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The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k
gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer

deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing

at �700 �C for 5 min. The 2� 1 reconstructed, clean Ge (001) surface is a necessary template to

achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown

by x-ray diffraction and transmission electron microscopy. The SHO films have favorable elec-

tronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets

(>2 eV), low leakage current (<10�5 A/cm2 at an applied field of 1 MV/cm) at an equivalent oxide

thickness of 1 nm, and a reasonable dielectric constant (k� 18). The interface trap density (Dit) is

estimated to be as low as �2� 1012 cm�2 eV�1 under the current growth and anneal conditions.

Some interfacial reaction is observed between SHO and Ge at temperatures above �650 �C, which

may contribute to increased Dit value. This study confirms the potential for crystalline oxides

grown directly on Ge by atomic layer deposition for advanced electronic applications. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906953]

I. INTRODUCTION

In the last decade, significant material changes to com-

plementary metal oxide semiconductor (CMOS) devices

have included the introduction of strained Si channels to

improve performance and efficiency and metal gate/high-k
dielectric stacks to address leakage current issues.1–3 More

recently, there has been renewed interest in using Ge as a

channel material due to its higher hole (1900 vs. 500 cm2/V

s) and electron (3900 vs. 1400 cm2/V s) mobility compared

to Si.4–7 Crystalline oxides are also being considered by the

semiconductor industry as next-generation high-k dielec-

trics.8 For example, there is tremendous interest in epitaxial

integration of perovskite oxides, such as SrTiO3 (STO) or

BaTiO3 (BTO), on semiconductors due to their functional

properties and very high permittivities.9–12 One primary

advantage of crystalline, epitaxial dielectrics is the possibil-

ity of having virtually no defects in the bulk of the dielectric

or at the interface with the semiconductor in an ideal hetero-

epitaxial system. For practical realization of high-mobility

channels in CMOS technology, surface passivation of the

semiconductor substrate and a high-quality oxide-semicon-

ductor interface must be realized.

Integration of high-k dielectrics on germanium has been

studied by many groups,13–19 but the electrical performance

of Ge-based devices has been less than optimal. Several

methods have been employed to control the interface trap

density (Dit) in order to achieve high performance.15,16,18

Typical values reported for high-k/Ge gate stacks show

Dit� 1011–1012 cm�2 eV�1. However, crystalline oxides

have the potential to create a nearly perfect electrical inter-

face by drastically reducing the interface trap density

(Dit< 1010 cm�2 eV�1).19,20 For a material to be suitable as a

gate dielectric replacement, it needs to satisfy several

requirements, including high permittivity, sufficiently large

band gap and proper band alignment (with 1 eV offset to

both bands) to the semiconductor, thermodynamic stability,

good film morphology, and high interface quality. Materials

related to TiO2, including STO and BTO, have high permit-

tivities, but the conduction band offsets with Si and Ge are

very small to negligible.21–23 Alternatively, crystalline stron-

tium hafnate, SrHfO3 (SHO), meets many of the high-k
requirements and has a reasonable lattice match to Ge

(�1.9% mismatch), making it an ideal material candidate for

Ge-based transistors.

There are relatively few reports on thin film deposition

of SHO to date.24–32 In some early work, crystalline SHO

was investigated as a future gate dielectric material for Si-

based devices.25,27 The SHO films were grown by molecular

beam epitaxy (MBE) on Si (001) despite the 6% lattice mis-

match. The electrical performance of epitaxial SHO on Si

showed low equivalent oxide thickness (EOT) of 0.7 nm and

low leakage current (10�6 A/cm2) at �1 V.25 However, the

relatively high Dit (�1013 eV�1cm�2) likely contributed to

the poor mobility of the SHO/Si field-effect transistors

(FETs), where both n-FETs and p-FETs exhibited carrier

mobilities of �25 cm2/V-s at 1 MV/cm.25 Later work showed
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that the SHO films on Si lacked significant strain and con-

firmed the in-plane misalignment of grains, which can de-

grade mobility.30 The large lattice mismatch between SHO

and Si, and subsequent relaxation of the film, likely contrib-

uted to the formation of these undesirable defects.

