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ABSTRACT (213 words; 250 words max.)  

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer’s disease 

(AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 

non-carriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging 

database – the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We automatically segmented and 

constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE 

genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal 

controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a 

novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate 

tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. 

Using Hotelling’s T
2
 test, we found significant morphological deformation in APOE e4 carriers relative to 

non-carriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, 

affecting the left hippocampus more than the right, and this effect was more pronounced in e4 

homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers 

exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal 

morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage 

AD. 

 

1. Introduction 

The decline of cognitive skills to a functionally disabling degree is a sign of the clinical onset of 

Alzheimer’s disease (AD), but optimizing disease modification strategies requires early intervention 

against appropriate therapeutic targets that may vary with disease stage. Current therapeutic failures in 

patients with symptomatic memory loss may reflect intervention that is too late, or else targets that 

represent secondary effects less relevant to disease initiation and early progression (Hyman, 2011). For 

therapy to be successful, timing may be critical. 

In pre-symptomatic subjects, determining whether AD is present is challenging. The 

apolipoprotein E (APOE) e4 allele is the most prevalent risk factor for AD (Corder et al., 1993; Saunders 

et al., 1993), and is present in roughly 20-25% of North Americans and Europeans (Gerdes et al., 1992). 
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This discovery has made it possible to study large numbers of genetically at-risk individuals before the 

onset of symptomatic memory impairment and has led to the concept of preclinical stage AD (Sperling et 

al., 2011), a concept validated in autopsy studies of non-demented elderly subjects with neuropathological 

evidence of AD at autopsy (Bennett et al., 2009; Caselli et al., 2010; Dickson et al., 1992; Gouras et al., 

1997; Kok et al., 2009), magnetic resonance imaging (MRI) studies of infants at differential genetic risk 

(Dean III et al., 2013; Knickmeyer et al., 2013), fluorodeoxyglucose positron emission tomography (FDG-

PET) studies of APOE e4 carriers that have revealed AD-like patterns of reduced CMRglucose (Reiman et 

al., 1996; Reiman et al., 2005), amyloid ligand binding studies using Pittsburgh Imaging Compound B 

(PiB) that show evidence of cerebral amyloidosis in APOE e4 carriers (Reiman et al., 2009), cerebrospinal 

fluid (CSF) levels of beta amyloid that begin to fall, suggesting the onset of AD, in the early 50’s in e4 

carriers (Morris et al., 2010), and neuropsychological studies showing the accelerated decline of memory 

scores in a gene-dose pattern in APOE e4 carriers beginning between age 55 and 60 (Caselli et al., 2009) 

that is further accelerated in APOE e4 homozygotes by cerebrovascular risk factors (Caselli et al., 2011).       

So far we lack a widely available, highly objective brain imaging biomarker that can identify 

abnormal degrees of cerebral atrophy and accelerated rate of atrophy in preclinical individuals at high risk 

for AD for whom early intervention is needed. A biologically grounded approach is vital to identify 

reliable biomarkers, consolidate all information, reduce the sheer number of statistical tests, and improve 

statistical power. In AD research, structural magnetic resonance imaging (MRI) based measures include 

whole-brain (Chen et al., 2007; Fox et al., 1999; Stonnington et al., 2010), entorhinal cortex (Cardenas et 

al., 2009), hippocampus (den Heijer et al., 2010; Jack et al., 2003; Reiman et al., 1998; Thompson et al., 

2004; Wolz et al., 2010), and temporal lobe volumes (Hua et al., 2010), as well as ventricular enlargement 

(Jack et al., 2003; Thompson et al., 2004; Wang et al., 2011). These correlate closely with differences and 

changes in cognitive performance, supporting their validity as markers of disease progression. Although 

many current studies examine cortical and substructural volumes (den Heijer et al., 2010; Dewey et al., 

2010; Holland et al., 2009; Jack et al., 2004; Jack et al., 2003; Ridha et al., 2008; Vemuri et al., 2008a; 

Vemuri et al., 2008b; Wolz et al., 2010), recent research (Apostolova et al., 2008; Apostolova et al., 2010b; 

Chou et al., 2009; Costafreda et al., 2011; Ferrarini et al., 2008; Madsen et al., 2010; Morra et al., 2009b; 

Qiu et al., 2010; Styner et al., 2005; Thompson et al., 2004) has demonstrated that surface based 
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subregional structure analysis offers advantages over volume measures, in some respects. For precise 

analysis of MRI patterns of hippocampal deformation for preclinical AD research, a subregional analysis 

would be beneficial.  

