
Structural and optical properties of Ag-doped copper oxide thin films on polyethylene
napthalate substrate prepared by low temperature microwave annealing
Sayantan Das and T. L. Alford 

 
Citation: Journal of Applied Physics 113, 244905 (2013); doi: 10.1063/1.4812584 
View online: http://dx.doi.org/10.1063/1.4812584 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/113/24?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Functional properties of ZnO films prepared by thermal oxidation of metallic films 
J. Appl. Phys. 113, 234506 (2013); 10.1063/1.4811357 
 
Structural and optical properties of Ba x Sr 1  x Ti O 3 thin films on indium tin oxide/quartz substrates prepared
by radio-frequency magnetron sputtering 
J. Appl. Phys. 99, 114904 (2006); 10.1063/1.2202094 
 
Characterization of the physical and electrical properties of Indium tin oxide on polyethylene napthalate 
J. Appl. Phys. 98, 083705 (2005); 10.1063/1.2106013 
 
Er-doped ZnO thin films grown by pulsed-laser deposition 
J. Appl. Phys. 97, 054905 (2005); 10.1063/1.1858058 
 
Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron
sputtering 
J. Appl. Phys. 92, 3599 (2002); 10.1063/1.1503858 

 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

129.219.247.33 On: Tue, 15 Jul 2014 19:26:13

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1691523420/x01/AIP/JAP_HA_JAPCovAd_1640banner_07_01_2014/AIP-2161_JAP_Editor_1640x440r2.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=Sayantan+Das&option1=author
http://scitation.aip.org/search?value1=T.+L.+Alford&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4812584
http://scitation.aip.org/content/aip/journal/jap/113/24?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/113/23/10.1063/1.4811357?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/99/11/10.1063/1.2202094?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/99/11/10.1063/1.2202094?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/98/8/10.1063/1.2106013?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/97/5/10.1063/1.1858058?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/92/7/10.1063/1.1503858?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/92/7/10.1063/1.1503858?ver=pdfcov


Structural and optical properties of Ag-doped copper oxide thin films on
polyethylene napthalate substrate prepared by low temperature microwave
annealing

Sayantan Das and T. L. Alforda)

Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA and School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA

(Received 23 April 2013; accepted 14 June 2013; published online 27 June 2013)

Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer)

substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by

microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer

substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a

p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells.

X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements

confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by

atomic force microscopy. The microstructural properties such as crystallite size and the microstrain

for (�111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering

of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the

structural, morphological, surface, and optical properties of CuO grown on flexible substrates by

microwave annealing. Tauc’s plot is used to determine the optical band gap of CuO and Ag doped

CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and

3.19 eV, respectively. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812584]

I. INTRODUCTION

Transition metal oxides have gained considerable inter-

est recently due to their potential application in solar cells,1

displays,2 sensors,3 and supercapacitors.4 Among them, cop-

per oxides are nontoxic and the abundant availability of cop-

per makes these oxides a cheap material available for many

applications. Cupric oxide is a p-type semiconductor with an

indirect band gap of 1.3–2.1 eV.5 The application of CuO as

selective absorbing layer has been reported because of its

high solar absorption.1 Herein, we report the preparation of

Ag doped CuO thin films on flexible polymer substrates pol-

yethylnapthalate (PEN).

The present work reports the use of microwave (MW)

annealing to prepare transparent copper oxide coating on

flexible polymer substrate, PEN. Polymer substrates offer

added advantages over traditional rigid substrates like glass

in terms of light weight and flexibility. However, fabrication

of devices on flexible substrates is a challenge owing to the

low temperature tolerance of the polymers. Previously, we

have reported low temperature encapsulation of Ag films by

copper oxides on Si using MW annealing technique.6 Over

the years, these electromagnetic waves have gained more

and more importance recently in low temperature and

quicker processing of materials with improved properties

compared to conventional annealing techniques. Because of

the photocatalytic properties of Ag/CuO nanocomposites

reported by Wang et al.,7 we also anticipate the use of Ag-

doped CuO thin film coating on flexible solar panels with

photocatalytic properties to decompose complex dirt

particles.