For epitaxial SrHfO3 thin films, Ge is a more suitable

substrate than Si in terms of the lattice match. Cubic SHO

has a lattice constant of 4.069 Å.33 The Ge (001) surface has

an in-plane atomic spacing of 3.992 Å, which would lead to

compressive lattice strain in commensurate, epitaxial SHO

films of 1.9%. In addition to the closer lattice match, other

physical properties make crystalline SHO a good candidate

dielectric for Ge-based devices. Polycrystalline SHO films

are reported to have a dielectric constant up to k� 35,24,28

leading to an EOT of less than 0.6 nm with a 5 nm film using

the ratio of k/3.9. However, other studies have reported lower

dielectric constants (k� 20) for SHO,26,32 similar to the bi-

nary oxide HfO2. Finally, SHO has a large band gap of

6.1 eV with favorable conduction band offset (�2.2 eV) and

valence band offset (�3.2 eV) with Ge.26,34 This is in con-

trast with Ti-based perovskites, where the Ti 3d states yield

negligible conduction band offsets with Si and Ge

(�0.1–0.5 eV).21,22,35 A direct comparison between SHO

and STO films on Si (001) has shown a reduction in gate

leakage by 4 orders of magnitude for SHO versus STO.26

Recently, we reported the growth of single crystal STO

(a¼ 3.905 Å) on Ge (001) by atomic layer deposition (ALD)

followed by post-deposition annealing in vacuum.23

Capacitor structures revealed a large dielectric constant

(k� 90) for the STO films, but a high leakage current of

�10 A/cm2 for an applied field of 0.7 MV/cm. To circum-

vent this leakage issue, we explore the Hf-based perovskite,

SHO, with optimal band alignments to Ge and associated

reduction in leakage current. As detailed in our previous

report,23 the controlled growth by ALD on a clean Ge (001)

surface enables a chemical route to epitaxial oxide integra-

tion with semiconductors. Here, we confirm this growth and

annealing protocol to realize crystalline SHO films, and eval-

uate the potential for epitaxial SHO films as a future gate

dielectric for Ge-based transistors.

II. EXPERIMENTAL

Strontium hafnate, SrHfO3 (SHO), thin films are depos-

ited by ALD at a substrate temperature of 225 �C using

strontium bis(triisopropylcyclopentadienyl) [Sr(iPr3Cp)2]

(HyperSr),36 hafnium formamidinate (Hf-FAMD),37 and

purified water as co-reactants. Both the Sr and Hf metalor-

ganic precursors are commercially available, reactive with

water, and have been previously used for ALD.38–48

Alternating subcycles of Sr and Hf are used to deposit stoi-

chiometric to slightly Sr-rich (56%) films. During each sub-

cycle the metalorganic is dosed for 2 s to ensure complete

saturation of the surface, and subsequently purged for 15 s

with ultrahigh purity Ar. The water co-reactant is dosed for

1 s followed by a 15 s Ar purge.

The Ge (001) substrate is prepared from a 4-inch Ge wa-

fer (Sb-doped, q� 0.04 X cm) from MTI Corp. The as-

received Ge wafer is diced into approximately 18� 20 mm2

sample pieces. The sample is degreased by placing the wafer

in ultrasonic baths of acetone, isopropyl alcohol, and water

for 10 min each. The sample is then dried with nitrogen and

exposed to ultraviolet/ozone for 30 min to remove residual

carbon contamination. The sample is then immediately

loaded into the load lock chamber and pumped by a turbo-

molecular pump to a vacuum below 5� 10�7 Torr before

transferring into the annealing chamber. The surface GeO2 is

removed by annealing the sample at 700 �C in vacuum

(<2� 10�9 Torr) for 1 hr. After thermal deoxidation, the Ge

substrate is brought to below 200 �C before transfer into the

ALD system. The heating and cooling rates are fixed at

20 �C min�1. The low base pressure of the annealing cham-

ber minimizes potential contamination of the Ge surface dur-

ing thermal deoxidation. The clean Ge (001) surface then

shows a sharp, intense 2� 1 reconstruction that is observed

by in situ reflection high-energy electron diffraction

(RHEED).

After achieving the 2� 1 reconstructed Ge surface, the

sample is transferred into the ALD chamber, with a base

pressure of 5� 10�7 Torr, and allowed at least 30 min to

reach thermal equilibrium. Ultrahigh purity argon is used as

the carrier/purge gas and maintains the deposition pressure at

1.0 Torr. To deposit stoichiometric to Sr-rich (�56%) films

of SHO, a subcycle ratio of 1:1 (Sr:Hf) is used. This is in

contrast to STO films, where the initial deposition on Ge

required a Sr-heavy subcycle ratio of 2:1 (Sr:Ti).23 Upon

deposition of the SHO film, the sample is transferred back

into the annealing chamber for crystallization. Post-

deposition annealing is carried in vacuum (<2� 10�9 Torr)

with a temperature ramp rate of 20 �C/min.

