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Abstract: This paper reviews how remotely sensed data have been used to understand the 

impact of urbanization on global environmental change. We describe how these studies can 

support the policy and science communities’ increasing need for detailed and up-to-date 

information on the multiple dimensions of cities, including their social, biological, 

physical, and infrastructural characteristics. Because the interactions between urban and 

surrounding areas are complex, a synoptic and spatial view offered from remote sensing is 

integral to measuring, modeling, and understanding these relationships. Here we focus on 
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three themes in urban remote sensing science: mapping, indices, and modeling. For 

mapping we describe the data sources, methods, and limitations of mapping urban 

boundaries, land use and land cover, population, temperature, and air quality. Second, we 

described how spectral information is manipulated to create comparative biophysical, 

social, and spatial indices of the urban environment. Finally, we focus how the mapped 

information and indices are used as inputs or parameters in models that measure changes in 

climate, hydrology, land use, and economics.  

Keywords: urban mapping; environmental indices; social indices; climate modeling; 

socioeconomic modeling 

 

1. Introduction 

Urbanization contributes to global environmental change in numerous ways and across multiple 

dimensions. Remote sensing can play a key role in providing information on urbanization to help 

science and policymaking. A key feature to understanding this urbanization process is monitored 

information on social, biological, and physical conditions of existing and transformed urban areas. 

Demographic and economic information are typically acquired through population censuses, surveys, 

and ethnographic studies performed nationally or locally. Information on the biological and physical 

dimensions of urban areas, such as the built environment and the urban land cover, is often more 

difficult to obtain. Furthermore, linkages between the social, biological, and physical characteristics 

are rarely developed because data streams are imperfectly coupled due to poor correspondence 

between temporal scales (data collection intervals) and spatial scales (administrative units and 

landscape units). 

This scarcity of information comes at a time when the expectations from the policy and research 

communities require linked information to understand the local environmental impacts of urbanization 

(e.g., urban heat island or air quality), global environmental change due to urbanization (e.g., climate 

change), and the impacts of urban living on human well-being (e.g., health and economic outcomes). 

Recent calls for an ―urbanization science‖ emphasize the need for new directions in data collection and 

analysis [1]. Remote sensing scientists are beginning to respond to a call to fulfill this unmet need for 

linked environmental and socio-economic information through remotely sensed data and methods [2].  

The goal of this paper is to synthesize the current state of urban remote sensing science and assess 

how it can support the growing demand for information about the urbanization process and cities as 

places. We differentiate our review from others urban remote sensing reviews (see [3,4]) by focusing 

on how remote sensing can support global environmental change research and policy formation. 

Furthermore, while occasionally mentioned, photogrammetric data and methods are beyond the scope 

of this paper. Urban remote sensing science is shifting from tradition of data processing to become a 

foundational role in global environmental change. We focus our review on mapping, indices, and 

modeling, three interrelated themes (Figure 1). We begin our review by describing how remotely 

sensed data, with a wide variety of spatial, temporal, and spectral ranges, are used to map key 

environmental features of urban areas. This is followed by a discussion on representative indices of 
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urban areas. The subsequent section then explores how the classified images and the indices are used 

to model physical and social processes. We conclude our literature review by addressing overarching 

gaps in the knowledge and highlight concrete steps to move forward. 

Figure 1. The three themes of the literature review are interrelated and form the basic 

structure to describe how remote sensing data and methods support research in global 

environmental change. 

 

2. Mapping Urban Areas 

The goal of this section is to describe how remotely sensed data and methods are used to create 

mapped information of urban areas. Mapping of urban areas can be done for a number of 

characteristics, including urban extent, urban land cover and land use, urban population, surface 

temperatures, and air quality. Each section below describes the mapped urban feature, the types of data 

sources and classification utilized, and research frontiers and challenges.  

2.1. Urban Extent 

The earliest urban application of remote sensing was delineation of the urban extent using aerial 

photography and using this information to monitor urban growth [5]. For global environmental change 

applications, urban extent monitoring measures where new urban areas are located, describes what 

type of urbanization has occurred, and leads to insights into the global impacts of this type of land 

transformation. Early monitoring of the urban extent in the 1970s involved tracking urban growth by 

identifying pixels as ―urban.‖ The main motivation for much of the early research was to document 

and monitor natural areas, so separating out urban from non-urban was an essential first step. Interest 

in delineating the urban extent, including the peri-urban, exurbia and the urban-rural fringe, fuels 

analysis and leads to deeper understanding of urban growth and its impacts [6,7].  

The most common data sources for classifying the urban extent include optical sources such as the 

sensors IKONOS, Landsat, and SPOT. Using hard classifiers, whole pixels are classified as ―urban‖ 
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based on the spectral signature of impervious surface materials, as reflected from roads and buildings. 

