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Abstract

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our
knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level
remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study
on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-
malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying
the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling
measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial
and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell
studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average
values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression
levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in
pre-malignant progression in BE.
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Introduction

Esophageal adenocarcinoma (EAC) is a highly lethal cancer

type and is believed to develop from esophageal epithelial cells

through a series of complex, step-wise transformations at the

biomolecular level [1–6]. Once transformed, EAC cells produce

significantly higher levels of antioxidant molecules making them

resistant to elevated levels of reactive oxygen species (ROS) [2].

Although recent studies have shown that the transformation

sequence involves the development of hyperplasia and metaplasia

caused by chronic inflammation of the squamous esophageal

epithelium, followed by multifocal dysplasia, carcinoma in situ and,

finally, invasive EAC [1,7,8], the detailed molecular mechanism

underlying this transformation remains to be clarified.

Hypoxia plays a pivotal role in cancer [9–16]. As in almost all

solid tumors, oxygen supply to cancer cells is greatly compromised

due to the uncontrolled cell growth and inadequate development

of the microvasculature. The mitochondrion, the powerhouse of

the cell and the major source of adenosine triphosphate (ATP) in

normal cells, is the place where oxidative phosphorylation

(OXPHOS) takes place. Mitochondria have also been found to

play a major role in programmed cell death, or apoptosis, and

their dysfunction is associated with a variety of diseases. For

example, variations in the mitochondrial DNA (mtDNA) copy

number have been associated not only with different cellular

physiological conditions but also with diverse changes of internal

and external microenvironments [17,18]. It has been demonstrat-

ed that mitochondria can generate increased levels of ROS during

hypoxia [19], which led to the postulate that mitochondria, the

primary target for oxidative damage, can function as an

endogenous oxygen sensor.

One of the most important factors determining drug response

and aggressiveness of tumors is the large intratumoral heteroge-

neity. Recent studies have shown that even cells in a clonal

population or seemingly homogenous tissue exhibit substantial

variability of different characteristics ranging from gene expression

levels to phenotypic features [20–22]. It is now broadly accepted

that mitochondrial heterogeneity, including variations in mtDNA

copy number, DNA mutation/depletion, expression and regula-

tion of genes encoded by mtDNA, and activity levels, is an

important contributor to mitochondrial complexity and contrib-

utes to the overall cell-cell heterogeneity [23–25].

Most current bioanalytical techniques collect data using

thousands to millions of cells, inherently providing results averaged

over a large cell population. Such bulk-cell approaches could

potentially miss important and valuable information when dealing

with highly heterogeneous systems [26] such as cancer [27].

Therefore, the development and application of techniques capable

of performing analyses at the single-cell level are critical, not only

for a better understanding of core cellular processes, but also for

new, more effective strategies for disease prevention, management,

and treatment [28–31].
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In this study we use two immortalized human Barrett’s

esophageal epithelial cell lines CP-A and CP-C that were

originally derived from patients with Barrett’s esophagus (BE)

without dysplasia and with dysplasia, respectively [32]. Although

both are nonmalignant epithelial cells, it was found that CP-C cells

were more resistant to oxidative stress induced by bile acid

(chenodeoxycholic acid (CDCA)) than CP-A, suggesting that, at

least with regard to acid response, CP-C cells behave more like

esophageal cancer cell lines as compared to CP-A cells [2]. In this

study, we aim to elucidate potential mechanisms leading to

malignant transformation in BE by quantifying differences in the

way cells respond to the oxidative stress caused by hypoxia. We

have applied a qPCR-based technique developed in our lab to

determine the mtDNA copy number and the expression levels of

mitochondrial and nuclear genes in individual cells. Utilizing

single-cell analysis we distinguished differences in mtDNA copy

number, mitochondrial membrane potential, and hypoxia re-

sponse gene expression levels between CP-A and CP-C cells which

cannot be predicted by bulk cell analysis. The application of these

new methods, along with single-cell O2 consumption measure-

ments [33–35], allowed the characterization of subtle hypoxia

response differences between CP-A and CP-C cells. A better

understanding of the molecular basis of EAC initiation and

development will facilitate efforts to define potential therapeutic

targets.

Materials and Methods

Cell Culture and Hypoxia Treatment
The Barrett’s esophageal epithelial cell lines CP-A and CP-C

were obtained from ATCC and grown in GibcoH Keratinocyte

Serum-Free Medium (SFM) cell growth medium (Invitrogen,

Carlsbad, CA), supplemented with hEGF (Peprotech, Rocky

Hill, NJ) at 5.0 mg/L, BPE (bovine pituitary extract) at 50 mg/

L and penicillin/streptomycin solution (Invitrogen, Carlsbad,

CA) at 100/100 mg/mL in a tissue-culture incubator at 37uC in

humidified air with 5% CO2. Prior to experiments, cells were

cultured in a 75 cm2 flask to approximately 80% confluence.