II. EXPERIMENTAL DETAILS

Copper and Cu–Ag films were deposited on PEN and Si

substrates by a DC magnetron sputtering system under vac-

uum using pure Cu and Ag targets (99.995% purity). The

sputtering system was initially pumped down to 2� 10�6 Torr

and then Ar gas was introduced into the chamber. The deposi-

tions were done at room temperatures and at a pressure of 10

mTorr. This was followed by MW anneals inside a 2.45 GHz

microwave cavity for 30 s. The temperature during the anneal-

ing process was measured using a Rayteck Compact MID py-

rometer. The maximum temperature reached during the MW

annealing process was 45 �C. The compositions of the as de-

posited and the MW annealed films were confirmed with

Rutherford backscattering spectrometry (RBS) using a

General Ionex Tandetron accelerator and analyzed using RUMP

computer simulation program.8 The structural properties of

the as-deposited and annealed films were investigated by

x-ray diffraction (XRD) using Bragg-Brentano configuration.

X-ray photoelectron spectroscopy (XPS) studies were done

using a VG-220IXL spectrometer with monochromatic Al Ka
radiation (1486.6 eV, line width¼ 0.8 eV). The pressure in the

analyzing chamber was kept at a level of 10�9 Torr while re-

cording the spectrum. The spectrometer had an energy resolu-

tion of 0.4 eV. All the binding energies were corrected with

reference to C (1s) at 285.0 eV. Deconvolution of the spec-

trum was done using CASA software with an accuracy of

0.2 eV, after background subtraction with the Shirley

method.9 Optical transmittance of the films was measured

a)Author to whom correspondence should be addressed. Electronic mail:

TA@asu.edu. Tel.: 001 480 965 7471

0021-8979/2013/113(24)/244905/6/$30.00 VC 2013 AIP Publishing LLC113, 244905-1

JOURNAL OF APPLIED PHYSICS 113, 244905 (2013)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

129.219.247.33 On: Tue, 15 Jul 2014 19:26:13

http://dx.doi.org/10.1063/1.4812584
http://dx.doi.org/10.1063/1.4812584
http://dx.doi.org/10.1063/1.4812584
http://dx.doi.org/10.1063/1.4812584
mailto:TA@asu.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4812584&domain=pdf&date_stamp=2013-06-27


using an Ocean Optics double channel spectrometer (model

DS200) in a wavelength range of 300–800 nm. Surface topog-

raphy was evaluated using atomic force microscopy (AFM) in

tapping mode.

III. RESULTS AND DISCUSSION

The deposition time for the films has been fixed for

1 min followed by a MW anneal for 30 s. The RBS results

for CuO and 6 at. % Ag doped CuO thin films are shown in

Figs. 1(a) and 1(b). RBS has been done on films deposited

and processed on Si due to the ease of simulation on Si

wafers. In case of as deposited samples, a small oxygen sig-

nal near channel 200 suggests the presence of oxygen at the

surface of the films. After the MW anneal, the enhanced oxy-

gen signal suggests the formation of an oxide layer. The

RUMP simulation suggests that copper is completely oxidized

after MW annealing. The shift in the Ag signal towards left

in Fig. 1(b) after the MW anneal suggests that Ag diffuses

from the surface towards the bulk CuO. The Ag content in

the co-sputtered films obtained after RBS measurements and

RUMP simulation has been detailed in Table I.

Figure 2 shows the surface topography of CuO and Ag-

doped CuO films as measured by AFM and using 1� 1 lm2

FIG. 1. RBS spectra obtained from (a) Cu and (b) Cu-Ag films before and

after 30 s of MW annealing showing the growth of thin copper oxide layer.

The spectra were obtained using a 3.05 MeV Heþþ beam and a scattering

angle of 8�.

TABLE I. Ag content in CuO as determined by Rutherford backscattering

spectrometry and RUMP computer simulation and surface roughness as deter-

mined by atomic force microscopy.