More recently, data sources such as synthetic aperture radar (SAR) and nighttime lights (from the 

Defense Meteorological Satellite Program–Operational Linescan Program (DMSP-OLS)) are being used 

to identify the urban boundary [8–12]. Urban structures, including structure height, can be retrieved via 

SAR data to identify urban change. Likewise, nighttime lights provide input for measuring the rate of 

change from undeveloped to developed land when inter-calibration methods are used for consistency in 

multitemporal images [13]. While lights appear in rural human settlements, which are altered 

landscapes that are less urban; there is a higher brightness factor in urban areas (Figure 2). DMSP OLS 

data more accurately identify urbanization in developed countries, but are less accurate in developing 

countries [14]. 

Figure 2. Use of DMSP OLS to monitor urban growth in Atlanta Georgia and the 

Colorado Front Range. 

 

One challenge in mapping the urban extent is misclassification between urban and non-urban 

surfaces. In sparsely vegetated rural areas, bare rock or fallow land can have a spectral signature 

similar to urban impervious surfaces [15]. In contrast, some urban areas have a dense vegetation 

canopy, masking the underlying impervious surfaces [16]. Because of these misclassifications, 

documenting urban areas is particularly problematic in the transition zone from urban to rural, 

sometimes called the urban fringe, exurbia, or peri-urban areas [17]. One advantage of nighttime lights 

data is that they can be used with optical or population data to map the urban extent as a continuous 

rather than as a binary measure [18]. 
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2.2. Urban Composition  

Within the boundaries of the urban extent, inter-urban land surfaces are typically arranged in an 

elaborate tapestry of unpredictable sizes, shapes, and patterns. The goal in mapping this tapestry is to 

develop manual or automated methods that convert the raw spectral signals reflecting from land cover 

surfaces into crisp standard categories that represent the physical nature of the surface. Raw data 

sources typically include aerial photography and multispectral and hyperspectral optical sources, such as 

those described thus far. Methods for classifying urban land covers include manual classifiers [19], fuzzy 

and hard classifiers [20], expert systems [14,21], object-based methods [22], machine learning [23], 

subpixel [24], and urban spectrometry [25]. 

Image heterogeneity presents a major challenge in land cover classification. Pixels (of any size) in 

an urban area will contain a mixture of land cover surfaces with a variety of spectral signals.  

This mixed-pixel problem is partially resolved through a combination of fine resolution data sources 

(e.g., Quickbird, WorldView-1, -2) and classification methods targeting the subpixel level  

(e.g., subpixel analysis, spectral unmixing, Multiple-Endmember Spectral Mixture Analysis) [24].  

Fine resolution data sources, however, also reflect small urban features that may or may not be part of 

the classification scheme (e.g., chimneys on rooftops or automobiles on road surfaces). These once 

invisible features may need to be filtered either during the classification or post-classification step. 

Another challenge in urban land cover and mapping is translating land cover categories into land 

use. Because human land use is difficult to deduce directly from remotely sensed data, the 

interpretation of land use from land cover is predominantly inferential [26]. Nevertheless, it represents 

the starting point for measuring a variety of urban processes; from basic morphological changes 

(numbers of buildings, asphalt length, and extent of green space) to acting as a proxy for more 

complicated indicators such as quality of life, transport infrastructure, mixture of land use, urban 

ecosystems, levels of environmental sustainability, and urban structural types [27]. With reliance on 

context and the spatial arrangement of land cover, inference can best be described as approximate and 

often results in variable accuracy levels. For example, residential land use is commonly inferred from a 

collection of small buildings with pitched roofs, usually associated with equally small, vegetated 

spaces and adjacent to narrow, linear asphalt surfaces. This can result in variable patterns of density 

and regularity depending on prevailing planning factors of cities across the world. In contrast, 

commercial and industrial land uses are both inferred from land cover that represent larger, frequently 

flat-topped buildings, less vegetation, more adjacent imperviousness and wider asphalt surfaces.  

In response, classification schemes have been designed to produce a more organized and consistent list 

of definitions, but without using consistent and verifiable metrics [28].  

The categories of land cover and land use remain highly dependent on location, data sources, and 

scale and in any case they pay scant attention to the more conceptual questions related to urban feature 

identification and links to urban growth. Indeed, these represent more recent developments in research on 

urban remote sensing, and include work on refining object-based algorithms to measure more complete 

urban land use features, linking imagery with elevation (e.g., LiDAR) to produce three-dimensional 

views of the city [29], as well as developing multi-paced dynamic models that add a space-time 

component for monitoring changes in urban land use [30–32]. Moreover, these are underscored by the 

search for an appropriate scale of measurement that is compatible with both sensor resolutions and 
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level of urban investigation. There are essentially two groups of solutions: one is technical and 

involves development in sensor mechanics to allow the reproduction of spatial resolution data to match 

the clarity of aerial photography, and the other is institutional by prioritizing the utility of satellite 

sensor data for various levels of urban planning needs. The latter would involve equating spatial 

resolution, coverage frequency, and cost to fit within the range of planning limitations. Detailed and 

practical street-level planning may still be beyond the capabilities of existing satellite sensor data [33], 

but at the block and neighborhood scales there are many planning policies that can be based on satellite 

sensor data, such as measuring building density, greenness-to-imperviousness balances, roof 

insulation, zoning, and sprawl [34,35].  