Cells in G1 phase sorted with FACSAria (BD Biosciences, San

Jose, CA) were used in qPCR experiments in this study. For

hypoxia, CP-A and CP-C cells at 80% confluence were

incubated in the keratinocyte SFM medium containing 2%

(v/v) Oxyrase (Oxyrase, Inc., Mansfield, OH) at 37uC for 30

minutes, which is the optimal Oxyrase treatment time as

determined previously [31]. The cells were subsequently

trypsinized in 0.05% (v/v) trypsin solution containing 2% (v/

v) Oxyrase at 37uC for 9 min. The trypsinization was blocked

by adding Dulbecco’s Modified Eagle Medium (DMEM)

(Invitrogen) supplmented with 5% fetal bovine serum (FBS)

(Invitrogen) containing 2% (v/v) Oxyrase.

Single-cell Harvesting
Single-cell harvesting (aspiration and dispensing) was performed

using a micromanipulator developed by our group [36,37]

(Methods S1).

Primer Design and Selection of Gene Target
Fragments within the hypervariable region I (HVI) in mtDNA

were chosen for copy number analysis [38,39]. Total DNA

isolated from bulk samples (16104 cells) was used as template for

mtDNA copy number measurement, and quantified using a Real-

Time qPCR System (StepOne, Applied Biosystems, Foster City,

CA) using optimized primers (Methods S1). For RT-qPCR

expression level analysis, four mitochondrially encoded genes

(16s rRNA, COXI, COXIII, CYTBI and four nuclear genes (28s

rRNA, VEGF, MT3, and PTGES)(primers sequences as [31])

were chosen (Methods S1).

Single-cell mtDNA Copy Number Determination
After harvesting, tubes each containing one cell suspended in

6 mL DNaST lysis buffer [26] were immediately frozen on dry ice,

and then stored at 280uC until qPCR analysis. Each qPCR was

run in a total volume of 10mL, containing 2 mL of the lysate from

DNaST solution as a template. To determine the mtDNA copy

number, the qPCR products of bulk samples were purified,

quantified and serially diluted (copy number of 106, 105, 104, 103,

102, 75, 50, 25, 10, 5, 1, 0) for a series of qPCR reactions. The

results were used to plot a standard curve for each gene. The Ct

value of each single cell was then transferred into absolute mtDNA

copy number using the standard curves obtained.

Mitochondrial Membrane Potential
Mitochondrial membrane potential (MMP) was quantified with

confocal microscopy analysis using the potentiometric dye JC-1

(100 ng/mL) as fluorophore and published staining protocols

[40,41] (Methods S1).

Single-cell Gene Expression Analysis
Single-cell RT-qPCR was conducted as previously described

[31,42].

Data Analysis
Statistical analyses, including significance tests, were conducted

using the OriginPro software package (v. 8, OriginLab, North-

ampton, MA). Statistical significance levels were calculated using

the two-tailed non-parametric Mann-Whitney-Wilcoxon test.

Results

qPCR-based Method for mtDNA Copy Number
Adetermination in Single Cells
Several mitochondrial DNA regions, such as HVI, have been

used as targets for PCR-based mtDNA copy number analysis in

bulk samples before [43]. One primer pair with the lowest Ct

value, distinct negative control, sharp and distinct peaks of the

amplification product in the melting curves, and the correct

amplification product as confirmed by sequencing was selected for

each region for further single-cell analysis (Fig. S1, HV1). Serial

dilutions of PCR-amplified mtDNA fragment containing the HVI

region was used to make qPCR standard curves for mtDNA copy

number. With the selected primer pairs, the HVI region was

demonstrated to have the best performance, with R2 = 0.9925, for

DNA copy number ranging from 102 to 106 (Fig. S2).

RT-qPCR for Gene Expression Analysis in Single Cells
Recently we reported on a new technique enabling the isolation,

purification, and reverse transcription of the total RNA from a

single mammalian cell followed by the RT-qPCR analysis of the

expression levels of nuclear-encoded genes [31]. Following the

same procedure, we determined in individual cells the expression

levels of several selected genes involved in hypoxia response,

including mitochondrially-encoded COXI, COXIII, and CYTBI

[43–45], and the VEGF, MT3, ANGPTL4 and PTGES genes

encoded by the nuclear DNA, with 16S rRNA and 28S rRNA

were used as internal controls [31,38,46–48].

Single-Cell Analysis of Hypoxia Responses
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Single-cell mtDNA Copy Number Analysis in CP-A and
CP-C Cell Lines
Previous studies based on bulk-cell analysis indicated that the

average mitochondrial mass does not significantly differ between

CP-A and CP-C cells [2]. In this study, our initial bulk-cell analysis

results also showed a slightly higher but statistically not significant

average mtDNA copy number in CP-C cells (,1,530 per cell) as

compared to CP-A (,1,392 per cell) (Fig. S3). The single-cell

analysis based on 99 single cells from each cell line revealed

statistically significant differences (p,0.002) in mtDNA copy

number between CP-A and CP-C cells (Fig. 1A, B). 92 out of 99

(92%) CP-A cells showed mtDNA copy numbers ranging between

106–1,900 per cell with only 8 (8%) cells containing more than

2,000 copies per cell, while in 92 out of 99 CP-C cells mtDNA

copy numbers ranged between 171–2,952 per cell, with 8 cells

having more than 3,000 copies per cell (Fig. 1A). On average, CP-

C cells had about 43% more mtDNA than CP-A cells (1363 (CP-

C) vs. 951 (CP-A); Fig. 1B, Table 1). Descriptive parameters of the

mtDNA population histograms, including skewness (measure of

symmetry), kurtosis (measure of peakedness) and the Fano factor

(measure of dispersion) were calculated. Both skewness and

kurtosis values were statistically significantly lower in CP-C cells

as compared to CP-A cells, whereas the Fano factor was not

significantly different (Table 1).