The SHO films were post-deposition annealed at a sub-

strate temperature of 650–850 �C. The transition of the films

from amorphous to crystalline is observed in real time by in
situ RHEED. After crystallization, in situ x-ray photoelec-

tron spectroscopy (XPS) is used to check the chemical com-

position and oxidation states, as well as to measure the

valance band offset of the SHO-Ge heterostructure. XPS is

performed using a VG Scienta R3000 analyzer and a mono-

chromated Al Ka source at 1486.6 eV. The analyzer is cali-

brated using a silver foil, where the Ag 3d5/2 core level is

defined to be 368.28 eV and the Fermi level of Ag at

0.00 eV. High-resolution spectra of Sr (3d, 3p), Hf (4f, 4d5/

2), O 1s, C 1s, and Ge (3d, 2p3/2) core levels are measured

using a pass energy of 100 eV with an analyzer slit width of

0.4 mm, resulting in an effective resolution of 350 meV.

Each high-resolution scan is measured four times and

summed, using 50 meV steps with a dwell time of 157 ms

per step. Film composition is estimated using CasaXPS (ver-

sion 2.3.16) peak fitting with a Shirley background subtrac-

tion and relevant sensitivity factors.49

The epitaxial SHO films are characterized ex situ by x-

ray reflectivity (XRR), x-ray diffraction (XRD), and cross-

section transmission electron microscopy (TEM). XRR is

performed using a Rigaku Ultima IV equipped for thin-films

with automated alignment. XRD is performed using an

X’PERT Powder Diffractometer with a sealed tube Cu Ka
radiation (k� 1.5406 Å). Cross-sectional TEM is performed

with a 400-keV high-resolution electron microscope (JEM-

054101-2 McDaniel et al. J. Appl. Phys. 117, 054101 (2015)
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4000EX) equipped with a double-tilt specimen holder. The

samples are prepared using standard mechanical polishing

followed by argon-ion-milling to perforation.

Standard metal-oxide-semiconductor capacitor

(MOSCAP) structures are created for capacitance-voltage

(C-V) and current-voltage (I-V) measurements. The top elec-

trode on the oxide surface is formed using sputtering of TaN,

photolithography, and SF6-based plasma etching. The bot-

tom electrode is formed by using silver paste on the

scratched backside of the Ge substrate. Both C-V and I-V

were measured in air at room temperature under dark condi-

tions using an Agilent B1500A semiconductor device param-

eter analyzer with a Cascade Microtech probe station. The

sweeping voltage was applied to the top electrode with the

bottom electrode grounded. The density of interface traps

(Dit) was estimated using the conductance method with a

range of frequencies extending from 1 kHz to 1.2 MHz.50

III. RESULTS AND DISCUSSION

A. Deposition and crystallization of SrHfO3 on Ge

Strontium hafnate films were deposited by ALD on the

reconstructed Ge (001) at 225 �C. Film thicknesses between

1 and 20 nm were deposited, and the films were subsequently

crystallized in vacuum at temperatures greater than 650 �C
(typically 700 �C). Some thicker SHO films (>5 nm) were

grown in a two-step growth and anneal process for compari-

son. Figure 1 shows a series of RHEED images for a 2-nm-

thick SHO deposition: (a) after thermal deoxidation of the

Ge (001) substrate showing a clear 2� 1 reconstructed sur-

face and (b) the amorphous SHO film after ALD and the

crystalline SHO film after post-deposition vacuum annealing

at 700 �C for 5 min, where the beam is aligned along the (c)

h100i and (d) h110i directions of the perovskite oxide. Four-

fold symmetry of the crystalline SHO film was observed by

rotating the sample under electron illumination.

In situ XPS analysis was used to check the SHO film

stoichiometry. High-resolution scans of the most prominent

core-levels, Sr 3d and Hf 4f, were used for compositional

analysis. Representative core-level spectra for a 2-nm-thick

SHO film are shown in Figure 2. Both the Sr 3d and Hf 4f
chemical shifts shown in Figs. 2(a) and 2(b), respectively,

are consistent with the fully oxidized species (SrHfO3). The

fitted peak positions are located at binding energies of

134.0 eV and 135.7 eV for Sr 3d5/2 and Sr 3d3/2, respectively,

and 16.9 eV and 18.5 eV for Hf 4f7/2 and Hf 4f5/2, respec-

tively. The asymmetry observed on the high binding energy

side of the Hf 4f high-resolution scan is due to overlap of the

Sr 4p peak, at approximately 19.8 eV. Deconvolution of the

spectra allows for subtraction of the Sr 4p component and

appropriate estimation of the film stoichiometry. For the

sample shown in Fig. 2, the Sr:Hf ratio is 56:44. For the

growth of crystalline perovskite oxides, stoichiometric to

slightly Sr-rich is preferred due to the relative ease with

which additional SrO layers can be incorporated while main-

taining the film crystallinity. Previous work from our group

has shown that Sr-rich STO films maintain the perovskite

structure, while Ti-rich STO films are more likely to be

amorphous.46 The samples grown for this study varied

slightly in cation stoichiometry from 52% to 56% Sr.