2.3. Population  

Maps of urban population maps are used to assess health risks [35], to quantify environmental 

impacts of urbanization [36,37], and to assess urban infrastructures [38,39]. Early work using remote 

sensing inferred population by counting housing structures in aerial photography or quantifying 

mixtures or shifts of classified urban land cover [40]. Later, classified satellite sensor data were linked 

with survey-based population censuses, using, amongst many others, stochastic models [41], and 

inferential relationships [42–44].  

Whichever means are used, population mapping from remote sensing remains approximate at best. 

Improvements can be achieved, at least ones that represent the basic underlying urban geography if 

dasymetric techniques are applied to reduce uniformity across census tracts [45]. Further 

improvements are also possible if intercensal forecasts can establish relationships between total 

classified residential land use and census totals from a base year. However, population censuses are 

typical of nations in the developed world; where remote sensing would be even more useful is for 

cities in the developing world especially for undocumented urban settlements [46,47]. For example, 

high resolution imagery (WorldView-1, WorldView-2, and Quickbird) was used to estimate 

populations by occupancy estimates per structure based on structure size and type (e.g., tent, hut, small 

building) in undocumented urban settlements and displaced populations [48]. 

2.4. Surface Temperature Mapping 

Numerous studies document the strong relationship between urban land cover classes and elevated 

land surface temperatures in many different climate settings (see as examples, [49–53]). A unique 

feature of thermal infrared bands in remotely sensed data is the capability to measure land surface 

temperatures, and in turn, how these temperatures impact the development of an urban heat island 

(UHI). The use of satellite-borne infrared data for estimating surface physical properties and other 

related variables such as heat flux, heat storage, and reflectance, has been widely investigated as recent 

studies demonstrate (see [54–56]).  

Studies on the UHI using satellite derived land surface temperature (LST) measurements have been 

conducted primarily using NOAA AVHRR data to map regional-scale urban temperatures [57,58]. 

Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) thermal infrared (TIR) 

data, Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) have all been utilized for local-scale studies of 
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the UHI [37,59,60]. All satellite-based studies of the UHI have either assumed or demonstrated a close 

relationship between the satellite-derived surface temperature and air temperature over land cover 

surfaces although the precise relationship become complex. 

One key challenge with thermal data is that the spatial resolution of these data has not kept pace 

with the detailed resolution of land cover mapping data sources, which are used to quantify the drivers 

of temperature variations. Data sources such as Quickbird and WorldView-1, -2 with meter and 

submeter spatial resolutions along with object-oriented classification methods are commonly used to 

create high resolution land cover maps. Studies such as [60] demonstrate that surface temperatures 

vary depending on the spatial clustering or fractions of land cover types. These observations suggest a 

need for higher resolution thermal mapping to better understand the complex relationship between the 

drivers and variations of the thermal surface. Airborne thermal mapping, with ~4 m and finer spatial 

resolution, offers the potential for high resolution access to thermal imaging for urban areas but these 

sources are less available than sensors on satellites [61]. This is illustrated in Figure 3 [62] where high 

spatial resolution (10 m) thermal infrared data are used to quantify daytime and nighttime surface 

temperatures in the Atlanta, GA central business district. Individual building rooftops can be discerned 

from these data which is not possible from coarser resolution thermal infrared satellite data (e.g., 

Landsat, ASTER, MODIS). 

Figure 3. Daytime and nighttime airborne thermal infrared data collected at 10 m spatial 

resolution for the Atlanta, GA central business district. The high spatial resolution of these 

data permits the quantification of thermal responses from individual surfaces, including 

rooftops [62].  
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2.5. Air Quality 

While tangible physical features at ground surface are the dominant targets for measurement by 

sensors that address urban environmental issues, aboveground phenomena, such as atmospheric 

moisture and air pollution, are also critical for generating complete views of the environmental 

changes made by urbanization. Pollutants and particulate matter, especially carbon monoxide (CO), 

nitrogen dioxide (NO2) and sulphur dioxide (SO2) degrade urban air quality affecting human health range 

from minor breathing problems, to asthma, heart diseases and lung cancer. The role of remotely sensed 

data is to help monitor the levels of air pollution, systematically, consistently, and frequently [63].  

