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Abstract—Smart meters, designed for information collection
and system monitoring in smart grid, report fine-grained power
consumption to utility providers. With these highly accurate
profiles of energy usage, however, it is possible to identify
consumers’ specific activities or behavior patterns, thereby giving
rise to serious privacy concerns. This paper addresses this
concern by designing a cost-effective and privacy-preserving
energy management technique that uses a rechargeable battery.
From a holistic perspective, a dynamic programming framework
is designed for consumers to strike a tradeoff between smart
meter data privacy and the cost of electricity. In general, amajor
challenge in solving dynamic programming problems lies in the
need for the knowledge of future electricity consumption events.
By exploring the underlying structure of the original probl em,
an equivalent problem is derived, which can be solved by using
only the current observations. An online control algorithm is then
developed to solve the equivalent problem based on the Lyapunov
optimization technique. It is shown that without the knowledge
of the statistics of the time-varying load requirements andthe
electricity price processes, the proposed online control algorithm,
parametrized by a positive valueV , is within O(1/V ) of the
optimal solution to the original problem, where the maximum
value of V is limited by the battery capacity. The efficacy of the
proposed algorithm is demonstrated through extensive numerical
analysis using real data.

Index Terms—Smart Meter, Smart Grid, Data Privacy, Load
Monitor, Cost Saving, Battery

I. I NTRODUCTION

Traditional power grids are being transformed into smart
grids using advanced information control and communication
technologies to offer higher reliability, security and efficiency
in power systems [1]–[3]. To support both dynamic pricing
and a two-way flow of electricity between homes (or micro
grids) and power grids, smart meters are being widely de-
ployed. Compared to conventional analog meters, smart meters
measure power consumption at a much finer granularity. Such
fine-grained information, however, may give rise to serious
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concerns of security regarding attacks [4] and data privacy
[5], especially for residential consumers.

The privacy of smart meter data has recently garnered much
attention. Recent work [5] provides an overview of the privacy
implications of fine-grained power consumption monitoring.
From the information collected by smart meters, complex
usage patterns, such as residential occupancy and social activi-
ties, can be extracted without a priori knowledge of household
activities [6]. Multiple methods [7]–[14] have been proposed
to protect smart meter data privacy. One common approach
is to introduce uncertainty in individual power consumption
by perturbing the load measurements [7], [8]. However, this
approach requires modification of the metering infrastructure,
which may not be logistically and economically viable, with
millions of smart meters already installed. Besides, the mod-
ification of usage data could result in inaccurate billing and
grid controls, thereby undermining grid management.

In this paper, we address the threats to electricity con-
sumer privacy by using energy storage devices (such as a
rechargeable battery) [15]. In particular, a battery can be
used to protect the usage patterns of electricity consumers.
Ideally, all usage patterns can be perfectly masked by charging
and discharging the battery to maintain a constant metered
load, such that all load measurements equal to the average
consumer’s load. Moreover, the rechargeable battery can also
be used to reduce the cost of electricity, as the electricity
price is time-varying. It is likely that consumers may tolerate
some degree of information leakage to reduce their electricity
costs by adapting their needs to the time-varying electrici-
ty price. However, it is challenging to control the battery
charging/discharging to achieve this, without the knowledge of
future electricity consumption events, not to mention the time-
varying load requirements and electricity prices with possibly
unknown statistics. To tackle this challenge, an online control
algorithm with low computational complexity is developed to
jointly protect smart meter data privacy and reduce the cost
of electricity, while taking into account the cost of repeated
charging and discharging on the battery’s lifetime.

A. Summary of Main Contributions

Our main contributions are summarized as follows:

• We develop a dynamic programming framework that
can protect smart meter data privacy in a cost-effective
manner, while taking into account the impact of repeated
charging and discharging on the battery’s lifetime. One
major challenge in solving this problem is the need for



2

the knowledge of future electricity consumption events.
Moveover, due to the finite battery capacity, the control
actions at all slots are coupled. It turns out that had
the charging/discharging constraints been relaxed, the
average battery charging and discharging power would
be evened out. By exploiting this structure, we recast the
original problem as a decoupled optimization problem
with a larger feasible set, such that the optimal control
action at each slot can be solved by using only the
current observations, and it is also optimal for the original
problem, if it is feasible for the original problem.

• By carefully constructing the Lyapunov function, we
develop an online control algorithm to solve the de-
coupled optimization problem based on the Lyapunov
optimization technique [16], [17], such that the control
action always lies in the feasible region of the original
problem. The proposed online control algorithm requires
solution of a mixed-integer nonlinear program, in order
to consider the cost of repeated charging and discharging
on the battery’s lifetime. By decomposing the problem
into multiple cases, a closed-form solution to each case
of the mixed-integer nonlinear program is derived.

• We show that the proposed online control algorithm,
parametrized by a positive valueV , is within O(1/V ) of
the optimal solution to the original problem, where the
maximum value ofV is limited by the battery capacity.
In this way, we quantify the impact of the battery ca-
pacity on the performance of the proposed online control
algorithm. Using real data, we demonstrate the efficacy of
our online control algorithm through extensive numerical
exploration. The results corroborate that our algorithm
can protect smart meter data privacy in a cost-effective
manner.