Differential Responses to Hypoxia between CP-A and CP-
C Cells at the Single-cell Level

Mitochondrial membrane potential differs significantly

between CP-A and CP-C cells. Mitochondrial membrane

potential (MMP) generated by the mitochondrial electron trans-

port chain reflects the functional status of mitochondria. It has

been linked to physiological response and the production of ROS

[49]. JC-1 has been widely used in apoptosis studies to monitor

mitochondrial health and dysfunction in the context of cancer and

neurodegenerative diseases [40,41].

Fluorescence imaging utilizing JC-1 staining revealed striking

differences between CP-A and CP-C cells (100 cells of each type)

under both control and hypoxic conditions (Fig. 1C, D). Under

normoxic growth conditions (21% O2), CP-A cells showed

relatively low red (590 nm) to green (529 nm) fluorescence

intensity ratio with an average of 2, while CP-C cells exhibited

an average ratio of 3.8 (Fig. 1E–G). After exposure to hypoxia for

30 min (see Methods), cells of both types showed reduced red/

green fluorescence intensity ratios, averaging at 0.6 and 1.5 for

CP-A and CP-C cells, respectively (Fig. 1G). The descriptive

statistics data are summarized in Table 2.

Mitochondrial heterogeneity within and between different cell

types was reported previously, revealing large variations in MMP

among cells of the same type within a single culture dish [23]. In

our study, analysis of the single-cell MMP data revealed

statistically significantly higher kurtosis values in normoxic CP-C

cells as compared to normoxic CP-A cells, whereas the skewness

was comparable. Under hypoxic conditions we observed an

opposite trend, with CP-A cells showing significantly higher values

of kurtosis than CP-C cells, while skewness values were not

significantly different. This data indicates differing responses to

hypoxia between the two cell lines and implies that the two types

of cell react to hypoxia differently, not only in terms of the average

MMP, but also with regard to its distribution among individual

cells. The MMP distribution kurtosis values suggest higher MMP

heterogeneity of mitochondria in dysplastic (CP-C) than meta-

plastic (CP-A) BE cells.
Analysis of mitochondrial gene expression in single

cells. Three mitochondrially encoded genes, COXI, COXIII

and CYTBI, were selected for expression analysis due to their

significant role in mitochondrial function and involvement in

hypoxia response [44,45]. First, we compared the relative

expression levels of these genes between normoxic and hypoxic

conditions in bulk cell samples using mitochondrial 16S rRNA as

an internal reference. All three mitochondrial genes showed a very

similar hypoxia response pattern: an increase by 1.5–2.6 fold with

high variability was observed in both CP-A and CP-C cells (Fig.

S4A, B).

For gene expression analysis at the single-cell level, a total of 24

cells of each cell type and condition (normoxia and hypoxia) were

isolated. The results showed a high degree of cell-to-cell variability

in the expression levels of all four mitochondrial genes in cells of

both types (Fig. 2–4). For instance, Ct values of 16s rRNA in CP-A

cells ranged from 20 to 26 (reaching 30 in one case), and the range

in CP-C cells was between 20 and 25. Ct values of COXI, COXIII

and CYTBI in both cell lines were between 20 and 35 with average

Ct values of 22.4,27.9, 26.8,28.2, and 28.3,30.2, respectively

(Fig. 2, 3). A significant reduction in Ct value of the 16s rRNA

gene (p,0.05, n= 24) was observed in hypoxic CP-A single cells,

while only slight but statistically significant change was detected in

hypoxic CP-C cells (p,0.05, n= 24) (Fig. 3, 16s rRNA). Similarly, a

significant decrease in Ct value for COXI (p,0.001, n= 24) was

observed in CP-A, but not in CP-C cells under hypoxic conditions

as compared to normoxia (Fig. 2, 3, COXI). Since lower Ct values

mean higher mRNA copy numbers, 16s rRNA and COXI mRNA

levels in CP-A cells were significantly up-regulated by hypoxia,

indicating that both genes in CP-A cells respond to hypoxia.

