Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Elucidating proline dynamics in spider dragline silk fibre using ²H-¹³C HETCOR MAS NMR

Xiangyan Shi, Jeffery L. Yarger* and Gregory P. Holland*

Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University,

Tempe, Arizona 85287-1604

Table of Contents:

Materials and Methods

Fig. S1 Liquid-state ²H NMR spectrum of hydrolyzed U-[${}^{2}H_{7}$, ${}^{13}C_{5}$, ${}^{15}N$]-Pro labeled *A. aurantia* dragline spider silk

Fig. S2 Simulated ²H quadrupole line shapes for deuterium undergoing fast reorientation between two sites separated by an angle θ

Fig. S3 ¹³C-detected Pro ²H T₁ inversion recovery curves for U-[${}^{2}H_{7}$, ${}^{13}C_{5}$, ${}^{15}N$]-Pro labeled *A. aurantia* dragline silk

Calculating molecular motional rate using ²H T₁

Fig. S4 ²H one-pulse MAS NMR spectrum (black) and its fit (green) for wet, supercontracted U-[${}^{2}H_{7}$, ${}^{13}C_{5}$, ${}^{15}N$]-Pro labeled *A. aurantia* dragline silk

References

Materials and Methods

Sample Preparation

A. aurantia dragline silk was collected from adult female spiders using the forciable silking method as described in previous studies.^{S1} The silking process was monitored under a microscope to avoid contamination from minor ampullate silk. The U-[${}^{2}H_{7}$, ${}^{13}C_{5}$, ${}^{15}N$]-Pro labeled dragline silk were obtained from *A. aurantia* spiders fed with 30-40 µl 16% (w/v) U-[${}^{2}H_{7}$, ${}^{13}C_{5}$, ${}^{15}N$]-Pro (Cambridge Isotopes, Andover, MA) during every silking process. The spiders were fed with crickets once a week. The dry silk sample refers to material used without any further processing after collecting from spiders. Supercontracted (wet) silk samples were soaked in deuterium-depleted water for at least 2 hours to achieve saturation prior to NMR experiments.

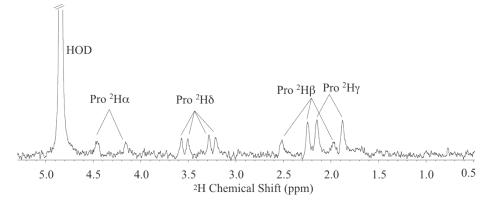
NMR Spectroscopy

Solid-state NMR experiments were conducted on a Varian VNMRS 400 MHz spectrometer equipped with a 3.2 mm MAS probe operating in triple resonance mode ($^{1}H/^{13}C/^{2}H$) at room temperature (25 °C). Sample heating due to MAS results in an actual sample temperature of 30 °C (temperature was calibrated with lead nitrate^{S2}). ²H-¹³C MAS HETCOR and ²H T₁ indirect detection experiments were set up as described in a recent publication.^{S3} In the ²H-¹³C HETCOR experiments, 91 kHz (2.75 µs $\pi/2$ pulse) ²H rf field was employed and a \sim 2 kHz ²H GARP decoupling was utilized during signal acquisition. The ¹³C and ²H chemical shifts were indirectly referenced to the adamantane downfield resonance at 38.56 ppm and the D₂O resonance at 4.788 ppm, respectively. Experiments were performed using 10 kHz MAS spinning rate and the following additional parameters:

- 2D ²H-¹³C HETCOR CP-MAS experiment: 25 kHz sweep width in ¹³C dimension, 500 kHz sweep width with 256 t_1 points in ²H dimension, 40.96 ms acquisition time, 2 ms ²H-¹³C CP contact time, a recycle delay of 2.5 s and 224 scans. In order to obtain ²H-¹³C chemical shift correlation spectrum with higher resolution, another 2D ²H-¹³C HETCOR CP-MAS experiment with rotor-synchronized sampling in ²H dimension was performed using 10 kHz sweep width with 64 t_1 points in ²H dimension.

- ¹³C-detected ²H T₁ measurement though ²H-¹³C HETCOR CP-MAS: A composite π pulse (($\pi/4$)_x-(π)_y-($\pi/2$). _x-(π)_y-($\pi/4$)_x) is used as the ²H inversion pulse in the pulse sequence.^{S3} The additional experimental parameters were 25 kHz sweep width, 40.96 ms acquisition time, 2 ms ²H-¹³C CP contact time, 5 s recycle delay time and 512 scans.

- ²H solid-echo MAS experiment: 500 kHz sweep width, 40.96 ms acquisition time, a recycle delay of 3 s and 2944 scans. The rotor-synchronized delay between the two $\pi/2$ pulses was 100 µs (rotor-synchronized for 10 kHz MAS). 20 µs delay was set between the second $\pi/2$ pulse and the beginning of acquisition. The acquired FID was left shifted 46 points to the echo maximum prior to Fourier transform in order to correct spectrum phase.