The most widely recognized sources for acquiring information on air pollution are two sensors 

onboard NASA’s Terra satellite. One is the Measurements of Pollution in the Troposphere (MOPITT) 

sensor, which began daily data collection of CO concentrations profiles at a ~22 km spatial resolution 

in March 2000 along with other atmospheric measurements such as surface temperature and 

atmospheric moisture [64]. The other sensor onboard Terra is the MODerate resolution Imaging 

Spectro-radiometer (MODIS) at a spatial resolution between 250 m and 1000 m globally on a one to 

two day cycle. MODIS is used for mapping atmospheric information such as measurements of ozone 

and aerosols. While the MOPITT and MODIS data are both operational for monitoring atmospheric 

patterns at the global and regional scales, their coarse spatial resolutions limit their practical use for 

mapping detailed variations over urban areas [65].  

Despite challenges with the coarse resolution, several studies using MOPITT data in urban areas 

have helped to measure variations in CO linked to levels of urban automobile travel [66,67]. MOPITT 

measurements of CO combined with the WRF-Chem climate model, before and during the Beijing 

Olympics suggest that reductions in urban emissions could be met from urban traffic controls [68]. 

Indirect air quality modeling efforts also rely on remotely sensed data sources, in conjunction with 

NDVI and land use data as inputs to a regression model that maps atmospheric gases including nitric 

oxide, nitrogen dioxide, and nitrogen oxides, and carbon dioxide in urban areas [69,70]. 

3. Urban Indices 

The data sources and mapped information described in the previous section can be re-organized or 

integrated with other sources to create indices that offer comparative metrics of the urban environment. 

In this section, we discuss common biophysical and socio-economic urban indices. We describe how 

they have been used to better understand the global environmental impact of cities, by describing the 

data and methods to calculate the indices, and limitations or possible future directions.  

3.1. Biophysical Indices 

Biophysical indices are numerical values of the biological or physical environment used to facilitate 

relative comparisons over space and/or time. The primary biophysical indices in urban settings using 

remotely sensed data aim to quantify vegetation, built-up, and water. These indices are primarily 

derived from passive sensors through a mathematical combination of different bands. In addition, we 

also describe the development and use of indices that use active sensors and ancillary data sources to 

calculate an index.  
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Vegetation or green indices are widely used to understand the impact that urbanization has on the 

local and global environment. Vegetation indices quantify the relative amount of photosynthetically 

active vegetation on the Earth’s surface, often from a ratio of the near infrared and visible bands of the 

electromagnetic spectrum derived from data sources such as MODIS and Landsat. Urban heat island 

and air quality research often rely on these vegetation indices [58,71] to calculate the cooling effect of 

vegetation, to quantify the role vegetation plays in improving air quality [72], and links to 

socioeconomic patterns [73]. Researchers have also explored how urbanization has altered net primary 

productivity (NPP) [74] showing losses in temperate regions and decreases in arid regions [75]. 

Vegetation indices are also used to model changes in surficial biogeochemistry such as nitrogen across 

an urban gradient showing differences between high density urban, suburban, and rural areas [48].  

Vegetation indices are often used in combination with a water index, such as the normalized 

difference water index (NDWI) to characterize urban environmental features. The NDWI characterizes 

the liquid water within vegetation by incorporating two different near infrared channels measured as a 

ratio, much like NDVI. The NDWI in urban areas has been used to further characterize the urban heat 

island [76], to describe the intensity of vegetation water use [77], and to assist in water boundary 

delineation [78]. 

The biophysical index that characterizes urbanization is the built-up indices, which quantify varying 

factors of the biophysical environment such as impervious surfaces, building density, and urban 

infrastructure [79–84]. Built-up indices aim to simplify the mapping process from a land cover 

classification approach to a comparative metric [79], to rapidly access urban growth [80], and to 

characterize urban typologies [81]. The common built up indices include the normalized difference 

built-up index (NDBI), which is a binary index based on subtracting a vegetation index from a ratio of 

TM bands 4 and 5. Research to improve NDBI involves converting it from a binary to a continuous 

index [79]. Similarly, the normalized difference impervious surface index (NDISI) quantifies the 

percentage of impervious surface in a pixel [82]. Other adaptations of NDBI such as the index-based 

built-up index (IBI), the biophysical composition index (BCI), and the normalized difference 

impervious surface index (NDISI), use a combination of a vegetation index, water index, bare soil 

index, and the NDBI to provide coverage for a range of land cover types [78,80,84]. For example, 

findings show that manual methods of land cover classification compared favorably with NDBI but 

automated methods such as maximum likelihood performed poorly [80]. This suggests that built-up 

indices perform well when quantifying change in multitemporal images. Figure 4 shows example 

indices of NDVI, NDBI, and NDWI generated from Landsat TM image over Las Vegas. 

Recently, a new spectral index, the Vegetation Adjusted Nighttime Lights (NTL) Urban Index 

(VANUI), combines MODIS NDVI with DMSP/OLS NTL and reduces the effects of the NTL 

saturation in urban areas [85]. VANUI maximizes the variability of the NTL signal within urban areas, 

and corresponds to specific biophysical or urban characteristics, and can be useful for studies of urban 

structure, energy use, and carbon emissions. Further studies are needed to correlate VANUI and other 

built-up indices with environmental changes across a spectrum of urban settings. 
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Figure 4. Example indices generated from Landsat TM over Las Vegas: (a) NDVI; 

(b) NDBI; (c) NDWI. 