Interestingly, when the average CtCOXI values were normalized

against the expression level of 16s rRNA Ct16S, a standard step for

calculation of the relative mRNA levels in bulk cell samples, the

reduction of COXI Ct values in response to hypoxia was not

significant, which is consistent with the bulk-level gene expression

analysis results of this study (Fig. S4). In contrast, a significant Ct

value increase was detected in CYTBI (p=0.03, n= 24) in CP-C

cells but not in CP-A cells (p=0.43, n= 24) (Fig. 2, 3, CYTB1),

which suggested a down-regulation by hypoxia of this mitochon-

drially encoded gene in CP-C cells. It is interesting to note that the

expression levels of 16S rRNA in normoxic CP-C cells are higher

than in normoxic CP-A cells (Ct(CPC) = 22.73 vs. Ct(CPA) = 23.66,

p,0.006) and approaches the levels in hypoxic CP-A cells

(Ct(CPA) = 22.09). However, our study has also shown that the

average mtDNA copy numbers per cell are higher in CP-C cells

(Fig. 1B, Table 1). Therefore, to make a direct comparison

between the two cell lines possible, we calculated the relative

differences in gene expression levels and normalized them against

the average mtDNA copy numbers using the following equation:

rnorm~
2

Ct CPAð Þ{Ct CPCð Þ

� �

mtDNACPC
mtDNACPA

where mtDNA is the average mitochondrial DNA copy number

per cell. By calculating rnorm we can determine the relative

differences in gene expression levels between the two cell types per

mtDNA molecule. This parameter can also be interpreted as a

measure of ‘‘mtDNA activity’’ because it represents the ratio

between the relative gene expression levels and mtDNA copy

number. Utilizing this expression we find that under normoxic

conditions 16S rRNA is expressed 33% higher per mtDNA

molecule in CP-C cells than in CP-A cells. A similar result is valid

for COXI (28% higher in CP-C than CP-A) and COXIII (32%),

whereas CYTBI exhibits 2.45-fold lower expression per mtDNA

Single-Cell Analysis of Hypoxia Responses
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Figure 1. Mitochondrial DNA copy number analysis and mitochondrial transmembrane potential. A) Single cell mtDNA copy number
distributions in metaplastic (CP-A) and dysplastic (CP-C) cells, B) box charts of the two distributions shown in panel A. Following values are depicted:

Single-Cell Analysis of Hypoxia Responses
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molecule in CP-C compared with CP-A cells. Furthermore, we

observe marked differences in the gene expression distribution

parameters–skewness and kurtosis–between hypoxia responses in

CP-A and CP-C cells (Fig. 4). Although no clear trend in

distribution skewness or kurtosis is obvious in response to hypoxia

in CP-A cells (Fig. 4A, C, E, G), CP-C cells exhibit a clear and

statistically significant increase in both skewness and kurtosis of the

distributions of COXI, COXIII and CYTBI gene expression (Fig. 4F,

H). On the other hand, except for PTGES, the studied nuclear

genes did not show significant differences in the distribution

parameters in CP-C cells (Fig. 4B, D). It is important to note that

the average values of COXI and COXIII expression levels in

normoxic and hypoxic CP-C cells were not significantly different

at the bulk level (Fig. S4). This finding demonstrates again the

utility of single-cell analyses to gain access to information

unavailable otherwise.

Differential expression of nuclear hypoxia response

genes. We have shown that gene expression levels determined

from single-cell analysis were not always consistent with those

obtained through bulk-cell analysis. Differential expression of two

nuclear genes in response to hypoxia was observed between bulk

CP-A and CP-C samples. In contrast to CP-A cells, where MT3

was up-regulated ,7-fold and VEGF showed no change, CP-C

cells exhibited a ,5 fold increase in VEGF expression while MT3

showed no significant change (Fig. S4A, B). At the single-cell level

we noticed that even 28s rRNA, which is commonly used as

internal reference in bulk cell studies, showed significant up-

regulation in CP-A (p,0.05, n= 36), but not in CP-C (p=0.05,

n = 36) cells under hypoxia (Fig. 5, 28s). Due to the varying levels

of expression of 28s rRNA, raw Ct values of hypoxia response

genes instead of traditional delta Ct (normalized against a

housekeeping gene) were used for further analysis.

Although 28s rRNA expression was detected in all single cells in

the study, transcripts from the three other nuclear encoded genes

were not always detected in CP-A cells from both control and

hypoxic groups, most likely due to their low abundance. For

instance, out of 36 single cells,MT3 transcripts were detected in 33

control and 34 hypoxic single cells, PTGES in 29 and 36, and

VEGF in 16 and 24. In CP-C single cells, however, except for

VEGF (33 out of 36), transcripts from all genes were detected in all

36 single cells. Based on raw Ct values, two hypoxia response

genes MT3 (p,0.001, n= 33, 35 in control and hypoxic groups,

respectively) and PTGES (p,1024, n = 27, 36) had significantly

increased expression levels in CP-A cells (Fig. 5, 6). Interestingly,

in hypoxic CP-C cells only PTGES showed a significant up-

regulation (p,0.001, n= 36, 36) while the other two, VEGF and

MT3, did not (Fig. 5, 6). Differential VEGF gene expression under

hypoxia was not observed in either CP-A or CP-C at single-cell

levels. In contrast to the studied mitochondrial genes, we do not

observe as many statistically significant differences in skewness and

kurtosis parameters of the single cell gene expression distributions

(Fig. 4A–D) between normoxic and hypoxic cells of both types.

The distribution of the PTGES gene exhibited statistically

significant increases in both skewness and kurtosis values in

hypoxic vs. normoxic CP-C cells. The distribution shapes of the

other three genes’ expression levels did not show statistically

significant alterations in response to hypoxia. In CP-A cells only

theMT3 gene showed a markedly increased kurtosis in response to

hypoxia. All other genes did not show significant changes in single-

cell expression distribution parameters.