Sample Ag content (at. %) RMS roughness (nm)

CuO 0 1.01

Ag doped CuO 1 1.16

Ag doped CuO 3 0.591

Ag doped CuO 6 0.283

FIG. 2. AFM images of CuO thin films

with: (a) 0 at. %, (b) 1 at. %, and (c)

3 at. % and (d) 6 at. % of Ag doping.
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scans. The surface roughness is found to be consistent over

the sample size. It is also found that the undoped films have

greater surface roughness than 3 and 6 at. % Ag-doped CuO

films. The surface roughness is documented in Table I. As

opposed to island formation in very thin Cu films, presence

of increased amount of Ag in the alloy films produces contin-

uous Cu films due to a grain boundary pinning effect.10 After

MW annealing, the undoped Cu films grow into CuO islands,

whereas the Ag doped CuO films grows into uniform films.

Thus, with increase in Ag content in the CuO matrix, the sur-

face roughness is found to decrease.

XRD analysis using Cu Ka radiation conveys the identi-

fication of phases present in the films. Figure 3 shows the

XRD pattern of as deposited and MW annealed films indicat-

ing that the as-deposited films are amorphous and the MW

annealed films are polycrystalline in nature. JCPDS card

89-5895 is used to identify the CuO peaks.11 After MW

annealing, the films show CuO peak at 35.5 and 38.7 (2h)

corresponding to the (�111) and (111) reflections of the

monoclinic structure of cupric oxide (CuO). It is also

observed that the films had preferential orientation in the

[111] direction. The 2h position of CuO (111) peak almost

remains the same; however, a slight shift of the CuO (�111)

peak is noticed in the Ag doped films towards lower

diffraction angle. It should be mentioned here that both CuO

(�111) and (111) grains incorporate the Ag atoms; however,

the symmetrical XRD scan is more sensitive to the lattice

distortion in the (�111) grains that are parallel to the surface

than the (111) grains in the same direction. Figure 4 shows

the lattice spacing for (�111) planes as function of Ag con-

tent, which increases with the silver content. The full width

at half maximum (FWHM) of the CuO (111) reflection peak

decreases slightly with silver doping. However, the decrease

in FWHM for the CuO (�111) peaks with increase in Ag

content is higher. As such the variation in CuO (�111)

grains is larger compared to the CuO (111) grains.

The crystallite size and microstrain are calculated for

CuO films and tabulated in Table II. The crystallite size is

calculated from the Debye-Scherer’s formula using the

FWHM in radians

D ¼ 0:9k
b cos h

; (1)

where D is the size of the crystalline domain and b is the

FWHM. The decrease in the FWHM, b of the (�111) and

(111) peak with Ag doping indicates the increase in grain

size and also decrease in strain in the Ag doped CuO. The

microstrain, e in the CuO films are calculated from the well

known Williamson-Hall relation12

e ¼
b cos h� k

D
sin h

: (2)

The negative sign of the strain indicates that the strain is

compressive. The crystallite size of CuO and doped CuO is

FIG. 3. XRD patterns showing (a) amorphous nature of the as-deposited

films (b) growth of CuO after MW annealing.

FIG. 4. Plot of CuO (�111) lattice spacing versus Ag content in the CuO

films.

TABLE II. Microstructural properties extracted from X-ray diffraction data

for Ag doped CuO films on PEN.

Crystallite size, d (nm) Microstrain, e (%)

Ag content (at. %) (�111) (111) (�111) (111)

0 10.7 11.6 �0.523 �0.447

1 11.5 13.7 �0.489 �0.379

3 14.5 15.1 �0.389 �0.343

6 20.8 17.7 �0.271 �0.293
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dependent on factors such as defects and doping concentra-

tion. Moreover, in our case, the growth of CuO on flexible

polymer substrates and the use of microwave annealing play

a very important role in growth direction and rate. It has

been hypothesized that during the deposition of Cu by sput-

tering, the lack of silver resulted in island formation;

whereas, the presence of silver atoms led to the formation of

a uniform layer of copper films by virtue of grain boundary

pinning effect. After microwave annealing, Cu islands gets

converted to CuO islands (in undoped films) and tends to

produce more compressive strain than in continuous silver

doped copper films, which gets oxidized to CuO films. The

MW annealing also results in the presence of Ag at the CuO

grain boundaries, which might increase the CuO-CuO grain

boundary energy. This becomes the driving force for an

increase in grain size by decreasing the grain boundary area

of the film, thereby leading to increased crystallite size.