 

3.2. Social and Economic Indices 

Many socio-economic indices aim to quantify the combined effects of social and economic factors 

that influence an individual’s or a household’s well-being. Typically, data on race, marital status, and 

education are acquired through population censuses, surveys, and ethnographic studies performed 

nationally or locally rather than from remotely sensed data sources. Recently researchers have 

explored how to capitalize on remotely sensed data to augment census and survey data. Additionally, 

remote sensing has been used to characterize living conditions of poor urban neighborhoods such as 

slums, informal settlements, marginal areas and low income neighborhoods through a combination of 

fine and coarse resolution data and often ancillary data [86–88]. Poverty and sub-standard housing in 

complex, cluttered, uncontrolled, and fast growing urbanized regions can be measured with very high 

spatial resolution remotely sensed data and associated geospatial techniques [89], however many 

challenges remain. The building materials in slums are very heterogeneous and thus are difficult to 

classify. Even more challenging, slums are characterized by both their physical environment  

(e.g., housing type) as well as socioeconomic characteristics (e.g., lack of indoor plumbing). Remote 

sensing studies of slums assume a strong correlation between these two elements, but this is not always 
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true. Research estimated poverty using spatial indicators, such as roof densities, irregular road 

structures, and vegetation/impervious surface indices to characterize the physical environment  

(e.g., V-I-S) [88,90]. Based on these indicators, most researchers have identified, delineated, and rated 

neighborhoods, often to find correlations between economic variables and ―positive‖ (e.g., vegetation) 

or ―negative‖ (e.g., asphalt) environmental conditions [89,90]. In terms of the urban vegetation pattern 

(often analyzed with the NDVI) existing vegetation and other open areas are considered as positive 

urban structure elements regarding their ecological (biodiversity, production of oxygen) as well as 

their social function for individual recreational purposes and as socializing meeting-points. Water as a 

potential source of disease and the road system as air polluters are both considered as negative urban 

structures in the sense that their proximity can cause respiratory and infection diseases.  

Light intensity data sources such as the 1 km
2
 resolution of the DMSP OLS also correlates strongly 

with economic wellness, such as national and sub-national measures of economic activity (e.g., GDP). 

In combination with land cover data, [91] created an index combining ecosystem services product 

(ESP) derived from land-cover with gross domestic product (GDP) derived from nighttime lights to 

identify global patterns of environmental and economic diversity. At sub-national scales economic 

nighttime data lead to rougher estimates of GDP, but offer clues to the magnitude of the informal 

economy (e.g., North Korea, Mexico, and India) [92,93]. A time series analysis of annual DMSP OLS 

composite data products was used to estimate changes in economic growth (change in GDP from year 

to year) [94]. Research shows that using the 1 km
2
 DMSP OLS nighttime lights as a GDP indicator 

varies from region to region because of different urban development patterns [95,96]. 

These studies exemplify the possibilities of remote sensing for identifying poverty, economic 

activity, and environmental risk. However, they also show that for effective poverty mapping, data 

aggregation may hide the spatial variations within the urban structure. So while there is success with 

identifying poverty, the microstructure and irregularity of fast growing urban agglomerations as well 

as direct adaptation of structures to local conditions and terrain, a generically applicable and 

operational mapping of poverty-stricken settlements has proven difficult. 

4. Modeling 

Classified images as geographic maps and derived indices from imagery are used as inputs to 

models for improving our understanding of urbanization processes and the interrelated impacts of 

urbanization on physical processes and human activities. This section describes the typical and novel 

applications of remotely sensed data and methods used in such studies. In particular, we focus this 

section on climate models, hydrologic models, urban growth models, and socio-economic models. In 

the end, we highlight how there are unexplored opportunities in better leveraging the methods in 

remote sensing to analyze physical and social phenomenon. 

4.1. Urban Climate 

Because the urban surface regulates much of the urban climate, there is a tight coupling between 

land use and regional climate modeling. The urban heat island is well established and documented as 

affected by the shape, size, and geometry of buildings. There is also mounting evidence that 

urbanization effects the cycling of water, carbon, aerosols and nitrogen in the climate system [97]. 
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Urban climate modeling refers to micro and small-area estimates of temperature, wind speed and 

direction, atmospheric pressure, humidity, precipitation, energy fluxes, and atmospheric particulates in 

an urban area. Consistent among urban climate research is studying how urban surface features, such 

as the form, structure, and composition of buildings, trees, and asphalt, effect and alter these climate 

variables [98,99]. Land cover classification derived from remotely sensed data, as described earlier, are 

often used as inputs to urban weather and climate models such as the Fifth-Generation Penn 

State/NCAR Mesoscale Model (MM5), Land Use Modelling Platform (LUMPS), ENVI-met, and the 

Metropolitan Meteorological Experiment (METROMEX). This section describes how remote sensing 

methods influence temperature and precipitation modeling efforts; two of the more common topics that 

depend on remotely sensed data and methods [100]. 