Discussion

The finding of significantly elevated levels of mtDNA in CP-C

compared to CP-A cells (Fig. 1, Table 1) is important as it bears

potential functional relevance. Interestingly, both increased and

decreased amounts of mtDNA have been reported in different

open square – mean; solid line – median; upper and lower box lines – the 75th and 25th percentiles, respectively; upper and lower whiskers – the 95th

and 5th percentiles, respectively; x – minimal and maximal values of the distribution. The p value of ,0.002 was calculated using the two-tailed non-
parametric Mann-Whitney statistical significance test (n = 99); mtDNA copy numbers range between 150–1,900 C–D) JC-1 fluorescence micrographs
of hypoxic CP-A (C) and hypoxic CP-C (D) cells; single cell distributions of the relative mitochondrial membrane potential in CP-A (E) and CP-C (F) cells.
JC-1 signals from about 100 cells per cell line and condition were analyzed; G) statistical representation of the MMP distribution in both cell types/
conditions.
doi:10.1371/journal.pone.0075365.g001

Table 1. Descriptive statistics of single-cell mtDNA copy
number data.

Parameter Cell type

CP-A CP-C

Number of cells 99 99

Mean 951 1363

Standard deviation 678 940

Skewness
SESa

Z value

1.19
0.47
5.09

0.79
0.47
20.55

Kurtosis
SEKb

Z value

1.74
0.92
9.38

0.08
0.92
20.64

Fano factorc 0.71 1.14

aStandard Error of Skewness.
bStandard Error of Kurtosis.
cFano factor is calculated as SD/Mean.
doi:10.1371/journal.pone.0075365.t001

Table 2. Descriptive statistics of MMP measurements in
individual cells.

Cell type

Parameter CP-A CP-C

Normoxia Hypoxia Normoxia Hypoxia

Number of cells 110 100 110 100

Mean 1.86 0.80 3.65 1.60

Standard deviation 0.42 0.17 0.86 0.58

Skewness
SESa

Z value (S)

0.51
0.23
2.21

0.78
0.24
3.23

0.50
0.23
2.15

0.81
0.24
3.37

Kurtosis
SEKb

Z-value (K)

0.07
0.46
0.16

1.11
0.48
2.32

0.94
0.46
2.06

0.09
0.48
0.18

Fano factorc 0.22 0.21 0.24 0.36

aStandard Error of Skewness.
bStandard Error of Kurtosis.
cFano factor is calculated as SD/Mean.
doi:10.1371/journal.pone.0075365.t002

Single-Cell Analysis of Hypoxia Responses
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Figure 2. Expression levels of mitochondrially encoded genes (16s rRNA and COXI) in single control and hypoxia-treated CP-A and
CP-C cells. Histograms of gene-expression levels in control (empty bars) and hypoxia-treated (30 minutes, solid bars) CP-A and CP-C cells. The
distribution histograms were generated using the same bin size.
doi:10.1371/journal.pone.0075365.g002

Single-Cell Analysis of Hypoxia Responses
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Figure 3. Expression levels of mitochondrially encoded genes (16s rRNA and COXI) in single control and hypoxia-treated CP-A and
CP-C cells. Box plots of single-cell gene-expression levels and p-values associated with the differences between normoxic and hypoxic conditions in
the two cell lines. The box chart shows following statistical values: Open square – mean, solid line – median, upper and lower box lines – the 75th and
25th percentiles, respectively, upper and lower whiskers – the 95th and 5th percentiles, respectively, x – maximal and minimal values.
doi:10.1371/journal.pone.0075365.g003

Single-Cell Analysis of Hypoxia Responses
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Figure 4. Single-cell expression levels distributions parameters of the studied mitochondrial and nuclear genes in normoxic and
hypoxic metaplastic (CP-A) and dysplastic (CP-C) cells. Comparison of distribution skewness (A, B, E, F) and kurtosis (C, D, G, H) values of the

Single-Cell Analysis of Hypoxia Responses
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types of human solid tumor cells. For example, reduced mtDNA

levels have been found in prostate carcinoma cells and associated

with invasive phenotype [50], a downregulation of mitochondrial

biogenesis was correlated with invasive breast cancer [51] and

ovarian cancer progression [52]. On the contrary, elevated

amounts of mtDNA have been reported in prostate [53],

pancreatic [54], head and neck cancer, gliomas [55], and found

to positively correlate with clinicopathological stage in colorectal

cancer [56], Shapovalov et al. have shown increased mtDNA

levels and decreased respiration rates in aggressive osteosarcoma

cells as compared to osteoblasts or benign osteosarcoma cells [57].