- ²H one-pulse MAS experiment: 500 kHz sweep width, 40.96 ms acquisition time, a recycle delay of 4 s and 2944 scans. 20 μ s delay was set between the $\pi/2$ rf pulse and the beginning of acquisition. During data process, the raw FID was left shifted 49 points to eliminate spectrum phase distortion caused by probe ringdown.

1D ²H liquid-state NMR data was collected on an Agilent Inova 500 MHz spectrometer equipped with a 5 mm Inverse Detect Broadband PFG Probe. The experiment was performed on U-[²H₇,¹³C₅,¹⁵N]- Pro labeled silk. About 1 mg silk sample was hydrolyzed in 6 M HCl for 2 days under 108 °C, then reconstituted in 700 μ l H₂O and transferred to 5 mm NMR tube. Data was acquired using the lock channel. The NMR pulse sequence is a $\pi/2$ deuterium excitation pulse followed by data acquisition. Additional experiment parameters are: 1535.63 Hz sweep width, 2.049 ms acquisition time and a recycle delay of 5s.

²*H* NMR line shape simulation

Deuterium MAS quadrupole line shapes were simulated using SPINEVOLUTION 3.4.4 software packages.^{S4} All simulations were conducted with the ASG powder orientation calculation scheme. For proline in dry silk, the MAS line shapes were calculated using a CD₂ group undergoing fast two-site reorientations with C_Q=170 kHz and η =0.^{S5} Simulations were performed for various two-site reorientation angles to find the best one matching with experimental data for the different CD₂ groups on the proline sidechain. A deuterium three-

site reorientation model was used to simulate the microsecond proline backbone motion occurring in supercontracted (wet) silk. The averaged EFG principle axis system was set to reorient between (θ , 0), (θ , 120) and (θ , 240). Simulations were performed with various θ and reorientation rates and compared with experimental data to find the best match.

Fig. S1 Liquid-state ²H spectrum of hydrolyzed U-[²H₇, ¹³C₅, ¹⁵N]-Pro labeled *A. aurantia* dragline silk. Silk collected from spiders fed with U-[²H₇, ¹³C₅, ¹⁵N]- Pro aqueous solution. One-bond ²H-¹³C *J*-splitting peak patterns are observed for Pro α , β , γ and δ groups. The corresponding $J_{2H-^{13}C}$ constant is 23.4 Hz, 20.9 Hz, 20.6 Hz and 22.6 Hz for α , β , γ and δ group, respectively. The *J*-splitting effect (5.5 Hz) caused by ¹⁵N is also observed for ²H\delta. These *J*-splitting peak patterns indicate that Pro is selectively labeled by ²H-¹³C pairs at the different sites and no additional deuterium labeling occurred for any other amino acid to any appreciable extent.

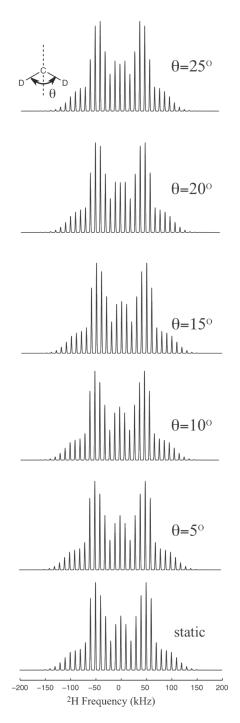
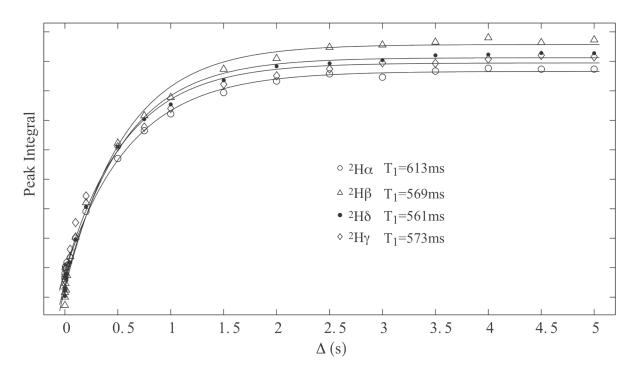



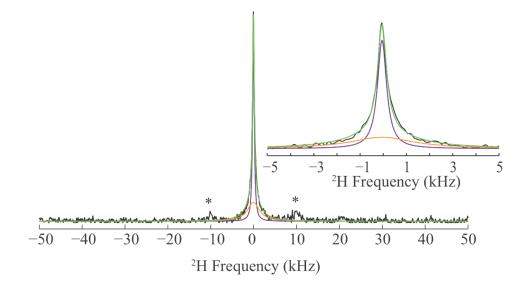
Fig. S2 Simulated ²H quadrupole line shapes for deuterium undergoing fast reorientation between two sites separated by θ . Simulations were conducted using SPINEVOLUTION software^{S4} with C_Q=170 kHz and η =0^{S5}. In the current paper, Pro ²H molecular motions were proposed by comparing experimental deuterium line shapes with these simulations.