Many studies show the underlying land cover influences urban atmospheric and surface 

temperatures. For example, studies simulated surface boundary conditions using data from remote sensing 

derived land cover finding air temperatures predictions were close to observational values [101,102].  

Using Landsat TM in an energy balance ratio model, researchers quantify the cooling effect of wetland 

areas in urban areas [103]. While some studies, like the ones just described, focus on modeling surface 

boundary conditions, much of the urban-climate remote sensing literature addresses the urban heat 

island [104–106]. The UHI is elevated temperature over urban areas due to thermal energy 

characteristics of urban surface materials that absorb incoming shortwave solar radiation and re-emit 

this energy as longwave radiation from surfaces common to the city landscape (e.g., pavement, 

rooftops). Studies modeling UHI have been used to quantify the drivers of the UHI, to determine 

approaches to mitigate heat, and to analyze human, plant, and animal health, changes to rainfall 

patterns, and energy and water use [107–110].  

Challenges that remain are acquiring data with requisite cell sizes to match thermal elements  

and fluxes and data collected at the time scales to monitoring diurnal temperature  

variations [111–114]. [115] illustrates the day/night thermal differences related to characteristics of 

urban morphology, such as building size, orientation, and spacing and the availability of green space, 

showing that the relative spatial location of land covers influences temperature more so than actual 

surface composition. These findings are particularly interesting because they contradict the general 

perception that built-up areas are warmer during the daytime as well as at night because of their 

surface composition (see for example [102,116–118]).  

Complementary to urban temperature, remotely sensed data are also being used in urban precipitation 

models. Two factors in the literature are: how convective forces that drive precipitation are altered due to 

urbanization and how aerosols, which are highly variable in urban areas, influence rain patterns. [119] 

describes how multispectral satellite sensor images can be used to observe cloud particles as predictors of 

precipitation. For urban specific studies, have reported regional increases and locational shifts in 

convective precipitation due to increases to surface temperatures [100,101,119,120]. Using the 

precipitation radar on the Tropical Rainfall Measuring Mission (TRMM), [120] shows that the regional 

position of the city influences the relative increase to rainfall. The influence of aerosols on 

precipitation in urban areas is less clear [121]. Depending on multiple factors such as climate zone, 

cloud type, time of year, type and amount of atmospheric particulates, aerosols are shown to either 

increase or decrease precipitation. This complexity is observed using both remotely sensed data 

sources as well as in situ measurements of atmospheric particulates. For much of the studies modeling 
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the effects of aerosols on precipitation, remotely sensed data sources such as the MOPITT derived CO 

data are used. Using MOPITT over the city of Ahmedabad India, [122] explored the effect of 

temperature and specific humidity in an atmospheric vertical column (called the mixed layer height 

(MHL)) and found that CO varied considerably in this column during the pre- and monsoon season. 

4.2. Urban Hydrology 

The structure and composition of urban areas has affected natural hydrology, such as changes to 

river channels, groundwater recharge, runoff, water biodiversity (flora and fauna), occurrence of 

floods, and water quality [123]. This is due to a large extent to urban impervious surfaces such as 

asphalt, concrete and buildings replacing pervious material found in rural and undeveloped places. 

Impervious surfaces increase the speed of runoff, change the path of the water flow, reduce 

groundwater recharge, and modify the patterns caused by erosion and deposition [124]. To model these 

processes and their consequences, hydrologic models require accurate identification and mapping of 

land cover, primarily impervious surfaces [123]. Remotely sensed data and methods have improved 

hydrologic modeling over in situ measurements, especially for gauging water quality and runoff 

volume [109,125,126] and to a lesser extent, estimating urban water uses [127], quantifying water-born 

disease spread [128], and quantifying the impact on water body structures [129].  

Research on water quality is focused typically at the watershed scale, examining how to protect 

watershed regions that drain into drinking water sources [106,130–132]. Features such as industry, 

roads, unplanned/illegal settlements (which tend to have poor wastewater treatment), are mapped and 

quantified [131,133,134]. These urban land cover maps are used as inputs to model non-point source 

(NPS) nutrient loadings into local water sources [135]. Research results have led to recommendations 

on general watershed planning, such as which areas should receive high protection status and where to 

located water treatment plants [131]. Some research using remotely sensed images have been used to 

directly assess water quality by mapping trends in water turbidity [131,136]. 