B. Related Work

Smart meter data privacy protection has been studied in a
number of papers. Heuristic algorithms are developed to tackle
this challenge (see, e.g., [9], [10], [14] and [13]). Kalogridis
et al. [9] proposes a “best-effort” algorithm against power
load changes by charging/discharging the battery to maintain
the current load equal to the previous load. McLaughlin
et al. [10] proposes a non-intrusive load leveling (NILL)
algorithm to mask appliance features that are used by non-
intrusive load monitoring (NILM) algorithms (e.g., [18]–[20])
to detect appliance switch-on/off events. None of these works
have considered optimal control algorithms to protect smart
meter data privacy. Moreover, as pointed out in [14], the
methods proposed in [9] and [10] suffer from precise load
change recovery attacks, due to the leakage of load-change
information. The information leakage is mainly due to the fact
that the “best-effort” algorithm in [9] attempts to maintain the
current load at all times, and that the NILL algorithm in [10]
often encounters a period of peak loads. In contrast, the online
control algorithm proposed here determines the observed load
profile by solving a well-designed optimization problem with
unobservable parameters, without which the original load
profile cannot be recovered. Therefore, the proposed approach
does not suffer from precise load change recovery attacks [14].
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Fig. 1: System model.

Recent work [13] proposes a Monte Carlo simulation based
approach to jointly optimize the cost of electricity and privacy.
Furthermore, [11] proposes wallet-friendly privacy protection
for smart meters by using stochastic dynamic programming.
Along a different line, recent work [12] protects smart meter
data privacy by using energy harvesting and storage devices
from an information theoretic perspective. All these works
require the knowledge of the statistics of the load requirements
or the electricity prices, which may not be readily available.
Moreover, the solution to dynamic programming requires so-
lution of a value function that can be computationally difficult
when the state space of the system is large and hence suffers
from the curse of dimensionality.

Unlike the prior works, this study proposes a low com-
plexity online control algorithm that is withinO(1/V ) of the
optimal solution, without the knowledge of the statistics of
the time-varying load requirements and the electricity price
processes.

The rest of the paper is organized as follows. In Section
II, we describe the system model. In Section III, we propose
a cost-effective and privacy-preserving energy management
framework. In Section IV, we propose an optimal online
control algorithm. In Section V, we evaluate the performance
of the proposed online control algorithm using real data. The
paper is concluded in Section VI.

II. SYSTEM MODEL

We consider a discrete-time system, in which the length of
each time slot matches the typical sampling and operation time
scale of the smart meter. An overview of the system model
is given in Fig. 1. We assume that a smart home contains
an energy storage device (battery) and a power controller
that can control the combination of power drawn from the
utility and the battery to satisfy the load requirements. Inthe
following, the model of each component in Fig. 1 is described
in detail, aiming to optimize the load profile to mask individual
consumption events in a cost-effective manner.

A. Battery Model

We denote byBmax the battery capacity, byB(t) the energy
level of the battery at slott, and byPB(t) the power charged to
(whenPB(t) > 0) or discharged from (whenPB(t) < 0) the
battery during slott. Assume that the battery energy leakage is
negligible, which is a reasonable assumption, since the time
scale over which the loss takes place (e.g., about 3-20% a
month for lead-acid batteries) is much larger than the minute-
level time scale. Then, the dynamics of the battery energy level
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can be expressed as

B(t+ 1) = B(t) + PB(t). (1)

Since the charging and discharging rates of the battery are
physically constrained, we denote byPmax

B the maximum
charging rate and byPmin

B the maximum discharging rate.
Pmax
B and Pmin

B are positive constants depending on the
physical properties of the battery. Therefore, we have the
following constraint onPB(t):

−Pmin
B ≤ PB(t) ≤ Pmax

B . (2)

Since the battery energy level should always be nonnegative
and cannot exceed the battery capacity, we need to ensure that
in each slott,

0 ≤ B(t) ≤ Bmax. (3)

Based on constraints (1), (2) and (3), we have the following
equivalent constraints in each slott for PB(t):

PB(t) ≥ −min{Pmin
B , B(t)}, (4)

PB(t) ≤ min{Pmax
B , Bmax −B(t)}. (5)

For simplicity, a basic battery model (cf. [21]) is used
to model the cost of repeated charging and discharging. It
is assumed that the number of charging/discharging cycles
for each battery is limited. Given the battery’s cost and the
number of charging/discharging cycles, the cost of repeated
charging and discharging on the battery’s lifetime can be
calculated using the battery’s cost divided by the number of
charging/discharging cycles, i.e., an amortized costCB (in
unit of dollars) incurred with each charging or discharging.
Therefore, at each slot, an operating cost ofCB is incurred
whenever the battery is charging (PB(t) > 0) or discharging
(PB(t) < 0). Nevertheless, the results in the paper can be
easily generalized to more complicated battery models.