XRD and rocking curve analyses were performed ex situ
to verify the crystalline structure and out-of-plane alignment,

as shown in Figure 3. Fig. 3(a) shows a rocking curve around

the SHO (002) peak for a 4.6-nm-thick SHO film, with a

full-width half-maximum of 1.2�. The SHO film was post-

deposition annealed in vacuum at a substrate temperature of

725 �C for 5 min. Fig. 3(b) shows a schematic model of the

cubic perovskite SrHfO3, where the bulk lattice constant is

4.069 Å. Fig. 3(c) shows a h-2h scan of the 4.6 nm SHO film

FIG. 1. RHEED patterns for a 2-nm-

thick SrHfO3 deposition (a) after

thermal deoxidation of the Ge (001)

substrate showing a visible 2� 1

reconstructed surface, (b) the amor-

phous SrHfO3 film after ALD and the

crystalline SHO film after post-

deposition vacuum annealing at 700 �C
for 5 min where the beam is aligned

along the (c) h100i and (d) h110i direc-

tions of SrHfO3.

FIG. 2. X-ray photoelectron spectra of a 2-nm-thick SrHfO3 film showing

the most prominent core-levels: (a) Sr 3d and (b) Hf 4f. Deconvolution of

the spectra (dashed lines) highlights the individual contributions of the Sr

and Hf core-levels to the overall intensity.

054101-3 McDaniel et al. J. Appl. Phys. 117, 054101 (2015)
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on Ge, where only the (001)-oriented peaks are present. The

SHO (002) peak position, 44.35 6 0.05�, corresponds to an

experimental c-axis lattice spacing of 4.082 6 0.005 Å for

the epitaxial film. This suggests that the c-axis is slightly

expanded from the bulk, consistent with compressive in-

plane strain. Assuming SHO (a� 4.069 Å) is perfectly

strained to the Ge surface (3.992 Å), and a Poisson ratio of

0.25,51 the expected out-of-plane lattice spacing would be

4.088 Å. This suggests that the 4.6 nm SHO film is at least

partially strained to the underlying Ge substrate for the

growth and annealing conditions.

B. Band offset of the SrHfO3-Ge heterojunction

In situ XPS analysis was used to estimate the band offset

of the SHO-Ge heterojunction. Shallow core-level and va-

lence band spectra were collected for bulk Ge (001), 11.2-

nm-thick SHO (001) film grown by ALD, and the SHO-Ge

(001) heterojunction. The thick SHO film was grown in a

two-step growth and anneal process, with a measured stoi-

chiometric ratio of 54:46 (Sr:Hf). The Ge substrate was pre-

pared by solvent degreasing, UV/ozone exposure, and UHV

annealing (700 �C for 1 h) as described in Sec. II. Both core-

level and valence band spectra were collected using a mono-

chromated Al Ka source at 1486.6 eV. The valence band

spectra for both the clean Ge (001) substrate and the 11.2-

nm-thick SHO film are shown in Figure 4.

For the Ge (001) substrate, the energy difference

between the valence band edge and Ge 3d5/2 centroid was

29.30 6 0.05 eV. For the 11.2-nm-thick SHO film, the energy

difference between the valence band edge and the Hf 4f7/2

centroid was 13.26 6 0.05 eV. To probe the SHO-Ge

heterojunction, a thin (�2 nm) epitaxial SHO film was grown

on Ge. Both the Ge 3d and Hf 4f core-levels were measured,

where the energy difference between the Ge 3d5/2 and Hf

4f7/2 centroids was 12.77 6 0.05 eV. Using the measured

energy differences, the valence band offset (VBO) between

SHO and Ge was estimated to be �3.27 6 0.10 eV.