Furthermore, increased mtDNA levels have been associated with

the risk of developing breast cancer [58] whereas increases in

mtDNA copy numbers have been reported in progression from

normal to pre-malignant to malignant progression in endometri-

um [59], carcinogenesis of head and neck cancers [60] and in the

progression of esophageal squamous cell carcinoma [61]. While

the functional role of increased mtDNA levels in pre-malignant to

malignant progression remains to be elucidated, upregulation of

the mitochondrial biogenesis was suggested to serve as a

compensatory mechanism for impaired mitochondrial function

due to mtDNA damage in pre-malignant lesions [60,61]. It is thus

possible that dysplastic esophageal epithelial cells upregulate

mitochondrial biogenesis to increase the overall availability of

template for transcription, which in turn should increase the net

amount of mitochondrial mRNA and the corresponding protein

levels to maintain mitochondrial function. We note that only

single-cell level analysis revealed that mtDNA levels between CP-A

and CP-C cells are significantly different, whereas bulk-level

analysis showed no significant difference (Fig. S3). The observed

higher asymmetry and peakedness values of mtDNA content

distribution in CP-A cells are indicative of a higher degree of

deviation from normal distribution CP-A compared to CP-C cells.

While functional relevance of this finding remains to be elucidated,

the result itself is interesting as it indicates population-level

differences between the two stages in pre-malignant BE. It is

possible that due to selective pressure conferred by the bile and

acid reflux in the esophagus, one or several subclones in the more

heterogeneous population of metaplastic (CP-A) cells are selected

for resulting in a less heterogeneous, closer to normal distribution

profile of mtDNA content in the more advanced, dysplastic stage

(CP-C cells) of BE. Studies focusing on heteroplasmy of

mitochondrial DNA at the single-cell level would need to be

conducted to provide more detailed insight into this finding.

Nevertheless, the finding of elevated mtDNA levels in dysplastic

BE cells indicates that pre-malignant BE progression is similar to

other types of progression (ESCC and head and neck cancer) and

that it may be used as a biomarker for early detection of dysplasia

in different tissue types.

The mitochondrial membrane potential (MMP) measurements

revealed markedly higher relative values in normoxic CP-C

(1.8660.41) compared with CP-A (0.8060.17) cells (Fig. 1,

Table 2). When normalized against the mtDNA copy number,

the average relative MMP values are about 37% higher in CP-C

than in CP-A cells. This result shows that on average per mtDNA

molecule the dysplastic cells maintain higher MMP values than the

metaplastic cells. Higher MMP levels can result from a decrease in

the ATP synthesis rate because the proton gradient is depleted at a

lower rate. Our results on reduced oxygen consumption [33] and

the increased MMP levels in CP-C cells support the notion of

decreased ATPase and/or COX activities. Another potential

mechanism contributing to the maintenance of the hyperpolar-

ization of the inner mitochondrial membrane in CP-C cells could

be the HIF-1a mediated replacement of the COX4-1 subunit with

the COX4-2 isoform which is known to increase the efficiency of

COX under hypoxic conditions [62,63].

The analysis of image cytometry data has also revealed marked

differences in the mitochondrial membrane potential (MMP)

between the two cell types in response to hypoxia. The MMP in

hypoxic CP-C cells was retained at markedly higher levels than in

hypoxic CP-A cells. When normalized against the average

mtDNA copy number per cell, the MMP values were about

28% higher per mtDNA molecule in CP-C vs. CP-A cells. The

regulatory role of mitochondrial function and MMP in hypoxia

response is of critical importance [64]. The maintenance of high

MMP levels in cancer cells has been recognized as one of the

hallmarks of cancer and is thought to be necessary to enable

several vital processes to take place in response to low oxygen

availability in tissues. A direct correlation between increased MMP

levels and malignant phenotype has been reported in the literature

[65–67] and attributed to an increased capacity of tumor cells to

respond to hypoxia by avoiding apoptosis [39,66,68], evade

anoikis, prevent ATP consumption by the hydrolytic activity of the

ATPase, and excessive ROS production [69], and invade the

basement membrane [66]. It is possible that a combination of

these three mechanisms and maybe others contribute to the

observed high MMP levels in CP-C cells. We observe markedly

higher kurtosis values of the MMP distribution in CP-C cells

which suggests higher MMP heterogeneity of mitochondria in

dysplastic (CP-C) than metaplastic (CP-A) BE cells under

normoxic conditions. This finding is in contrast to lower mtDNA

copy number heterogeneity observed in CP-C as compared with

CP-A cells. It suggests that opposite to heterogeneity in mtDNA

copy numbers, mitochondrial function variability is more

pronounced in dysplastic than in non-dysplastic cells. Further-

more, this finding implies that at the population level variability in

mtDNA amount per cell does not necessarily correlate with the

variability in the mitochondrial function in terms of MMP. It is

thus likely that mtDNA heteroplasmy plays a significant role in

modulating mitochondrial activity at the single-cell level. In

addition to the observed differences under normoxia, we noticed a

significant difference in MMP distribution parameters in response

to hypoxia. While kurtosis increased from 0.07 to 1.11 in CP-A

cells as a result of hypoxia, a significant decrease (from 0.94 to

0.09) was observed in CP-C cells. It is possible that even though

mitochondrial activity levels in CP-C cells are more heterogeneous

under normal conditions, the hypoxic insult results in a close to

normal distribution of MMP, potentially indicating a fairly

uniform response to low oxygen among individual dysplastic cells.