B. Load Model

We denote byL(t) the residential load generated at slott.
L(t) is assumed to be independent and identical distributed
(i.i.d.) over time slots with some unknown probability distri-
bution. Assume thatL(t) is deterministically bounded by a
finite constantLmax, so that

L(t) ≤ Lmax, ∀t. (6)

Lmax can be determined by the total power consumption of
all electrical appliances in the home.

With the battery, the total power used to serve the load is
given by

L(t) = P (t)− PB(t), (7)

whereP (t) denotes the power drawn from the grid at slott.
Assume that the maximum amount of power that can be drawn
from the grid in any slot is upper bounded byPmax, i.e.,

0 ≤ P (t) ≤ Pmax, ∀t. (8)

Note that for the original scenario where the battery is not
used,Pmax must be larger thanLmax in order to satisfy all
residential loads. Therefore, we havePmax ≥ Lmax.

C. Electricity Pricing Model

Since the electricity price is time-varying, e.g., time-of-
use electricity pricing, the rechargeable battery offers an
opportunity to reduce the cost of electricity, in addition to
privacy protection. Letc(t) denote the cost per unit of power
drawn from the grid at slott. We assume thatc(t) evolves
according to ani.i.d. process with some unknown distribution
and is deterministically bounded by a finite constantcmax, so
that c(t) ≤ cmax.

Given the system model, our goal is to design a control
algorithm that jointly optimizes the cost of power and smart
meter data privacy, while meeting all the constraints. For ease
of exposition, the load process and the electricity price process
are assumed to bei.i.d. over slots. The algorithm developed
for this case can be applied to noni.i.d. scenarios, as shown
in Section V, where numerical studies are carried out in non
i.i.d. environments. Our results can be generalized for the non
i.i.d. case by using the delayed Lyapunov drift andT slot drift
techniques developed in [16] and [17].

III. C OST-EFFECTIVE AND PRIVACY-PRESERVING

ENERGY MANAGEMENT

Based on the system model above, we now study cost-
effective and privacy-preserving energy management.

A. Control Objective

With the use of a battery, the original load profileL(t)
becomesP (t) = L(t) + PB(t). Intuitively, in order to mask
energy usage profiles, the modified load profileP (t) needs
to be as “flat” as possible, as the privacy information is con-
tained in appliance switch-on/off events, i.e., the differences
between successive power measurements. IfP (t) is equal to a
constant value representing the average residential load,then
all individual consumption events would be perfectly masked.
Let L = lim

t→∞

1
t

∑t

τ=1L(τ) denote the average residential

load. In real time, by charging/discharging the battery,P (t)
needs to be controlled with as little deviation fromL as
possible. Equivalently, the control objective is to minimize the
“variance” ofP (t), i.e.,

lim
t→∞

1

t

t∑

τ=1

E{(P (τ)− L)2}. (9)

It can be seen that minimizing (9) generally requires the
knowledge of all future consumption events due toL. Heuristic
algorithms (e.g., [9] and [10]) have been devised to mitigate
this issue by charging/discharging the battery to makeP (t)
achieve a target load determined heuristically, which inevitably
sacrifices performance. As discussed later in Proposition 1, by
exploring the problem structure, this issue can be solved by
transforming (9) into an equivalent problem.

Beyond privacy protection, the rechargeable battery can also
be used to reduce the cost electricity, by utilizing the time-
varying electricity price. In this paper, we jointly optimize
the cost of electricity and smart meter data privacy. The
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corresponding objective function can be expressed as

lim
t→∞

1
t

t∑

τ=1
E

{

c(τ)P (τ)
︸ ︷︷ ︸

Electricity cost

+ 1B(τ)CB
︸ ︷︷ ︸

Battery operation cost

+ β(P (τ) − L)2
︸ ︷︷ ︸

Smart meter data privacy

}

,
(10)

where the indicator function1B(t) corresponds to the battery
operation, i.e.,1B(t) = 1 if PB(t) 6= 0 (the battery is charg-
ing/discharging), otherwise1B(t) = 0. β ≥ 0 is a parameter
chosen by the customer to trade off between reducing the
cost of electricity and protecting smart meter data privacy. For
example, whenβ = 0, the customer optimizes only the cost
of electricity; whenβ is large, the customer focuses more on
protecting smart meter data privacy. Assuming that the limit
exists in (10), our goal is to design a control algorithm that
can minimize this time averaged cost subject to the constraints
described in the system model.