Thus, the increase in the Ag content in CuO films results in

reduction of compressive strain in the film and increase in

crystallite size. It is our speculation that the Cu islands in

undoped films are near-contiguous. Thus, upon oxidation,

there is a net volume change taking place during the oxida-

tion in the z-direction and radially. When adjacent oxidizing

island continue to grow and becomes contiguous, there is in-

herent compressive strain. For the contiguous film as in Ag

(6 at. %), the growth is in the z-direction and there is less

compressive strain due to the large substrate size.

Figure 5 shows the variation of average crystallite size

with roughness. It shows that as the average crystallite size

increases as the surface roughness decreases. This is because

increase in crystallite size reduces the grain boundaries due

to grain growth and thus decreases the surface roughness.

Previous thermal studies of Ag(Cu) alloy films using AFM

and XRD to evaluate the texture and surface-morphology

showed that the presence of Cu atoms in the silver alters the

alloy’s surface energy and surface diffusion.13 This resulted

in Ag and Ag(Cu) alloy having the very different surface

morphologies and crystallographic texture after thermal

annealing. The surface morphology was much smoother for

the alloyed film when compared to the pure Ag film. In our

case, the (111) texture of the Ag doped CuO was enhanced

when compared to that of pure CuO films.

The dataset has been fitted and found that roughness

decreases linearly with increase in crystallite size. Herein,

we propose an empirical relationship between crystallite size

and roughness for CuO and Ag doped CuO films prepared on

PEN by MW annealing

D ¼ 2:2701� 0:1044r: (3)

From the above relation, the crystallite size can be roughly

estimated from the surface roughness of CuO and doped

CuO films on PEN prepared by MW annealing.

Figure 6(a) shows the Cu 2p XPS spectra for the as-

deposited and the MW annealed Ag 6 at. % CuO sample.

The peaks at 933 eV and 952.6 eV in the as-deposited sample

are attributed to Cu 2p3/2 and Cu 2p1/2 of metallic Cu0 state,

respectively.14 However, after the MW anneal, two distinct

peaks are observed for Cu 2p3/2, which indicates the forma-

tion of both CuO and Cu2O.14 CuO was also characterized

by the presence of shake-up satellite peaks at 9 eV higher

than that of Cu 2p3/2 and Cu 2p1/2 peak.15 The as-deposited

samples showed small satellite peaks; however, the intensity

of these satellite peaks increased after MW annealing show-

ing the growth of CuO. Figure 6(b) showed that the broad

Cu 2p3/2 peak, which had been deconvoluted into two peaks,

FIG. 5. Plot of average crystallite size versus roughness of the CuO films.

The solid line represents the linear fitting of the experimental data.

FIG. 6. XPS spectra showing Cu 2p peaks for (a) as deposited and MW

annealed Ag 6 at. % CuO sample (b). The deconvoluted peaks of Cu2þ

(2p3/2) and Cuþ(2p3/2) with binding energy peaks at 934.3 eV and 932.5 eV,

respectively.
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marked as X and Y peaks. The X and Y peaks are ascribed

to Cu2O and CuO, respectively. The binding energy and

FWHM of Cu2O for the MW annealed samples are 932.5 eV

and 1 eV, respectively. Whereas, the binding energy and

FWHM of CuO for the MW annealed samples are 934.3 eV

and 2.85 eV, respectively. Based on the areas of peak fit as

shown in Fig. 6(b), the Cu(II):Cu(I) ratio is found out to be

4.5:1. Ag displayed a 3d5/2 peak at 368.5 eV (figure not

shown) for both as-deposited and MW annealed samples cor-

responding to silver in zero oxidation state.