An obvious linkage between urbanization and water quality is the amount of runoff and the nutrient 

content, typically estimated by impervious surfaces [123]. Most models of urbanization affects on 

runoff show that urbanization increases runoff amounts and rates because of reduced percolation into 

the ground [137–139]. Remotely sensed data including SPOT, Quickbird, and Landsat have been used 

to quantify runoff under normal and storm precipitation events [140,141]. Research has shown  

that land use type alone is not an effective proxy for impervious surface quantity and that that  

finer resolution data are more appropriate for mapping impervious surfaces for runoff  

models [142,143]. [139] found the best accuracy in mapping impervious surfaces occurred when 

statistical tools (e.g., Impervious Surface Analysis Tool) combined remotely sensed data sources with 

population (e.g., US census data). Runoff models using impervious surface mapping have led to 

improved understanding of groundwater quality and recharge [144–146], floodplain management, and 

coastal flooding [147–149]. 

Researchers have also used remotely sensed images to estimate urban water demand, including  

for drinking supply, urban agriculture, and landscaping. Researchers used remotely sensed data to map 

the boundaries of residential area and density to facilitate planning and construction of water  

infrastructure [127,150]. Landsat data were used to calculate the NDVI along with climate information 
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and seasons to estimate water consumption for urban agriculture [151]. Similarly, [152] estimated 

landscape irrigation needs in Salt Lake City Utah from landscape type derived from multispectral 

imagery and measurements of evapotranspiration.  

4.3. Urban Land Change and Expansion  

The expansion of urban areas into other land covers drives environmental change, including 

climate, hydrological systems, biogeochemistry, and habitat loss. Moreover, the ways in which urban 

areas expand, including their form and structure affects travel demand, infrastructure needs, and 

energy consumption. As a simplification of reality, urban growth models represent both the form and 

structure of urbanization, and their success lie in retaining fundamental urban characteristics by 

simplifying reality as much as necessary, and at least to its level of ―usefulness‖, although utility is not 

always succinctly stated or demonstrated.  

There are dozens of land use models available (see [153,154]). This proliferation reflects in part the 

wide availability of input data, such as remote sensing, and methodological progress in the attempt to 

understand or predict the nature of the landscape, the types of changes occurring, the causal structure 

connecting the underlying factors of change, and the hypotheses tested. The difference between them 

varies from data sources, methodological differences, model objectives, geographic context, political 

environments, and cultural settings. 

Classified data from remote sensing systems are the principal inputs to many of the urban growth 

models [155,156]. The availability of global coverage satellite data is changing the nature of urban 

land change modeling from a focus on individual cities or regions to the potential to model urban land 

change globally. While most models utilize land cover classification schemes, some modeling efforts 

also incorporate population estimates and biophysical indices. Remotely sensed data sources and the 

derivative data sets of information will continue to be widely needed for growth models given that the 

majority of the future urban population growth is expected to occur in the developing world, which 

often lack local mapping and modeling efforts [95].  

One challenge faced is that land use change modeling is currently weakly coupled with land use 

planning. Urban land change models often claim policy-relevance usefulness but lack spatial detail or 

specific information that is either policy-relevant or useful. Tighter coupling can be achieved by 

explicitly introducing a policymaking module in a land use change model—although this may not be 

practical in developing countries given political realities and adverse access to resources. These also 

require the concomitant socioeconomic data to develop detailed models of urban expansion.  

4.4. Social and Economic Modeling 

Modeling the social and economic conditions of urban areas is beginning to utilize data provided by 

remote sensing methods to understand, characterize, and simulate human quality of life. The models 

that include remote sensing focus on human health and economic conditions. Model outcomes can be 

used to create planning tools, evaluate policy options, and assess urban inequities. While many models 

do use remote sensing data and methods, those that include quality of life dimensions such as family 

and community life, education, political freedom, and gender equality typically do not use remotely 

sensed data sources. This section focuses on the former. 
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Human health modeling efforts strive to quantify conditions that promote or harm human health 

such as linkages between urban structure and obesity, vector borne or infectious disease transmission 

and spread, and the impact of extreme heat and air quality on health [157]. One area that has 

effectively used remotely sensed data is classification of urban water bodies leading to insights into the 

spread of disease. Water body mapping can identify breeding locations of disease vectors such as 

mosquitoes [128]. [158] shows that larger water areas, including stream length and wetland size, result 

in higher risks in disease outbreaks. SPOT high resolution data were used to analyze and model the 

spatial variations of land surface temperatures in Paris during summer heat waves and correlated 

extreme temperatures to deaths in the elderly population [118]. The public health community has 

begun to use remote sensing data in combination with ground surveys and census data to identify 

populations at risk. 

However, there are many studies that quantify health outcomes and urban environment data 

compiled from sources other than remote sensing. For example, in several of the seminal works on 

obesity and the built environment, tax assessor’s records rather than data from satellite or other forms 

of remote sensing are used to characterize the urban form [159]. On the other hand, studies that quantify 

urban environmental characteristics such as air quality simply make inferences to the impact on human 

health rather than making an explicit quantification (e.g., air pollution monitoring and asthma).  

A second quality of life factor modeled using remote sensing methods is economic development [89]. 