This would suggest lower population-level heterogeneity in terms

of hypoxia response in dysplastic compared to non-dysplastic cells

and would support the working hypothesis of clonal selection as a

result of acid/bile reflux in BE. At this point it is somewhat difficult

to provide a more detailed insight into functional relevance of the

hypoxia response differences, and studies focusing on genomic

and/or mtDNA sequencing and functional phenotyping of

individual cells from particular subpopulations are needed.

However, these differences could be used as potential biomarkers

single-cell gene transcription level distributions between normoxic and hypoxic conditions. A clear trend of increased both skewness and kurtosis of
mitochondrially-encoded gene expression distributions can be seen in CP-C cells in response to hypoxia, but is absent in CP-A cells. Among the
studied nuclear genes only the PTGES gene showed significant changes in skewness and kurtosis parameters in CP-C cells.
doi:10.1371/journal.pone.0075365.g004
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Figure 5. Expression levels of mitochondria and nucleus encoded genes in single control and hypoxia-treated CP-A and CP-C cells.
Histograms of gene expression levels in control (empty bars) and hypoxia-treated (30 minutes, solid bars) cells. The distribution histograms were
generated using the same bin size.
doi:10.1371/journal.pone.0075365.g005
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Figure 6. Expression levels of mitochondria and nucleus encoded genes in single control and hypoxia-treated CP-A and CP-C cells
Box plots of single-cell gene expression levels and p-values (non-parametric Mann-Whitney test) associated with the differences
between normoxic and hypoxic conditions. The box chart shows following statistical values: Open square – mean, solid line – median, upper
and lower box lines – the 75th and 25th percentiles, respectively, upper and lower whiskers – the 95th and 5th percentiles, respectively, x – maximal
and minimal values.
doi:10.1371/journal.pone.0075365.g006
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for early detection of pre-malignant stages in BE and may offer

new therapeutic targets for early prevention of EAC.

CP-A cells respond to hypoxia with a marked upregulation of

COXI and 16S rRNA, whereas CP-C cells showed only slight,

although statistically significant, differences in the expression levels

of the 16S and CYTBI genes before vs. after hypoxia treatment

(Fig. 2, 3). COXI is actively involved in the electron transfer step

from reduced cytochrome c to the binuclear heme-copper center

[70]. Hence, the upregulation of COXI in hypoxic CP-A cells may

represent an attempt by the cell to adjust to the diminishing

availability of oxygen. It is likely that the upregulation of COXI is

necessary to increase the overall oxidation rate of cytochrome c

and in this way compensate for the reduced oxygen levels and

maintain ATP production levels. The absence of a similar

response in dysplastic (CP-C) cells, which are further progressed

toward malignancy, implies that the dysplastic BE cells are most

likely less dependent on OXPHOS. Furthermore, the hypoxia

response mechanisms that are in place in metaplastic (CP-A) cells

are absent or inactive to produce a significant upregulation of

COXI expression levels in dysplastic (CP-C) cells. Irrespective of

the mechanism underlying the differential expression of COXI and

COXIII, it is obvious that in comparison to CP-C cells, CP-A cells

are more sensitive to short-term hypoxia and upregulate at least

two (16S and COXI) of the four studied mitochondrially encoded

genes. The absence of a substantial upregulation of 16s rRNA

transcription in CP-C cells provides another important insight:

Mitochondrial transcription machinery in CP-C cells is either not

being activated or activated to a much lower extent than in CP-A

cells in response to short-term hypoxia. This finding is further

corroborated by the absence of significant increases in the other

three studied mitochondrial genes in CP-C cells. The transcription

level analysis of the four nuclear-encoded genes (28S, MT3,

PTGES, and VEGF) provides more support for this notion (Fig. 5,

6). The absence of a significant response in transcription of the

four studied nuclear genes in hypoxic CP-C cells indicates that

CP-C cells are less sensitive to short-term oxygen deprivation than

CP-A cells. To identify and characterize possible changes in gene

expression level heterogeneity profiles in response to hypoxia, we

conducted a statistical analysis of the single cell data. In case of

mitochondrial gene expression we observe a distinct trend in

increased skewness and kurtosis values in three of four studied

mitochondrial genes of hypoxic CP-C cells. This trend is either

reversed or absent in CP-A cells (Fig. 4). In our case this means

that the response to hypoxia in CP-C cells manifests in a more

asymmetric (non-normal) distribution of the expression levels of

the three genes. The shape of the mRNA distribution, and its

parameters such as skewness and kurtosis, depend strongly on the

transcription regulation mechanism. Studies on the dynamics of

the single-cell mRNA expression levels have been conducted in the

past [71–73]. Two different types of mRNA temporal expression

behavior have been identified. One is a result of the constantly

active, or non-bursting, transcription machinery with intrinsic

noise and stochastic behavior and exhibits a normal, or close to

normal, distribution of mRNA copy numbers over time [72]. The

second distinct type of transcriptional behavior dynamics is caused

by repeated activation/inactivation cycles of the transcription by

several different mechanisms, including transcription factor

binding/unbinding, chromatin remodeling events and mRNA

elongation regulation [73]. When, for example, a transcription

factor binds to its cognitive site on the DNA molecule, the

transcription of the corresponding gene is activated and remains

active until the transcription factor dissociates. The switching

between the active and inactive transcriptional states results in a

burst-like transcription pattern with a strongly asymmetric

temporal distribution of mRNA copy numbers in a cell. Even

though the average mRNA levels can be similar between these two

cases, the shape parameters of the two distributions differ

markedly. Whereas the non-bursting dynamics can produce

symmetric distributions of mRNA levels in time with low skewness

and kurtosis (mesokurtic) values, the bursting mRNA expression

dynamics results in highly asymmetric distributions with signifi-

cantly higher skewness and kurtosis levels. In this study we

measured ‘‘snapshots’’ in time of mRNA expression levels in

individual cells. In this regard, the mRNA distributions represent

spatial rather than temporal profiles since the cells to be analyzed

were picked at random from different locations within the cell

population. However, because the cell population itself was not

synchronized with regard to gene transcription, the mRNA levels

in randomly picked cells reflect the temporal behavior of the

transcription activity. Due to close qualitative similarities of the

mRNA distribution skewness and kurtosis observed in this study

with the temporal profiles of mRNA expression reported earlier,

we posit that molecular mechanisms based on non-bursting and

bursting mRNA expression regulation are at play in hypoxia

response. It is likely that while normoxic CP-A cells exhibit more

burst-like expression of mitochondrial encoded genes 16S, COXI

and COXIII, the transcription dynamics changes to more

symmetric, constitutive (non burst-like) behavior. On the contrary,

except for the 16S gene, CP-C cells show a qualitatively opposite

behavior – symmetric, non-bursting-like distribution under

normoxia and burst-like characteristics under hypoxic conditions.

At this point it is difficult to interpret the functional and

mechanistic implications of the two types of behavior on cellular

phenotype, and more detailed studies need to be conducted to

specifically address this intriguing point. We note, however, that

although marked changes in mRNA level distribution were

observed in hypoxic CP-C cells, the average mRNA levels did

not change significantly. This parallels the findings of several

earlier studies which demonstrated the possibility of different

mRNA distribution characteristics with identical average values.

The finding of differing distribution parameters demonstrates the

utility of single-cell studies to reveal dynamic events which would

otherwise be averaged out in bulk-cell approaches.

Combining the mitochondrial gene expression levels with the

higher relative MMP levels observed in hypoxic CP-C as

compared to hypoxic CP-A cells, it appears likely that dysplastic

esophageal epithelial cells are primed for short-term hypoxia and

are much better adapted to brief periods of severe oxygen

deprivation than metaplastic epithelial cells. The findings of this

and other studies indicate that in dysplastic esophageal epithelial

cells the most likely mechanisms contributing to the maintenance

of high MMP levels are similar to those reported in cancer cells of

different types. This implies that in this early pre-malignant stage

that predisposes to carcinogenesis, cells already exhibit several

important characteristics commonly found in cancer cells.

Conclusion

In summary, using single cell mtDNA copy number and gene

expression techniques, we find that the dysplastic CP-C cells

exhibit several important characteristics commonly found in many

types of cancer cells, namely 1) elevated amounts of mtDNA, 2)

high MMP levels under normoxia, and 3) the ability to maintain

relatively high MMP values under hypoxia. Furthermore,

compared to metaplastic cells, dysplastic cells are much less

sensitive to oxygen deprivation in terms of transcriptional activity

of the studied mitochondrial and nuclear genes. Taken together

these findings indicate a much higher degree of resistance to short-
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term hypoxia, which is likely to take place in vivo, of dysplastic

compared to metaplastic esophageal epithelial cells. The presence

of the features characteristic of malignant cells indicates an early

onset of phenotypic and biomolecular transformations typically

found in cancer cells. Alterations in mitochondrial function appear

to be critical in the pre-malignant transformation of esophageal

epithelium. A deeper understanding of these early alterations may

be crucial for finding new therapeutic targets. Because hypoxia

resistance is associated with many types of tumors, studies like this

may provide insights into molecular mechanisms of other tumor

types, such as cervix, lung and breast, that have been shown to

contain hypoxic regions.

Supporting Information

Figure S1 Amplification plots and melting curves of mtDNA

(HV1) and gene transcripts (16s rRNA, COXI, COXIII, CYTBI)

using validated primers. 2 mL (1/20th) of DNaST solution of the

total cDNA obtained from a single CP-A cell was used for each

qPCR reaction shown. This includes three technical replicates and

the no-template controls (NTC). Each panel shows real-time

amplification signal curves obtained from a single cell and

respective melting curves of the selected primers. A) Amplification

plots of each primer pair; the insets are gel verification of qPCR

products, insets indicated the 1.5% agarose gel electrophoresis

results of qPCR products; B) Melting curves of each primer pair.

(TIF)

Figure S2 Standard dilution curves for single cell mtDNA copy

number analysis.

(TIF)

Figure S3 qPCR results of average mtDNA copy number in CP-

A and CP-C single cells at the bulk cell levels based on biological

triplicates. p.0.05.

(TIF)

Figure S4 Response patterns of three mitochondrial genes and

three nuclear hypoxia response genes in bulk CP-A and CP-C cells

samples.

(TIF)
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