B. Problem Formulation

The cost-effective and privacy-preserving energy manage-
ment problem can be formulated as the following stochastic
dynamic programming problem:

P1:

min lim
t→∞

1
t

t∑

τ=1
E

{

c(τ)P (τ) + 1B(τ)CB + β(P (τ) − L)2
}

s.t. constraints(4), (5), (7), (8).
(11)

One major challenge of solvingP1 is the lack of knowledge
of future time-varying load requirements and electricity prices.
Moreover, due to thefinite battery capacity constraints (4) and
(5), the current control action would impact the future control
actions, making it more challenging to solveP1. Note that
the traditional approach based on dynamic programming (e.g.,
the approach in [11]) is difficult to apply, because it requires
the statistics of load requirements and electricity prices, and
the computational complexity may suffer from the curse of
dimensionality. As the statistics of load requirements and
electricity prices may not be known, in this paper, we develop
an online control algorithm to solve this problem by using
only the current observations, while taking into account the
finite battery capacity constraints.

C. Problem Relaxation

To solveP1, we first consider a relaxed version ofP1, by
using (2) to relax the constraints (4) and (5). Define the average
expected charging or discharging rate of the battery as

PB = lim
t→∞

1
t

∑t

τ=1 E{PB(τ)}. (12)

Since the battery energy evolves based on (1), summing
over all t and taking expectation of both sides, we have

E{B(t+ 1)} −B(1) =
∑t

τ=1 E{PB(τ)}, (13)

whereB(1) is the initial battery energy level. Since the battery
capacity is finite, dividing both sides byt, and takingt → ∞
in (13) yields

PB = 0. (14)

Thus, we have the following relaxed problem:

P2:

min lim
t→∞

1
t

t∑

τ=1
E

{

c(τ)P (τ) + 1B(τ)CB + β(P (τ) − L)2
}

s.t. constraints(2), (7), (8)
PB = 0.

(15)
One main challenge of solvingP2 is that it requires the

knowledge of all future consumption events to computeL.
Now thatPB = 0, the average charging power is equal to the
average discharging power, indicating that the battery does not
consume energy on average. By exploiting this structure, we
show in the following proposition that the decision variable
P (t) is independent ofL. Therefore,P2 can be solved without
using the knowledge ofL.

Proposition 1: Consider the following stochastic optimiza-
tion problem:

P3: min lim
t→∞

1
t

t∑

τ=1
E

{

c(τ)P (τ) + 1B(τ)CB + βP (τ)2
}

s.t. constraints(2), (7), (8)
PB = 0.

(16)
Any optimal solution toP3 is also optimal forP2 and vice
versa.

Proof: Since any feasible solution toP3 is also feasible
for P2 and vice versa, it is sufficient to show that the
objective functions ofP3 andP2 differ by at most a constant
independent ofP (t). Equivalently, it is sufficient to show that

lim
t→∞

1
t

t∑

τ=1
E{L

2
− 2LP (τ)} (17)

is a constant independent of the choice ofP (t). SinceL is a
constant depending only onL(t), it is sufficient to show that

lim
t→∞

1
t

t∑

τ=1
E{P (τ)} (18)

is a constant independent of the choice ofP (t).
SinceP (t) = L(t) +PB(t), summing over allt, taking the

expectation of both sides, dividing both sides byt and taking
t → ∞, we have

lim
t→∞

1
t

t∑

τ=1
E{P (τ)} = lim

t→∞

1
t

t∑

τ=1
L(τ)

+ lim
t→∞

1
t

t∑

τ=1
E{PB(τ)}

= L+ PB.

(19)

SincePB = 0, we have

lim
t→∞

1
t

t∑

τ=1
E{P (τ)} = L, (20)

thereby concluding the proof.
From Proposition 1, any feasible solution toP1 is also a

feasible solution toP3, sinceP2 is equivalent toP3 and the
feasible set ofP2 is larger than that ofP1. Let φrel andφopt

denote the optimal objective value of the relaxed problemP3
and that ofP1, respectively. SinceP3 is less constrained than
P1, the optimal value ofP3 will not exceed that ofP1 by
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more than a constantβL
2

that can be computed based on
Proposition 1, i.e.,φrel ≤ φopt − βL

2
.

Note thatP3 is a decoupled control problem, in the sense
that the optimal control actionsP (t) andPB(t) at each slot
can be determined purely by the current stateL(t) and c(t).
Specifically, it can be shown that there exists a stationary,
randomized policy that can achieve the optimal solution toP3
as presented in the following lemma.

Lemma 1: If L(t) and c(t) are i.i.d. over time slots, then
there exists a stationary, randomized policy that makes control
decisionsP stat(t) and P stat

B (t) at every slot purely as a
function (possibly randomized) of the current stateL(t) and
c(t), while satisfying the constraints ofP3 and providing the
following guarantees:

E{P stat
B (t)} = 0,

E{c(t)P stat(t) + 1{P stat(t) 6=0}CB + βP stat(t)2} = φrel,

where the expectations above are with respect to the stationary
distributions ofL(t) and c(t), and the randomized control
decisions.

The proof of Lemma 1 follows from the framework in [17]
and is omitted for brevity. Note that the above stationary,
randomized policy may not be feasible for the original problem
P1, as the constraints (4) and (5) may be violated. However,
the existence of such a policy can be used to design our online
control policy that meets all constraints ofP1 and derive a
performance guarantee for our algorithm as shown later in
Theorem 1.