To calculate the conduction band offset (CBO), we

assume the bulk band gap values of SHO and Ge to be

6.1 eV and 0.66 eV, respectively.26,52 The resulting CBO is

2.17 6 0.10 eV, as shown schematically in Figure 5. The pos-

itive band offset value means the band energy is higher in

the epitaxial SHO film. It should be noted, however, that the

CBO may be overestimated due to the uncertainty in the

bulk SHO band gap value. In other work, the electronic band

gap for SHO has been reported to be 5.8 eV based on photo-

emission spectra and x-ray absorption data.31 Regardless, the

band alignment between crystalline SHO and Ge (001) is

well above the minimum �1 eV band offset required for suit-

able gate dielectrics.53

C. MOSCAP performance

Capacitor structures were made on five samples of vary-

ing SHO thickness to measure the capacitance of the oxide

FIG. 3. X-ray diffraction and rocking curve analysis of a 4.6-nm SrHfO3

film on Ge: (a) rocking curve around the SHO (002) peak, with a full-width

half-maximum of 1.2�, (b) schematic model of the cubic perovskite SrHfO3

(a� 4.069 Å), and (c) h-2h scan of the 4.6-nm SHO film on Ge, where only

(001)-oriented peaks are present.

FIG. 4. Valence band spectra for both clean Ge (001) substrate (red squares)

and 11.2-nm-thick SrHfO3 film (blue circles).

FIG. 5. Band alignment of the SHO-Ge heterojunction estimated using shal-

low core-level and valence band spectra. The bulk band gap values of SHO

and Ge were taken to be 6.1 eV and 0.66 eV, resulting in a CBO of 2.17 eV

and VBO of �3.27 eV.

054101-4 McDaniel et al. J. Appl. Phys. 117, 054101 (2015)
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layer (Cox) and extract the dielectric constant. These data are

summarized in Figure 6 as a plot of capacitance equivalent

thickness (CET) versus physical thickness of the epitaxial

SHO layer. The dielectric constant is estimated to be k� 18

for crystalline SHO. This value is much lower than the

k� 35 that was reported previously for polycrystalline SHO

grown on TiN/Si substrates by MBE;24,28 however, it is con-

sistent with lower values reported for epitaxial SHO on Si

(k� 20) and polycrystalline SHO grown by plasma-assisted

ALD (k� 21).26,32 The high dielectric constant (k� 35) for

polycrystalline SHO was only achieved after post-deposition

annealing at 800 �C or higher on TiN/Si substrates,28 possi-

bly resulting in Ti diffusion into the SHO layer. It is there-

fore reasonable to conclude that the dielectric constant of

SHO is similar to that of the binary oxide HfO2 (k� 20).

To understand the effect of crystallization on the electri-

cal performance, a comparison was made between crystalline

and amorphous SHO films. Both SHO films were grown

directly on the 2� 1 reconstructed Ge surface with a nominal

thickness of 20 nm. The amorphous SHO film was not post-

deposition annealed, whereas the crystalline SHO film was

post-deposition annealed at 700 �C for 5 min in vacuum.

MOSCAP structures were formed for both the crystalline

and amorphous SHO samples. The amorphous SHO film

showed a much lower saturation capacitance (Cox) than the

crystalline SHO film. This results in an effective dielectric

constant of k� 12 for the amorphous SHO and k� 20 for the

crystalline SHO film. However, despite an increase in

dielectric constant, the observed Dit was significantly higher

for the crystalline film. Using the conductance method, the

Dit was estimated to be 2� 1012 cm�2 eV�1 and

4� 1013 cm�2 eV�1 for the amorphous and crystalline SHO

films, respectively. The increase of interface traps for the

crystalline film is cause for concern since one of the

expected benefits of epitaxial oxide dielectrics is the poten-

tial for drastically reduced interface traps. Additional studies

are needed to understand the origin of these interface trap

states in ALD-grown epitaxial dielectrics on Ge.

MOSCAP structures were used to evaluate the electri-

cal performance of a 4.6-nm-thick SHO film grown on Ge

by ALD, where the SHO film is still partially strained to the

Ge substrate. The SHO was crystallized with a post-

deposition anneal at 725 �C in vacuum for 5 min. Both C-V

and I-V measurements were performed on a 15-lm radius

top electrode. The C-V and I-V curves for the 4.6-nm SHO

on Ge are shown in Figure 7, where the capacitance and

current are normalized by the area of the top electrode.

