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We report the crack-free growth of a 45-pair Al0.30Ga0.70N/Al0.04Ga0.96N distributed Bragg reflec-

tor (DBR) on 2 in. diameter AlN/sapphire template by metalorganic chemical vapor deposition. To

mitigate the cracking issue originating from the tensile strain of Al0.30Ga0.70N on GaN, an AlN

template was employed in this work. On the other hand, strong compressive strain experienced by

Al0.04Ga0.96N favors 3D island growth, which is undesired. We found that inserting an 11 nm thick

GaN interlayer upon the completion of AlN template layer properly managed the strain such that

the Al0.30Ga0.70N/Al0.04Ga0.96N DBR was able to be grown with an atomically smooth surface

morphology. Smooth surfaces and sharp interfaces were observed throughout the structure using

high-angle annular dark-field imaging in the STEM. The 45-pair AlGaN-based DBR provided a

peak reflectivity of 95.4% at k¼ 368 nm with a bandwidth of 15 nm. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961634]

Vertical-cavity surface-emitting lasers (VCSELs) have

been employed in numerous applications instead of edge-

emitting lasers owing to the advantages of lower threshold

current operation, circular and low-divergence output beam,

and lower temperature sensitivity. Much effort has been

invested in III-nitride based VCSELs for the visible and

ultraviolet wavelength ranges.1–4 The performance of

current-injection VCSELs strongly depends on the crystal

quality of the distributed Bragg reflectors (DBRs) typically

composed of epitaxially grown semiconductor materials.5

However, in the III-nitride material system, epitaxial growth

of high-quality DBR structures remains an extremely diffi-

cult challenge due to the large lattice mismatch between

GaN and AlN as well as the relatively low refractive index

contrast of this material system. The issue can be more com-

plicated if the target wavelength is near k¼ 365 nm which is

the peak emission wavelength of GaN. This is due to the fact

that it is favorable to grow the active region on a GaN sub-

strate while the choice of optically transparent material that

can be epitaxially grown on GaN to form a high-reflectivity

DBR without tensile-strain-induced cracking is, however,

very limited. As a result, the refractive index contrast is fur-

ther limited and a large number of pairs are required to

achieve a UV reflectivity above 90% such as exhibited by

our previously reported electrically conducting n-DBR.6 To

avoid the cracking issue, an AlN substrate can be used

instead of a GaN substrate. The disadvantage for using an

AlN substrate is the strong compressive strain exerted on the

active region will limit the quality of the material and further

reduce the achievable internal quantum efficiency. Without

high crystalline quality of the active region, the compro-

mised quantum efficiency leads to poor device performance.

To the best of our knowledge, an electrically injected

VCSEL operating in this wavelength with a semiconductor

DBR has not yet been reported. In this work, we report a

novel strain-management method to epitaxially grow

AlGaN-based DBRs on an AlN-based substrate such that it

provides larger refractive index contrast than the DBRs oper-

ating in the same wavelength range grown on a GaN sub-

strate while maintaining the strain state for high-quality

active region growth. There are other approaches to achieve

high-reflectivity crack-free (Al)GaN/Al(Ga)N DBRs and a

summary of those approaches can be found elsewhere.7

The epitaxial growth was performed in a Thomas-Swan

AIXTRON 6� 2 in. close-coupled showerhead metalorganic

chemical vapor deposition (MOCVD) reactor system.

EpiPure
VR

Trimethylaluminum (Al(CH3)3, TMAl) and trime-

thylgallium (Ga(CH3)3, TMGa) were used for group III precur-

sors while ammonia (NH3) was used for group V precursor.

Following the growth of an AlN template layer on the sapphire

substrate, the temperature was lowered to �860 �C to grow an

�11 nm thick GaN interlayer. The temperature was then

ramped back to �1060 �C to grow the DBR. The purpose of

this GaN interlayer is to manage the material strain state such

that a higher quality DBR and active region can be grown on

top of the AlN as reported by Wang et al.8 The DBR reported

in this work consists of 45-pairs of quarter-wavelength-thick

layers of undoped Al0.30Ga0.70 N and Al0.04Ga0.96 N. Although

silane doping was not introduced in this work, the relatively

low AlN mole fraction (less than x¼ 0.3) still provides the pos-

sibility of electrical conduction for similar Si-doped DBRs.

Compared to the AlN interlayer approach reported by Waldrip

et al.,9 our approach utilizing a single GaN interlayer signifi-

cantly reduces the required epitaxial growth time as well as
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enabling the possibility for electrical conduction while main-

taining good optical reflectivity.