IV. OPTIMAL ONLINE CONTROL ALGORITHM

In this section, we design an online control algorithm that
can achieve the optimal solution toP1 asymptotically. The
proposed online control algorithm is designed based onP3,
and uses a control parameterV > 0 to quantify the impact of
the battery capacity on the performance of the algorithm as
discussed later. The key idea of our algorithm is to construct
a Lyapunov function with a perturbed weight for determining
the control actions. By carefully designing the weight, we can
show that whenever the battery is charged or discharged, the
battery energy level always lies in the feasible region ofP1.
From Proposition 1, if the optimal solution toP3 can be found
and lies in the feasible region ofP1, it is also optimal forP1.
To this end, we define a perturbed variableU(t) to track the
battery energy level as

U(t) = B(t) − V (cmax + 2βLmax)− Pmin
B . (21)

Note thatB(t) is the actual battery energy level at slott
andU(t) is simply a shifted version ofB(t) with the same
dynamics:

U(t+ 1) = U(t) + PB(t). (22)

A. Lyapunov Optimization

We define the following Lyapunov function:Z(U(t)) =
1
2U(t)2. The corresponding conditional Lyapunov drift can be
defined as follows:

∆(U(t)) = E{Z(U(t+ 1))− Z(U(t))|U(t)}. (23)

Following the drift-plus-penalty framework [17], our online
control algorithm is designed to minimize an upper bound on
the following function, in order to achieve the optimal solution
to P1:

∆(U(t)) + V E{c(t)P (t) + 1B(t)CB + βP (t)2|U(t)}.
(24)

The following lemma provides an upper bound for (24).
Lemma 2: (Drift Bound) For any control policy that satis-

fies the constraints ofP3, we have

∆(U(t)) + V E{c(t)P (t) + 1B(t)CB + βP (t)2|U(t)}
≤ K + U(t)E{PB(t)|U(t)}
+ V E{c(t)P (t) + 1B(t)CB + βP (t)2|U(t)},

(25)
where the constantK is defined as

K = 1
2 max{(Pmin

B )2, (Pmax
B )2}. (26)

Proof: Squaring both sides of (22), dividing by 2, and
rearranging, we have

U(t+1)2−U(t)2

2 = 1
2PB(t)

2 + U(t)PB(t).

Since−Pmin
B ≤ PB(t) ≤ Pmax

B , we have

U(t+1)2−U(t)2

2 ≤ 1
2 max{(Pmin

B )2, (Pmax
B )2}

+U(t)PB(t).

Taking conditional expectations of the above and adding
V E{c(t)P (t) + 1B(t)CB + βP (t)2|U(t)} to both sides, the
proof is concluded.

B. Online Control Algorithm

The design principle of our online control algorithm is to
minimize the right-hand-side of the drift-plus-penalty bound
(25) subject to the constraints ofP3at each slott, by observing
the current stateU(t), L(t), and c(t). The online control
algorithm chooses the control actionsPB(t) andP (t) as the
solution to the following optimization problem:

P4: min U(t)PB(t) + V (c(t)P (t) + 1B(t)CB + βP (t)2)
s.t. −Pmin

B ≤ PB(t) ≤ Pmax
B

0 ≤ P (t) ≤ Pmax

L(t) = P (t)− PB(t).
(27)

It can be observed that for each slott, P4 is a mixed-
integer nonlinear program. To solve it, we consider the optimal
values of the objective inP4 for two modes with and without
charging/discharging respectively, and then choose the mode
that yields the lowest value of the objective. The corresponding
control actions of the mode can then be implemented in real
time.

Let P ∗
B(t) and P ∗(t) denote the optimal solution toP4.

For each case,P ∗
B(t) andP ∗(t) can be characterized by using

the Karush-Kuhn-Tucker (KKT) conditions [22]. The optimal
solution toP4 is given as follows:

1) The case without charging/discharging (1B(t) = 0): Let
θ1(t) denote the optimal value of the objective inP4 without
charging/discharging. In this case, we haveP ∗

B(t) = 0 and
P ∗(t) = L(t). θ1(t) can be calculated as

θ1(t) = V (c(t)P ∗(t) + βP ∗(t)2). (28)
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Algorithm 1 Online control algorithm

Initialization: Given the initial battery charge level0 ≤
Binit ≤ Bmax, sett = 1 and computeU(1) based on (21).
For each time slot t
1) Computeθ1(t) andθ2(t) based on (28) and (29).
2) Choose the control decisionsP ∗

B(t) andP ∗(t) associated
with the lower value ofθ1(t) andθ2(t).
3) UpdateU(t) according to (22).

2) The case with charging/discharging (1B(t) = 1):
Let θ2(t) denote the optimal value of the objective inP4
with charging/discharging. LettingUB = min{Pmax

B , Pmax−
L(t)} andLB = max{−Pmin

B ,−L(t)}, P ∗
B(t) andP ∗(t) can

be calculated as follows:
• If −U(t)+V (c(t)+2βL(t))

2V β
> UB, thenP ∗

B(t) = UB and
P ∗(t) = P ∗

B(t) + L(t).
• If LB ≤ −U(t)+V (c(t)+2βL(t))

2V β
≤ UB, then P ∗

B(t) =

−U(t)+V (c(t)+2βL(t))
2V β

andP ∗(t) = P ∗
B(t) + L(t).