Fig. 7(a) shows the C-V and I-V response of the 4.6-nm-

thick SHO film after removal from the UHV system, where

the C-V is taken at a frequency of 1 MHz. Cox saturates at

�3.3 lF/cm2 under accumulation, yielding a dielectric con-

stant of k� 17 for the SHO film. The 4.6-nm-thick SHO

film shows a low leakage current of 6.3� 10�6 A/cm2 for

an applied electric field of 1 MV/cm with an EOT of

�1.0 nm. This corresponds to a reduction of over seven

orders of magnitude in leakage current when compared

with a 15-nm-thick STO film on Ge.23 The massive reduc-

tion in leakage current is attributed to the favorable conduc-

tion band offset (2.2 eV) for SHO on Ge; whereas, STO

shows negligible conduction band offset (0.1 eV) under

similar measurement conditions.23

Using the conductance method, Dit was estimated to be

1� 1013 cm�2 eV�1. This relatively high Dit may result from

an interfacial reaction that occurs during the vacuum anneal

for crystallization of the SHO layer. This reaction is studied in

detail in Sec. III D. In efforts to reduce Dit, the 4.6-nm-thick

SHO was post-deposition air annealed at 300 �C for 30 min af-

ter removal from the UHV system. Fig. 7(b) shows the C-V

and I-V response of the SHO film after air anneal. The C-V

response at a frequency of 1 MHz shows the emergence of a

bump in the weak inversion region (��0.2 V) after air anneal

that was not observed in the as-deposited sample. The exact

origin of this defect state is not yet known. Cox saturates at

�3.1 lF/cm2 under accumulation, indicating minimal change

FIG. 6. Plot of CET versus physical thickness for extraction of the dielectric

constant for epitaxial SrHfO3 layers grown directly on Ge by atomic layer

deposition. The films were crystallized by post-deposition vacuum anneal at

700 �C for 5 min.

FIG. 7. Capacitance-voltage (black

curves) and current-voltage (red

curves) measurements for a 4.6-nm-

thick SHO film grown by ALD on Ge.

The SHO film was crystallized by a

post-deposition vacuum anneal at

725 �C for 5 min. Electrical measure-

ments were taken: (a) before and (b)

after, ex situ air anneal at 300 �C for

30 min.
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in the dielectric constant (k� 16). The leakage current is

slightly improved to 4.0� 10�6 A/cm2 for an applied electric

field of 1 MV/cm with an EOT of �1.1 nm. The Dit for the air

annealed sample was reduced to 6� 1012 cm�2 eV�1.

For comparison, the electrical performance of 2-nm-thick

crystalline SHO with a 2-nm-thick Al2O3 capping layer was

evaluated. The 2-nm-thick SHO film was crystallized at a rel-

atively lower temperature of 650 �C, leading to a more abrupt

interface, as discussed in Sec. III D. The Al2O3 capping layer

was needed to prevent excess leakage current through the thin

SHO layer. With this dielectric stack, the crystalline SHO

layer is used to minimize Dit at the oxide-Ge interface and the

amorphous Al2O3 is an excellent leakage barrier. Figure 8

shows the C-V and I-V response of the SHO/Al2O3 dielectric

stack on Ge after air annealing at 300 �C for 30 min. The

SHO/Al2O3 stack has a very low leakage current of

1.9� 10�7 A/cm2 for an applied electric field of 1 MV/cm

with an EOT of �1.5 nm. As expected, the overall Cox satu-

rates at a lower value (�2.3 lF/cm2) than the 4.6-nm-thick

SHO film. Once again, a small bump is observed in the weak

inversion region of the C-V response after air anneal.

Assuming a dielectric constant of k� 18 for the SHO film, the

dielectric constant of the Al2O3 capping layer is k� 8. This

value is consistent with other reports of Al2O3 deposited by

ALD with the same co-reactants under similar conditions.54,55

The Dit for the SHO/Al2O3 dielectric stack is estimated to be

2� 1012 cm�2 eV�1. We attribute this lower Dit value to the

lower annealing temperature (650 �C) required to crystallize

the SHO film. More detailed analysis of the electrical per-

formance and origin of defect states in crystalline SHO on Ge

will be the subject of future work.

D. Crystallization temperature and the SrHfO3-Ge
interface

In all cases, strontium hafnate films deposited by ALD

required post-deposition annealing for crystallization; how-

ever, the onset of crystallization varied between 650 and

750 �C depending on the thickness of the SHO film. The

lowest crystallization temperature observed was at a sub-

strate temperature of 650 �C for a 2-nm-thick SHO film. For

very thin (�1 nm) SHO films, the temperature required for

crystallization increased to 750 �C due to the substrate

retarding crystallization. In all cases, SHO films between 2

and 20-nm-thick appeared fully crystallized when vacuum

annealed at a substrate temperature of 700 �C for 5 min. At

700 �C, the temperature is approximately 80% of the Ge

melting point (�940 �C), which could lead to interfacial

instabilities due to Ge diffusion. In the previous work, inter-

facial reaction between Ge and Hf metal has been reported

to cause formation of a hafnium germanide (HfGe2) at tem-

peratures above �600 �C.56

The effects of annealing temperature on the SHO-Ge

heterostructure were examined by in situ RHEED and XPS.