A detailed analysis of the crystal structure of the DBR

was performed using high-angle annular dark-field

(HAADF) imaging in a JEOL ARM200F scanning transmis-

sion electron microscope (STEM), operating at 200 kV. The

sample was prepared by mechanical wedge-polishing, fol-

lowed by Ar ion-milling at 4 kV. Figure 1 shows a cross-

section HAADF image, along a f11�20g zone axis, of the 45-

pair Al0.30Ga0.70 N/Al0.04Ga0.96 N DBR on a GaN interlayer

on an AlN template. The entire 45-pairs of the DBR with a

total thickness of �3.3 lm is clearly observed. The HAADF

intensity at the given detector angle can be described as10

IHAADF qð Þ ¼
1

2p2a0q2
Z

� �2

; (1)

where a0 is Bohr’s radius; Z is the atomic number; and

q ¼ 2 sin hð Þ
k with h referring to the scattering angle of elec-

trons with respect to incident electron beam. The equation

indicates that the intensity is roughly proportional to Z2;

therefore in this image, the darker layers represent higher

AlN mole fraction AlGaN layers, and brighter layers repre-

sent higher GaN mole fraction layers. Abrupt interfaces

between the Al0.30Ga0.70N and Al0.04Ga0.96N layers are

observed throughout the image. The average thickness for

the Al0.30Ga0.70N and Al0.04Ga0.96N layers was determined

to be 38.3 nm and 33.3 nm, respectively. The measured

thicknesses represent a close match to the intended ideal

quarter-wavelength values of 37.5 nm and 35.4 nm for

Al0.30Ga0.70N and Al0.04Ga0.96N based on the refractive

index reported in the literature.11

To further study the GaN interlayer grown in between the

AlN template and DBR, higher magnification images were

acquired. A higher magnification cross-section image along a

f11�20g zone axis including the GaN interlayer is shown in

Fig. 2(a). A thin layer of 11 nm GaN interlayer is clearly

observed. Despite the lattice mismatch between AlN and

GaN, the thin GaN interlayer still maintains a smooth 2D (i.e.,

layer-by-layer) growth, and sharp interfaces between the AlN/

GaN/AlGaN layers are observed. Without this thin GaN inter-

layer to manage the strain, the growth of either Al0.30Ga0.70N

or Al0.04Ga0.96N layers on AlN would likely turn into rough

surface morphology.12,13 Although the rough surface of

AlGaN layers grown on AlN can potentially be smoothed out

by growing a thicker AlGaN layer, such an approach is not

suitable for UV DBR growth with quarter-wave thick layers.

The rough surface formation from the initial nucleation mis-

match would subsequently limits the maximum achievable

reflectivity.14 Furthermore, the GaN interlayer also prevents

the possible composition-pulling effect as a strain relief mech-

anism since the formation of a quasi-three-sublayer structure

is also undesired and likely to occur at the AlGaN/AlN inter-

face.15 To verify that the GaN interlayer is grown as designed,

FIG. 1. Cross-section STEM-HAADF image for a 45-pair Al0.30Ga0.70N/

Al0.04Ga0.96N DBR on a GaN interlayer on an AlN template, taken along a

f11�20g projection.

FIG. 2. (a) Magnified cross-section image along a f11�20g projection near

the AlN and GaN interlayer interfaces. (b) HAADF intensity profile versus

relative location for the region in (a) and the growth direction is to the left.

081103-2 Liu et al. Appl. Phys. Lett. 109, 081103 (2016)



further analysis on the acquired HAADF profile was per-

formed. Fig. 2(b) shows the relative intensity profile versus

the relative location of the layers measured near the first-

grown pair of the DBR. As discussed earlier, the HAADF

intensity is roughly proportional to Z2 and the higher intensity

refers to larger GaN mole fraction. In the profile, the GaN/

AlN-template interface happens at �107 nm with the rela-

tively low HAADF intensity identifying the AlN template

layer. Moving along from right to left, a sharp increase in the

HAADF intensity was observed which indicates our strain-

management GaN interlayer. The GaN layer thickness mea-

sured from the HAADF scan matched our intended 11 nm and

the rapid changes in intensity also suggest a sharp interface at

the GaN/AlN interface. Notice that the composition-pulling

effect as strain relief mechanism reported in Ref. 15 is not

observed here and this indicates the importance of the GaN

interlayer in reducing the strong compressive strain resulting

from growth on AlN. Starting from the relative position of

�95 nm is the beginning of the 45-pair of Al0.30Ga0.70N/

Al0.04Ga0.96N DBR structure. The thicknesses for the DBR

layers shown in this profile are slightly thinner than the aver-

age value. This was observed throughout the entire DBR

structure that the average thickness per pair increases along

the growth direction and this may be related to a continuous

shift in the growth conditions during the growth of the DBR

having a total thickness of �3.3 lm.