Fig. S3 ¹³C-detected Pro ²H T_1 inversion recovery curves for U-[²H₇, ¹³C₅, ¹⁵N]-Pro labeled *A. aurantia* dragline silk. The T_1 for each deuterium of Pro is shown in the figure.

Calculating molecular motional rate using ²H T₁

The quadrupolar interaction is the dominant spin relaxation mechanism for deuterium in solids. When the interaction is reduced by molecular motion of the considered group, a specific mathematical relation can be developed between deuterium T_1 and the molecular motional rate. In present study, ²H T_1 s were used to calculate molecular motional rate for Pro deuterium that undergo reorientation between two sites separated by an angle (Θ). The calculation process is as follows.

For Pro deuterium which undergoes two sites reorientation,^{S6}


 $1/T_1 = (\omega_Q^2/8)A_1\{\tau/(1+\omega^2\tau^2)[B_4 - (0.75B_1 - B_2)\cos 2\varphi] + \tau/(1+4\omega^2\tau^2)(4B_5 - 4B_2\cos 2\varphi)\}$ where,

 $A_{1} = \sin^{2}(2\Theta)$ $B_{1} = \sin^{2}(2\theta)$ $B_{2} = \sin^{4}(\theta)$ $B_{4} = \cos^{2}(\theta) + \cos^{2}(2\theta)$ $B_{5} = \sin^{2}(\theta) + 0.25\sin^{2}(2\theta)$

Θ=12.5°, 17.5° and 7.5° for Pro ²Hβ, ²Hγ and ²Hδ, respectively, according to the ²H line shapes determined in the current work. τ=(2k)⁻¹ and k is the two sites reorientation rate. Pro ²H quadrupolar patterns are independent of φ because the quadrupolar asymmetry parameter η=0^{S5} ((θ,φ) are the polar angles that define the orientation of the external filed in the crystal-fixed coordinate system). Thus, for a specific θ, one would find,

$$1/T_{1} = \frac{\int_{0}^{2\pi} (\omega_{Q}^{2}/8)A_{1}\{\tau/(1+\omega^{2}\tau^{2})[B_{4} - (0.75B_{1} - B_{2})\cos 2\varphi] + \tau/(1+4\omega^{2}\tau^{2})(4B_{5} - 4B_{2}\cos 2\varphi)\}d\varphi}{\int_{0}^{2\pi} 2\pi d\varphi}$$
$$= (\omega_{Q}^{2}/8)A_{1}[\tau/(1+\omega^{2}\tau^{2})B_{4} + \tau/(1+4\omega^{2}\tau^{2})4B_{5}]$$

Using the experimentally measured T₁, the two sites reorientation rate can be calculated using the above equation for the case of a specific θ . In the current work, for each deuterium on Pro side chain, the two sites reorientation rate is considered as the average of the rates of two cases - θ =0 and θ =2 π .

Fig. S4 ²H one-pulse spectrum (black) and its fit (green) for wet, supercontracted U-[${}^{2}H_{7}$, ${}^{13}C_{5}$, ${}^{15}N$]-Pro labeled *A. aurantia* dragline silk. Two components were extracted from the fit – a broad peak (orange) and a narrow peak (purple). The asterisks mark the weak spinning sidebands. The fitting process is the same as that shown in Fig. 3 in the current article and the result is similar because the number of left shifts required to eliminate probe ring down were on the same time scale as the solid-echo delays (see Materials and Methods, above). The central peak is extremely broadened where the signal intensity is smaller than half maximum. The peak can not be fit with a single peak having Lorentzian, Gaussian or a combined line shape. This implies the existence of the broad component. The peak can be fit well to a combination of a broad (FWHM = 3.8 kHz) and narrow component (FWHM = 400 Hz) similar to the solid-echo data in the paper, Fig. 3. The fittings were performed using DMFit software to extract the narrow and broad component.^{S7}

References

- S1 R. W. Work and C. T. Young, J. Arachnol., 1987, 15, 65-80.
- S2 A. Bielecki and D. P. Burum, J. Magn. Reson., 1995, 116, 215-220.
- S3 X. Shi, J. L. Yarger and G. P. Holland, J. Magn. Reson., 2013, 226, 1-12.
- S4 M. Veshtort and R. G. Griffin, J. Magn. Reson., 2006, 178, 248-282.
- S5 S. K. Sarkar, P. E. Young and D. A. Torchia, J. Am. Chem. Soc., 1986, 108, 6459-6464.
- S6 D. A. Torchia, J. Magn. Reson., 1982, 49, 107-121.
- S7 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B. Bujoli, Z. Gan, G. Hoatson, *Magn. Reson. Chem.* 2002, 40, 70-76.