A very thin (�1 nm) SHO film was used so that the subtle

changes in the Ge 3 d core-level with increasing anneal tem-

perature could be observed. A series of RHEED patterns are

shown in Figures 9(a)–9(c). The crystallization of the film

can be observed at increasing temperatures of 650, 750, and

850 �C. At the lowest temperature of 650 �C (Fig. 9(a)), the

SHO film appears amorphous. The film is thin enough that

some electron diffraction is observed from the underlying Ge

substrate. After annealing to 750 �C (Fig. 9(b)), the SHO

film appears crystalline as shown by the appearance of an or-

dered streak pattern. The beam is aligned along the h100i
direction of the film. When annealed at 850 �C (Fig. 9(c)),

the diffraction patterns are more prominent. However, there

are additional 1/2-order streaks present that may be due to a

secondary phase formation at the interface.

The corresponding series of Ge 3d spectra collected by in
situ XPS shown in Figs. 9(d)–9(f) provide insight into the

interfacial reaction that occurs between SHO and Ge. The

overall Ge 3d signal becomes less defined (broader) with

increasing anneal temperature. Deconvolution of the Ge 3d
core-level in CasaXPS also reveals that spectral components

of both lower and higher binding energy than the bulk peak

increase with higher temperature annealing. The lower bind-

ing energy component is attributed to a combination of

“interfacial Ge” and Ge-Hf bonding. The chemical shift

(De¼�0.5 eV) observed for the interfacial Ge component

appears similar to Ge (001) surface dimerization.57 A similar

chemical shift (�0.46 eV) is expected for Ge-Hf bonding

from first-principles calculations.58 The percentage of the Ge

3d5/2 component associated with the lower binding energy rel-

ative to the entire Ge signal is shown to increase with temper-

ature. The relative area of this component is 2.2%, 2.7%, and

5.6% for the film annealed at 650 �C, 750 �C, and 850 �C,

respectively. We associate the increase in this component

with an interfacial reaction between SHO and Ge with

increasing temperature, although the small difference in rela-

tive area between 650 �C and 750 �C may not be significant.

The more substantial change in the relative area of the lower

binding energy component at 850 �C is attributed to an

increase in Ge-Hf bonding. There is also an increase in the

higher binding energy component, which is attributed to Ge1þ

formation (De¼ 0.70 eV).59 At higher annealing temepera-

tures, desorption of the SHO film may occur; however, no

noticeable changes in the Sr 3d or O 1s core-levels were

observed after annealing at 850 �C (not shown). Only a slight

shift (�0.2 eV) to lower binding energy was observed in the

FIG. 8. Capacitance-voltage (black curve) and current-voltage (red curve)

measurements for 2-nm-thick SHO film on Ge with a 2-nm-thick Al2O3 cap-

ping layer. The SHO film was crystallized by a post-deposition vacuum

anneal at 650 �C for 5 min before depositing the amorphous Al2O3 capping

layer.
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Hf 4f core-level with increased annealing temperature (not

shown), which is also attributed to an increase in Ge-Hf

bonding.

As further confirmation of an interfacial reaction, the

SHO-Ge heterostructure was explored by cross-sectional

TEM observations. SHO films were vacuum annealed at

650 �C and 700 �C to compare the abruptness of the SHO-Ge

interface. The 2-nm-thick SHO film was post-deposition

annealed at 650 �C for 5 min and then capped with 2 nm of

amorphous Al2O3 before removal from the UHV system.

The thicker SHO film (5.2-nm-thick) was annealed at 700 �C
and was removed from the system without a capping layer.

The 5.2-nm-thick SHO film was grown in a two-step growth

and anneal process (2 nm plus 3.2 nm) with post-deposition

annealing at 700 �C for 5 min following each growth.

Electron micrographs of the two films are compared in

Figure 10. At a substrate temperature of 650 �C (Fig. 10(a)),

the SHO-Ge interface appears abrupt with a negligible inter-

facial layer (IL). However, for the higher substrate tempera-

ture of 700 �C (Fig. 10(b)), there is a clear presence of an IL

at the SHO-Ge interface. The thickness of this IL appears to

be �0.5 nm, indicating that the interfacial reaction here is

limited to 1–2 atomic layers. Regardless, this IL formation

appears correlated to higher Dit values as discussed Sec.