• If −U(t)+V (c(t)+2βL(t))
2V β

< LB, thenP ∗
B(t) = LB and

P ∗(t) = P ∗
B(t) + L(t).

GivenP ∗
B(t) andP ∗(t), θ2(t) can be calculated as follows:

θ2(t) = U(t)P ∗
B(t) + V (CB + c(t)P ∗(t) + βP ∗(t)2).

(29)
After computingθ1(t) andθ2(t), we choose the lower value

of θ1(t) and θ2(t) and the corresponding control actions. A
detailed description of the online control algorithm is given in
Algorithm 1.

C. Performance Analysis

In this section, we analyze the feasibility and performance
of our online control algorithm. We define an upper bound
V max on parameterV as follows:

V max =
Bmax − Pmax

B − Pmin
B

cmax + 2βLmax
. (30)

Next, the optimal solution toP4has the following properties
that are useful for the performance analysis.

Lemma 3:The optimal solution toP4 has the following
properties:

• If U(t) ≥ 0, thenP ∗
B(t) ≤ 0.

• If U(t) ≤ −V (cmax + 2βLmax), thenP ∗
B(t) ≥ 0.

Proof: If U(t) ≥ 0, then P ∗
B(t) can be ei-

ther LB or −U(t)+V (c(t)+2βL(t))
2V β

. Since LB ≤ 0 and

−U(t)+V (c(t)+2βL(t))
2V β

≤ 0, we haveP ∗
B(t) ≤ 0.

If U(t) ≤ −V (cmax + 2βLmax), then P ∗
B(t) can be

either UB or −U(t)+V (c(t)+2βL(t))
2V β

. Since UB ≥ 0 and

−U(t)+V (c(t)+2βL(t))
2V β

≥ 0, we haveP ∗
B(t) ≥ 0.

Then, we have the following results.
Theorem 1: Suppose the initial battery charge levelBinit

satisfies0 ≤ Binit ≤ Bmax. Implementing the above online
control algorithm with any fixed parameter0 < V ≤ V max

for all t, we have the following performance guarantees:
1) The battery energy levelB(t) is always in the range

0 ≤ B(t) ≤ Bmax for all t.

2) All control decisions are feasible forP1.
3) If L(t) and c(t) are i.i.d. over slots, then the time-

average expected cost under the proposed online control
algorithm is withinK/V of the optimal value:

lim
t→∞

1
t

t∑

τ=1
E

{

c(τ)P (τ) + 1B(τ)CB + βP (τ)2
}

≤ φrel +
K
V
,

(31)

whereK is a constant given in (26).

Proof: 1) Proof of Part 1:To show0 ≤ B(t) ≤ Bmax for
all t, it suffices to show that−V (cmax + 2βLmax)− Pmin

B ≤
U(t) ≤ Bmax−V (cmax+2βLmax)−Pmin

B for all t, according
to (22). As0 ≤ Binit ≤ Bmax, it is easy to verify−V (cmax+
2βLmax) − Pmin

B ≤ U(1) ≤ Bmax − V (cmax + 2βLmax) −
Pmin
B .
Then, we show−V (cmax + 2βLmax) − Pmin

B ≤ U(t) ≤
Bmax−V (cmax+2βLmax)−Pmin

B by induction. Suppose that
−V (cmax + 2βLmax) − Pmin

B ≤ U(t) ≤ Bmax − V (cmax +
2βLmax)−Pmin

B holds for slott. We need to show that it also
holds for slott+ 1.

First, if 0 ≤ U(t) ≤ Bmax − V (cmax + 2βLmax) − Pmin
B ,

thenP ∗
B(t) ≤ 0 based on Lemma 3. Therefore, using (22), we

haveU(t+1) ≤ U(t) ≤ Bmax−V (cmax+2βLmax)−Pmin
B .

If U(t) ≤ 0, then U(t + 1) ≤ Pmax
B based on (22), since

the maximum charging rate isPmax
B . Using (30), for any0 <

V ≤ V max we haveBmax − Pmin
B − V (cmax + 2βLmax) ≥

Bmax − Pmin
B − V max(cmax + 2βLmax) = Pmax

B . Therefore,
we haveU(t+ 1) ≤ Bmax − Pmin

B − V (cmax + 2βLmax).
Second, if −V (cmax + 2βLmax) − Pmin

B ≤ U(t) ≤
−V (cmax + 2βLmax), then P ∗

B(t) ≥ 0 based on Lem-
ma 3. Then, using (22), we haveU(t + 1) ≥ U(t) ≥
−V (cmax+2βLmax)−Pmin

B . If U(t) ≥ −V (cmax+2βLmax),
U(t+1) ≥ −V (cmax+2βLmax)−Pmin

B based on (22), since
the maximum discharging rate isPmin

B . Therefore, we have
−V (cmax + 2βLmax) − Pmin

B ≤ U(t + 1), which concludes
the proof.