Much of this research uses land cover or use maps derived from remotely sensed images and correlate 

these with economic growth and stability. Geographers were the first to utilize DMSP OLS to examine 

economic activity [93]. While most existing studies have emphasized associations at high levels of 

data aggregation such as countries, increasingly applications at the subnational level emerge with 

efforts led by economists [160,161]. 

5. Gaps in Knowledge and Future Opportunities 

Understanding the global impact of urbanization requires large amounts of information based on the 

multi-dimensional aspects of urbanization. Remotely sensed data and methods are well positioned to 

contribute to this effort. As this review illustrates, there is considerable growth in using remotely 

sensed data to support the understanding cities through mapping, indices, and modeling of human 

activities and environmental processes. A common theme among the articles we highlighted is that 

researchers are utilizing a variety of data sources coupled with novel classification methods and 

integrating these results into modeling efforts.  

Scale remains a crosscutting theme in urban remote sensing that includes on the surface spatial 

resolution, temporal repeat frequency, and spectral resolution. Scale along all dimensions represents a 

level of detail and, to some extent, a level of accuracy. Spatial resolution, temporal frequency, and 

spectral detail are often inversely related. For monitoring urban areas, low spatial resolution data, such 

as the MOPITT data, presents a challenge for acquiring the spatial distribution and pattern across an 

urban area. In isolation, scale is problematic but the challenge is compounded when data are coupled 

with other sources. As ancillary data (e.g., vector data from geographic information systems) are used 

in expert systems to improve classification accuracy, the spatial and temporal correspondence between 

data sources becomes critical. Linkages between social, biological, and physical characteristics are 
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challenging to integrate because of poor correspondence between temporal scales (data collection 

intervals) and spatial scales (administrative units and landscape units). 

To address scale issues, there are plans for obtaining finer spatial and spectral resolution data to 

improve remote sensing observation and analysis of urban areas. For example, the Hyperspectral 

Infrared Imager (HyspIRI) which is planned for launch later this decade, will have a hyperspectral 

Visible and ShortWave Infrared (VSWIR) spectrometer with bandwidths of 380 to 2500 nm in 10 nm 

band increments [162]. It will also have a multispectral thermal infrared instrument with 8 bands in the 

3.9–12.3 μm spectral bandwidth. HyspIRI will have a spatial resolution of 60 m and a repeat cycle of 

16 days, with the capability of acquiring both daytime and nighttime measurements. The VSWIR and 

thermal infrared data obtained by HyspIRI can be used to provide integrated higher level datasets for 

use in developing detailed quantitative information on spectral responses and surface temperatures for 

the surface material types that comprise the heterogeneous urban landscape (Figure 5). 

Figure 5. HyspIRI hyperspectral Visible and ShortWave Infrared (VSWIR) and thermal 

infrared data will provide the capability for deriving higher level integrated data products 

for quantitative measurement of surface reflectances and temperatures for the land surface 

components and material types that comprise the complex urban landscape. 

 

Cloud-computing based platforms such as Google’s Earth Engine, the NASA Earth Exchange 

(NEX), and NSF’s Earth Cube are transforming how we access and process data at all spatial, 

temporal, and spectral scales. Access to these data sources will fundamentally change the types of 

research questions we can ask. These data and information dissemination methods facilitate greater 

access to knowledge of urbanization processes with the ability to move away from single scene 

analysis to multitemporal and whole-world analyses. These data sources develop into ―Big Data‖ 

issues that simultaneously become opportunities and challenges in solving scientific, analytical, and 

political issues. The opportunities are the ability to perform spatial decomposition, to examine the 

diversity of patterns, and to better understand outliers. Critical to the use of big data is first identifying 

the research question or theory to be tested. Otherwise, a key challenge with ―Big Data‖ involves 

―finding a needle in a haystack‖, dealing with the noise to extract the real information, and addressing 

anonymity and privacy concerns.  

Remote sensing scientists do not limit themselves to data sources collected through satellite sensors, 

to conventional classification methods, or to specific applications. Instead, new data sources, methods, 
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and applications areas are continually being explored. Unexplored or underutilized data sources that 

could be integrated with satellite sensor data include social media, cell phone tracking, and volunteered 

geographic information [163]. These can be combined with advanced analytical approaches including 

data mining, machine learning, agent-based models, and Bayesian methods. The coupling of remotely 

sensed data and alterative data sources and sophisticated modeling leads to the possibility of mapping 

and analyzing new application topics. Emerging and urgent challenges that influence global 

environmental change studies include mapping food deserts, mapping disease spread in cities, real-time 

transportation information, and many others.  

While data and knowledge improve our understanding of cities, this reflects just one dimension of 

urbanization science. We also need to build collaborations between science and policy, including the 

data providers, climate scientists, planners, and policy- and decision-makers. In the modern era of 

science, we recognize that we must observe and understand urbanization as a process and strive to use 

theories and knowledge to direct and enable a sustainable future. 
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