III C. The electron micrographs, along with the XPS analy-

sis, indicate that a low crystallization temperature (<650 �C)

is necessary to maintain an abrupt interface for the SHO-Ge

heterojunction. An abrupt interface may be necessary to

reduce Dit for the desired electrical performance of the crys-

talline oxide on Ge.

With this material system, there is a tradeoff between

sufficient thermal energy for crystallization to achieve a

higher dielectric constant, while also maintaining a lower

temperature to minimize interfacial reactions and Dit. As

mentioned above, the 2-nm-thick SHO film began crystalliz-

ing at the lowest temperature of 650 �C. However, typical

SHO films grown by this method crystallized somewhere

between 650–700 �C, appearing fully crystalline by RHEED

at 700 �C. The obvious concern is that at temperatures below

700 �C, films will not be fully crystallized and suffer from a

lower dielectric constant. As a complicating factor, higher

anneal temperatures are also correlated with increasing Dit

values. The lowest Dit values for SHO on Ge were measured

for films with no post-deposition anneal (amorphous films)

or where the post-deposition anneal was kept at or below

650 �C. Low magnification electron micrographs of the two

films discussed above are shown in Figure 11. The top image

(Fig. 11(a)) reveals that the SHO film annealed at 650 �C has

some tiny isolated amorphous regions, as denoted by the

FIG. 9. Effects of annealing temperature on the SHO-Ge heterostructure examined by in situ RHEED and XPS. RHEED patterns are shown at increasing

anneal temperatures of (a) 650 �C, (b) 750 �C, and (c) 850 �C. The corresponding Ge 3d core-level spectra are shown in (d)–(f) for the 650–850 �C anneal tem-

perature, respectively. The extent of interfacial reaction is quantified by the percent of Ge 3d5/2 for the lower binding energy component relative to the total Ge

signal, as shown graphically on the right side of the high-resolution scan.

FIG. 10. Transmission electron micrographs of: (a) 2-nm-thick SHO post-

deposition annealed at 650 �C for 5 min and then capped with 2 nm of amor-

phous Al2O3 and (b) 5.2-nm-thick SHO film grown in a two-step growth and

anneal process (2 nm and 3.2 nm) with post-deposition annealing at 700 �C
for 5 min. A higher anneal temperature of 700 �C, results in the formation of

a very thin IL at the SHO-Ge interface.

054101-7 McDaniel et al. J. Appl. Phys. 117, 054101 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

149.169.223.129 On: Thu, 22 Oct 2015 20:07:53



arrows. The thicker SHO film annealed at 700 �C, shown in

Fig. 11(b), does not show any sign of amorphous regions. In

both cases, the SHO films show excellent epitaxial alignment

with the Ge substrate, and the deposited films are uniform in

thickness. Further study is clearly required to optimize the

annealing conditions to achieve high crystallinity to increase

the dielectric constant, while maintaining an abrupt interface

to minimize interface traps.

IV. CONCLUSIONS

Crystalline strontium hafnate, SrHfO3 (SHO), films

have been grown by atomic layer deposition directly on Ge

(001) substrates. The 2� 1 reconstructed Ge (001) surface

was prepared by thermal annealing in vacuum and trans-

ferred in situ to the ALD system. After deposition of an

amorphous SHO layer (�2–20 nm), the film was crystallized

by post-deposition anneal (�700 �C) in vacuum. The crystal-

line SHO films were confirmed to be (001)-oriented with epi-

taxial registry to the Ge (001) surface. Band offset

measurements indicate that the SHO has favorable band off-

sets with Ge for gate dielectric applications, with a VBO of

�3.27 eV and CBO of 2.17 eV. Electrical measurements of

MOSCAP structures estimate the dielectric constant of crys-

talline SHO to be k� 18. The leakage current of a 4.6-nm-

thick SHO film was 6.3� 10�6 A/cm2 for an applied electric

field of 1 MV/cm, which indicates a significant advantage of

Hf-based perovskites over Ti-based perovskites, such as

STO. The lowest Dit value for the SHO-Ge heterojunction

was estimated to be 2� 1012 cm�2 eV�1. Interestingly, Dit is

not improved by crystallization of the SHO layer and is neg-

atively impacted by higher post-deposition annealing tem-

perature and corresponding abruptness of the SHO-Ge

interface. The current work shows extremely promising

potential for the integration of crystalline oxides on Ge by

atomic layer deposition for advanced electronic applications.
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