2) Proof of Part 2:From the proof above, the constraint on
B(t) is satisfied for allt. Since the control decisions we make
satisfy all the constraints inP3, with 0 ≤ B(t) ≤ Bmax for
all t, all the constraints inP1 are also satisfied. Therefore, our
control decisions are feasible forP1.

3) Proof of Part 3: The proposed online control algorithm
is designed to minimize the right-hand-side of (25) over
all possible feasible control policies, including the optimal,
stationary policy given in Lemma 1. Therefore, we have the
following:

∆(U(t)) + V E{c(t)P (t) + 1B(t)CB + βP (t)2|U(t)} ≤ K
+V E{c(t)P stat(t) + 1P stat

B
(t) 6=0(t)CB + βP stat(t)2|U(t)}.

Taking the expectation of both sides, using the law of
iterative expectation, and summing over allt, we have

V
t∑

τ=1
E{c(τ)P (τ) + 1B(τ)CB + βP (τ)2} ≤ Kt

+ V tφrel − E{Z(U(t))}+ E{Z(U(1))}.

Dividing both sides byV t, taking the limit ast → ∞ and
using the facts thatE{Z(U(t))} is finite andE{Z(U(1))} is
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nonnegative, we have

lim
t→∞

1

t

t∑

τ=1

E{c(τ)P (τ) + 1B(τ)CB + βP (τ)2} ≤ φrel +
K

V
.

Theorem 1 shows that by choosing a largerV , the time-
average expected cost under the proposed online control
algorithm can be pushed closer to the optimal solution to
P1. SinceV max is determined by the battery capacity, (31)
quantifies the impact of the battery capacity on the perfor-
mance of the proposed online control algorithm. The larger
the battery capacity is, the better the proposed online control
algorithm can optimize smart meter data privacy and the cost
of electricity.

Remarks: Note that Theorem 1 holds for all sample paths,
including sample paths generated byL(t) and c(t) that are
non i.i.d. over slots. The proposed online control algorithm
can be applied to noni.i.d. scenarios, as demonstrated in
Section V, where numerical studies are carried out in non
i.i.d. environments. Our results can be generalized for the non
i.i.d. case by using the delayed Lyapunov drift andT slot drift
techniques developed in [16] and [17].

V. CASE STUDIES

A. Data and Simulation Setting

We evaluate the performance of the proposed algorithm by
using the real-time measurements at a Georgian apartment [9]
and the load profile constructed based on a domestic electricity
demand model [23]. The time resolution of the load profile
is one-minute. The actual load profile given by the real-time
measurements represents the case in which the power usage is
high, while the constructed load profile based on the domestic
electricity demand model [23] represents the case in which the
power usage is low. The electricity prices are set according
to SRP’s residential time-of-use price plan [24]. The on-peak
price is 21.09 cent per kWh during 1:00 PM to 8:00 PM, while
the off-peak price is 7.04 cent per kWh for the remaining time
of a day. In the simulation, we fix the parametersPmin

B =
Pmax
B = 6 kW, Pmax = 10 kW andCB = 0.1 cent.

B. Privacy Protection and Power Cost Saving

Based on the two data sets, Fig. 2 compares load profiles
given by our algorithm under different values ofβ. As
discussed in Section III,β strikes a tradeoff between the cost
of electricity and smart meter data privacy. As illustratedin
Fig. 2, whenβ = 1, the proposed algorithm smooths out the
original load profile and the appliance switch-on/off events
are masked accordingly. Fig. 3 takes a closer look at the load
profile given by our algorithm during the period between 13:30
and 14:20, in which the fast-time-scale fluctuations in the
original load profile due to the appliance switch-on/off events
are smoothed out. However, one can still observe the slow-
time-scale fluctuations in Fig. 3, which are due to the small
capacity of the battery. With a larger battery capacity, theslow-
time-scale fluctuations in Fig. 3 can be smoothed out. Fig. 4
illustrates the load profile provided by the proposed algorithm
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Fig. 2: Comparison of load profiles given by our algorithm under
different values ofβ, whereBmax = 12 kWh, andV = V max.

whenBmax = 100 kWh andβ = 1, where the slow-time-scale
fluctuations are smoothed out.

When β = 0, our algorithm minimizes only the cost of
electricity. As shown in Fig. 2, the proposed algorithm stores
the energy in the battery in the off-peak price period and uses
the energy in the battery as much as possible in the on-peak
price period to reduce the cost of electricity.

Fig. 5 illustrates the tradeoff between the cost of electricity
and smart meter data privacy under different values ofβ using
the actual load profile. In Fig. 5, the privacy protection is
quantified by using the standard deviation ofP (t) given by the
proposed algorithm. Asβ increases, the proposed algorithm
focuses more on data privacy, and the resultingP (t) becomes
more “flat”. Accordingly, the cost of electricity increaseswith
β. Fig. 5 can be used for the user to determine the value ofβ
that he or she would consider appropriate.