To study how the strain state changed for our 45-pair

Al0.30Ga0.70N/Al0.04Ga0.96N DBR grown on top of the GaN

interlayer on AlN, the structure was characterized using

reciprocal space mapping (RSM) about a high-angle asym-

metry plane f10�15g of AlN taken by high-resolution triple-

axis X-ray diffractometer (XRD), shown in Fig. 3. The per-

pendicular and parallel axes represent the reciprocal lattice c
(Qy) axis and a (Qx) at the asymmetry plane f10�15g, respec-

tively. Each diffraction peak has an elongated shape due to

the fact that the DBR was grown on an AlN template on a

sapphire wafer instead of on a high-quality bulk AlN sub-

strate.16 As a result, the broadening of Qx in the RSM origi-

nated from the relatively high dislocation density of the AlN

templates was observed. The AlN template peak was found

to center near Qx¼ 2.34435 Å�1 and Qy¼ 6.30361 Å�1

while peaks for the remaining structures were found to cen-

ter near Qx¼ 2.30176 Å�1. Since the thickness of GaN inter-

layer is too thin to be resolved from RSM, it is assumed that

the final strain state of GaN interlayer closely matches with

the lattice constant of the AlGaN DBR as the value of Qx for

the DBR did not change gradually. This assumption will be

verified with further TEM analysis utilizing the Fourier

transform technique.

To verify the DBR is fully strained on the GaN inter-

layer and relaxation only happens at GaN interlayer/AlN

interface, Fourier transform analysis was performed on the

captured TEM image to acquire diffraction patterns at the

interfaces. Specifically, this study focuses on the DBR/GaN-

interlayer and GaN-interlayer/AlN interfaces. Fig. 4 shows

the diffraction patterns along a f11�20g zone axis, acquired

from a Fourier transform with vertical and lateral directions

corresponding to (0002) and ð1�100Þ, respectively. Since the

lateral direction of the diffraction pattern reflects the changes

in the in-plane direction, any relaxation from the material

will be exhibited as additional diffraction spots that have dif-

ferent lateral spacings. As a result, we can evaluate the relax-

ation that occurs at the DBR/GaN interlayer and the GaN

interlayer/AlN interfaces from Figs. 4(a) and 4(b), respec-

tively. The diagonal elongated diffraction spots are observed

in Fig. 4(b), which is an indication of relaxation. On the

other hand, Fig. 4(a) is an example of a fully strained

FIG. 3. (a) X-ray diffraction reciprocal-space mapping about the high-angle

asymmetry plane f10�15g of AlN.

FIG. 4. Fourier transform analysis on the acquired image along a f11�20g
projection in the vicinity of (a) the DBR/GaN interlayer interface and (b) the

GaN interlayer/AlN interface.

081103-3 Liu et al. Appl. Phys. Lett. 109, 081103 (2016)



structure as no changes in the in-plane direction were

observed from the diffraction pattern. Thus, we can assume

in the following calculations that the in-plane lattice con-

stants of the GaN interlayer and the layers in the DBR are

approximately constant since relaxation is only observed at

the GaN interlayer/AlN interface from our Fourier transform

analysis. The following equation relates the in-plane lattice

constant a and Qx in a hexagonal crystal system:

a ¼ 4pffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ hkð Þ

p
Qx

: (2)

Using the above equation, we can extract the center (aver-

age) of the elongated peak, as well as the in-plane lattice

constant a for both AlN template and GaN interlayer, which

share the same Qx value as the 0th order peak of the DBR.

The in-plane percentage relaxation R% of the GaN interlayer

with respect to the AlN template is given by

R% ¼
am Lð Þ � am Sð Þ
a0 Lð Þ � a0 Sð Þ � 100; (3)

where the subscripts m and 0 denote the measured and ideal

values. On the other hand, the L and S variables represent the

layer (GaN interlayer in this case) and the substrate, respec-

tively. Utilizing, in Fig. 3, the reported ideal in-plane lattice

constant for AlN and GaN,17 the calculated relaxation gener-

ated via the GaN interlayer is found to be �74%. The analy-

sis with XRD and TEM clearly shows that the existence of a

GaN interlayer can relax the strong compressive strain from

the AlN template such that the final strain states closely

match with the lattice constant of the AlGaN DBR. In addi-

tion to the observed strong relaxation, the growth of the

entire DBR structure remained fully strained throughout the

45-pair DBR, which enabled the smooth surface formation

as shown in the previous images.