Copper oxidizes in preference to silver due to the higher

oxygen affinity of copper, as is evidenced by the free energy

calculations using FACTSAGE 5.4.1 thermochemical software

and databases which is shown below16

Cu sð Þþ 1

2
O2 gð Þ � ��!

MW
CuO ðsÞ; DGrxn¼ � 126:5 kJ=mol:

(4)

An alternative mechanism suggests Ag2O in situ oxidizes Cu

to Cu2O and itself gets reduced to metallic Ag. Thus, Ag2O

might have acted as a catalyst for low temperature oxidation

of Cu

2Ag sð Þþ 1

2
O2 gð Þ � ��!

MW
Ag2O ðsÞ; DGrxn¼ � 9:5 kJ=mol;

(5)

Ag2O ðsÞþCu ðsÞ � ��!MW
CuO ðsÞþ 2Ag ðsÞ;

DGrxn ¼ �412:2 kJ=mol: (6)

Figure 7 shows the transmission spectra of the copper

oxide films on PEN. It indicates that all the CuO films on

PEN are opaque for wavelengths below 380 nm. The maxi-

mum transmittance of �80% is observed around 600 nm for

undoped CuO films. It is also noted that with the increase

in the Ag concentration the transmittance decreased.

Considering the application of these films in transparent so-

lar panel, the average transmittance of these films has to be

determined. The following equation is used to determine the

average transmittance:

Tav ¼

ð
TðkÞVðkÞdk
ð

VðkÞdk
; (7)

where T(k) is the transmittance and V(k) is the photopic lumi-

nous efficiency function defining the standard observer for

photometry. In the blue part of the visible spectrum, the trans-

mittance of the films decreases as the amount of silver

increases. In case of noble metals like silver, the transmittance

in the blue region is determined by the absorption of light due

to electronic transitions between occupied d states and unoc-

cupied hybridized sp states above the Fermi level.17 With an

increase in the silver content, the probability of interband elec-

tronic excitation increases and hence the greater drop in the

transmittance occurs. In the red region, the transmittance of

the films is governed by the reflectivity of silver, hence lower

transmittance with increase in Ag content.18

The absorption coefficient were determined by transmis-

sion (T) and reflectance (R) data by using the following

equation:

T � R ¼ expð�atÞ; (8)

where t is the film thickness and a is the absorption coeffi-

cient. The bandgap (Eg) of the material can be deduced from

the relation

ðah�Þn / ðh� � EgÞ; (9)

where h� is the incident photo energy and the exponent n
depends on the type of transition, n¼ 2 and n¼ 1/2 for direct

and indirect transition, respectively. Extrapolation of the lin-

ear portion of the curve to the energy intercept yields

bandgap value of the materials. Figure 8 illustrates an excel-

lent straight line fit and an abrupt increase in the absorbance,

a characteristic feature of a well defined direct band gap. The

interception generates a direct band gap, Egd � 3.19 eV and

2.95 eV for CuO and Ag (6 at. %) doped CuO, respectively.

Replotting the absorption coefficient data using Eq. (8) and

n¼ 1/2 in Fig. 9 yields indirect bandgaps, Egi � 2.02 eV and

1.89 eV for CuO and Ag (6 at. %) doped CuO, respectively.

FIG. 7. Comparison of the transmission spectra of CuO films with different

Ag contents.

FIG. 8. Tauc’s plot to estimate the direct band gap of CuO and Ag doped

CuO.
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IV. CONCLUSIONS

It has been demonstrated that CuO thin films on PEN

can be prepared by oxidation of pure copper to CuO using

microwave radiation. This facile approach allows for low

temperature, faster and controllable growth of metal oxide

films on polymer substrates. XRD results show the formation

of CuO (111) and (�111) peaks after MW anneals. XPS

results confirm the formation of CuO after the MW anneal.

The Ag doping led to the growth of smooth and uncracked

films; however, the transparency is reduced with increased

silver content. The transparent Ag doped CuO may offer

potential applications in areas of photocatalysis, electronics,

and optics.
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