C. Privacy Protection vs. Battery Capacity

As discussed, the privacy information is contained in ap-
pliance switch-on/off events, i.e., the differences between
successive power measurements. LetdP (t) = P (t)−P (t−1)
represent the difference between successive power measure-
ments. NILM algorithms (e.g., [18]–[20]) explore the differ-
ences between successive power measurements to identify the
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Fig. 3:Load profile given by our algorithm for the actual load profile,
whereβ = 1, Bmax = 12 kWh, andV = V max.
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Fig. 4:Load profile given by our algorithm for the actual load profile,
whereβ = 1, Bmax = 100 kWh, andV = V max.
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Fig. 5:Tradeoff between the cost of electricity and privacy protection
under different values ofβ using the actual load profile, where
Bmax = 12 kWh, andV = V max.

appliance switch-on/off events. These differences are called
features. In Table I, we compare the number of features in the
load profiles given by the proposed online control algorithm
under different values ofβ and battery capacityBmax with
the NILL algorithm [10] and the best-effort algorithm [9], in
which the differences less than 50 W (lights) are not accounted
for. From Table I, it is observed that features are significantly
reduced by the proposed online control algorithm asβ increas-
es. Whenβ = 10−5 andBmax = 24 kWh, only two features
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Fig. 6: System cost under different values of the battery capacity,
whereβ = 1 andV = V max for each value of the battery capacity.

TABLE I: Feature reduction by different algorithms.

Online Control Algorithm
β Bmax = 12 kWh Bmax = 24 kWh
0 343 331

10
−8 317 206

10
−7 130 79

10−6 60 14
10−5 37 2

Non-intrusive Load Leveling Algorithm [10]
Bmax = 12 kWh Bmax = 24 kWh

Number of features 19 12

Best-Effort Algorithm [9]
Bmax

= 12 kWh Bmax
= 24 kWh

Number of features 11 4

Original Load Profile
Number of features 393

are left, compared with 393 features in the original load profile.
Although in terms of feature reduction, the NILL algorithm
[10] and the best-effort algorithm [9] can perform comparable
to the proposed online control algorithm, the system cost
given by the proposed online control algorithm is much lower
than these algorithms as demonstrated in the next section.
Moreover, as pointed out in [14], the methods proposed in [9]
and [10] suffer from precise load change recovery attacks such
that the original load profile can be recovered using the leakage
of load-change information from these algorithms. In contrast,
the proposed online control algorithm determines the observed
load profile by solving a well-designed optimization problem
with unobservable parameters (U(t), V , andβ), without which
the original load profile cannot be recovered.

D. System Cost vs. Battery Capacity

We now study the impact of the battery capacity on the
performance of the proposed algorithm. As shown in Theorem
1, the system cost under the proposed online control algorithm
converges to the optimal value as the battery capacity increas-
es. Based on (30), if the electricity price is given,V max is
determined by the battery capacity. For different values of
the battery capacity, the system cost is evaluated by using
the actual load profile. To examine the convergence of the
proposed algorithm, the system cost given by the proposed
algorithm is normalized by the optimal offline solution toP1.
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The optimal offline solution toP1 is solved by assuming that
the load profile and the electricity price are known perfectly.
Fig. 6 compares the normalized system cost given by the
proposed algorithm with the NILL algorithm [10] and the best-
effort algorithm [9]. As illustrated in Fig. 6, the normalized
system cost given by the proposed algorithm decreases with
the battery capacity, and converges to 1, indicating that it
converges to the optimal system cost. Furthermore, it is
observed from Fig. 6 that the performance of the proposed
algorithm with a battery of small capacity is reasonably good.
When the battery capacity is 10 kWh, the system cost given by
the proposed algorithm is very close to the optimal solution.
However, the system costs given by the NILL algorithm [10]
and the best-effort algorithm [9] are much higher than the
proposed algorithm, and do not converge to the optimal value
with the increase of the battery capacity.

VI. CONCLUSION

This paper has studied cost-effective smart meter data
privacy protection by using batteries. A dynamic programming
framework has been designed for consumers to jointly protect
smart meter data privacy and reduce the cost of the electricity.
By exploring the underlying structure of the original problem,
an equivalent problem has been derived, which can be solved
by using only the current observations. Then an online control
algorithm has been developed to solve the equivalent problem
based on the Lyapunov optimization technique. It has been
shown that without requiring any knowledge of the statistics
of the load requirements and electricity prices, the proposed
online control algorithm is withinO(1/V ) of the optimal
solution to the original problem, where the maximum value of
V is limited by the battery capacity. Using real data, numerical
results have corroborated that our algorithm can protect smart
meter data privacy in a cost-effective manner.

For future work, it is of great interest to integrate demand
response management into the current framework. Another
interesting direction is to integrate renewable generation into
the energy management to protect smart meter data privacy as
considered in [12].
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