In addition to TEM and XRD analyses, Fig. 5 shows the

reflectivity spectra measured at 300 K by a Shimadzu

UV2401PC ultraviolet-visible spectrometer with blue-solid

curve. The spectrometer is equipped with halogen and deute-

rium lamps for visible and ultraviolet wavelength measure-

ments, respectively. In this study, the halogen lamp was used

to obtain the reflectivity for wavelengths longer than

k> 283 nm, while the deuterium lamp was used for the

reflectivity between 200< k< 283 nm, using a measurement

step of 0.5 nm. Although Al0.04Ga0.96N is not fully transpar-

ent near 368 nm due to the tail of the excitonic absorption

near the material bandgap energy18 and thus has a slight

absorption, the 45-pair Al0.30Ga0.70N/Al0.04Ga0.96N DBR

still exhibits a peak reflectivity of 95.4% with a bandwidth

of 15 nm. Furthermore, the measured average thicknesses for

each of the layers obtained via TEM analysis (38.3 nm and

33.3 nm for Al0.30Ga0.70N and Al0.04Ga0.96N) were employed

to simulate the ideal reflectivity curve as presented in Fig. 5

as a red-triangle curve. To account for the strain relaxation

originating from the GaN interlayer based on our XRD anal-

ysis (�74% relaxation) and the excitonic absorption from

the material, the complex refractive indices were calculated

according to the previous reports.11,19 The simulated reflec-

tivity spectrum demonstrated a peak reflectivity of 99.7%

with a bandwidth of 13 nm. In the case for a DBR without a

GaN interlayer, the peak reflectivity was slightly reduced

down to 99.3% compared to 99.7% for the DBR with a GaN

interlayer. Although the GaN interlayer can introduce addi-

tional optical absorption, the increase index contrast between

the GaN interlayer and the AlN template (versus Al0/3Ga0.7N

and AlN) outweighs the penalty from increased optical loss.

In summary, we report a crack-free growth of a 45-pair

Al0.30Ga0.70 N/Al0.04Ga0.96N distributed Bragg reflector (DBR)

by metalorganic chemical vapor deposition. We found that

inserting an 11 nm-thick GaN interlayer upon the interface

with the AlN template was able to properly manage the strain

so that smooth low-aluminum-content AlxGa1-xN layers were

formed. The DBR material quality as well as the interfaces

was studied using STEM-HAADF imaging and smooth surfa-

ces with sharp interfaces were observed throughout the struc-

ture. Furthermore, high-resolution XRD RSM scans and

diffraction patterns showed that the GaN interlayer effectively

relaxes the compressive strain from the AlN and enables smooth

surface formation for the subsequently grown AlxGa1-xN layers.

The 45-pair AlGaN-based DBR has a peak reflectivity of 95.4%

at 368 nm with a bandwidth of 15 nm.
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17H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns,

J. Appl. Phys. 76, 1363–1398 (1994).
18J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P.

Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 71, 2572 (1997).
19J. Piprek, H. Wenzel, and M. Kneissl, Proc. SPIE 6766, 67660H (2007).

081103-5 Liu et al. Appl. Phys. Lett. 109, 081103 (2016)

http://dx.doi.org/10.1016/j.jcrysgro.2016.03.027
http://dx.doi.org/10.1016/j.jcrysgro.2016.03.027
http://dx.doi.org/10.1143/JJAP.44.7207
http://dx.doi.org/10.1063/1.2338784
http://dx.doi.org/10.1063/1.1371240
http://dx.doi.org/10.1016/j.ssc.2004.03.035
http://dx.doi.org/10.1016/j.ssc.2004.03.035
http://dx.doi.org/10.1063/1.2766841
http://dx.doi.org/10.1063/1.2766841
http://dx.doi.org/10.1016/j.jcrysgro.2004.08.033
http://dx.doi.org/10.1016/j.jcrysgro.2004.08.033
http://dx.doi.org/10.1364/JOSA.51.000123
http://dx.doi.org/10.1063/1.3605681
http://dx.doi.org/10.1088/0034-4885/72/3/036502
http://dx.doi.org/10.1063/1.358463
http://dx.doi.org/10.1063/1.120191
http://dx.doi.org/10.1117/12.736729

	l
	n1
	n2
	d1
	f1
	f2
	f3
	f4
	d2
	d3
	c1
	c2
	c3
	c4
	c5
	f5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19

