. A. Mahalov and S. K. Suslov, "Solution of paraxial wave equation for inhomogeneous media in linear and quadratic approximation," Proc. Am. Math. Soc. (to be published).
- A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, *Classical Orthogonal Polynomials of a Discrete Variable* (Springer, 1991).

- R. M. López, S. K. Suslov, and J. M. Vega-Guzmán, Phys. Scr. 87, 038112 (2013).
- R. M. López, S. K. Suslov, and J. M. Vega-Guzmán, J. Differ. Equ. Appl. 19, 543 (2013).
- D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).
- M. E. Marhic, Lett. Nuovo Cimento Soc. Ital. Fis. 22, 376 (1978).
- G. P. Agrawal, A. K. Ghatak, and C. L. Mehtav, Opt. Commun. 12, 333 (1974).
- 17. Y. Gu and G. Gbur, Opt. Lett. 35, 3456 (2010).
- E. G. Abramochkin and E. Razueva, Opt. Lett. 36, 3732 (2011).
- 19. A. Mahalov and S. K. Suslov, Phys. Lett. A **377**, 33 (2012).
- 20. V. Fock, Zs. für Phys. 47, 446 (1928).
- V. A. Fock, Selected Works: Quantum Mechanics and Quantum Field Theory (Chapman & Hall/CRC, 2004), p. 29.
- M. Meiler, R. Cordero-Soto, and S. K. Suslov, J. Math. Phys. 49, 072102 (2008).
- R. Cordero-Soto and S. K. Suslov, Theor. Math. Phys. 162, 286 (2010).
- R. Piestun, Y. Y. Schechner, and J. Shamir, J. Opt. Soc. Am. 17, 294 (2000).
- E. G. Abramochkin and V. G. Volostnikov, Phys. Usp. 47, 1177 (2004).
- 26. M. R. Hatzvi and Y. Y. Schechner, Opt. Lett. 37, 3207 (2012).
- 27. Y. N. Demkov, Phys. Atomic Nuclei 72, 779 (2009).
- 28. S. I. Kryuchkov, S. K. Suslov, and J. M. Vega-Guzmán, J. Phys. B 46, 104007 (2013).
- E. A. Kuznetsov and S. K. Turitsyn, Phys. Lett. A 112, 273 (1985).
- 30. A. Y. Okulov, J. Phys. B 41, 101001 (2008).
- O. Korotkova, N. Farwell, and A. Mahalov, Waves Random Media 19, 692 (2009).
- 32. X. Pang, G. Gbur, and T. D. Visser, Opt. Lett. **36**, 2492 (2011).
- 33. Y. Gu, J. Opt. Soc. Am. A 30, 708 (2013).