Recently, we introduced surface multivariate tensor-based morphometry  (mTBM) system (Shi et 

al., 2013a; Shi et al., 2013b; Wang et al., 2012; Wang et al., 2011; Wang et al., 2010) and applied it to 

study AD effects on hippocampal morphometry (Shi et al., 2013a; Wang et al., 2011). Based on our 

experience assessing APOE e4 effects in preclinical populations (Caselli et al., 2011; Caselli et al., 2009; 

Caselli et al., 2010; Reiman et al., 2001; Reiman et al., 1996; Reiman et al., 2009; Stein et al., 2012) and 

the relatively large sample size in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 

2008; Miller, 2009; Mueller et al., 2005a; Mueller et al., 2005b) dataset, we applied a novel hippocampal 

morphometry method to a large cohort of MR images of individuals with known genotype. Subregional 

variations in hippocampal surfaces in 725 subjects (167 AD, 354 MCI, 204 controls) were examined for 

relationships with APOE e4 dose information, from APOE e4 non-carriers, people heterozygous and 

homozygous for APOE e4 allele. We hypothesized that the degree of hippocampal deformation would 

relate to genetic risk groups for AD, including adults who carry one or two copies of the APOE e4 allele, a 

major AD susceptibility gene.  

 

2. Subjects and Methods 

2.1 Subjects 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute 

on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and 

Drug Administration (FDA), private pharmaceutical companies and non-profit organizations, as a $60 

million, 5-year publicprivate partnership. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers of 
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very early AD progression is intended to aid researchers and clinicians to develop new treatments and 

monitor their effectiveness, as well as lessen the time and cost of clinical trials. 

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and 

University of California – San Francisco. ADNI is the result of efforts of many coinvestigators from a 

broad range of academic institutions and private corporations, and subjects have been recruited from over 

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has 

been followed by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults, 

ages 55 to 90, to participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is specified in the 

protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO 

had the option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org. 

At the time of downloading (09/2010), among the 843 subjects in the baseline dataset, 738 subjects 

were genotyped and classified as APOE e4 carriers or non-carriers. All subjects underwent thorough 

clinical and cognitive assessment at the time of acquisition, including the Mini-Mental State Examination 

(MMSE) score (Folstein et al., 1975), Clinical Dementia Rating (CDR) (Berg, 1988), and Delayed Logical 

Memory Test (Wechsler, 1987).  

In this study, all T1-weighted images from ADNI baseline dataset were automatically segmented 

using FIRST software
1
 to segment the hippocampus substructure. We reconstructed hippocampal surfaces 

based on binary segmentations (Shi et al., 2013a). As a quality control, we manually checked all the 

constructed meshes and excluded 5 AD, 5 mild cognitive impairment (MCI), and 3 healthy control subjects 

with wrong surface topologies (Shi et al., 2013a). As a result, a total of 725 ADNI baseline subjects with 

APOE information, including 167 AD (age: 75.5±7.6 years), 354 MCI (age: 75.1±7.2years), and 204 

controls (age: 76.2±4.9years) were studied using the new system for this paper. Table 1 gives detailed 

demographic data information on the subjects. 

In our study, following prior work (Morra et al., 2009a; Morra et al., 2009b; Shi et al., 2013a), we 

pooled both the subjects who are heterozygous APOE e4 carriers (e3/e4) and homozygous APOE e4 

carriers (e4/e4) together to form the APOE e4 carriers group and correlated presence of the APOE e4 

                                                           
1
 http://www.fmrib.ox.ac.uk/fsl/fslwiki/FIRST 
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allele with hippocampal morphometry, both (1) in the entire sample and (2) in non-demented (pooled MCI 

and controls) subjects. Throughout the paper, we call these two populations as the full ADNI cohort and 

non-demented cohort, respectively.  

 

2.2 Processing Pipeline 

Figure 1 shows our overall sequence of processing. First, given the 3D MRI scans from the ADNI baseline 

dataset, hippocampal substructures were segmented with FIRST (Patenaude et al., 2011) and hippocampal 

surfaces were automatically reconstructed based on the segmentations (Han et al., 2003). Second, a 

conformal grid was generated for each surface with the holomorphic 1-form based surface conformal 

parameterization (Wang et al., 2011). With this conformal grid, we computed the conformal representation 

of the surface (Gu and Vemuri, 2004), i.e., the conformal factor and mean curvature, which represent the 

intrinsic and extrinsic features of the surface, respectively. The “feature image” of a surface was computed 

by combining the conformal factor and mean curvature and linearly scaling the dynamic range into [0, 

255]. Third, we registered the feature image of each surface in the dataset to a common template with an 

inverse consistent fluid registration algorithm (Shi et al., 2013a). With conformal parameterization, we 

essentially converted a 3D surface registration problem into a 2D image registration problem. The flow 

induced in the parameter domain establishes high-order correspondences between 3D surfaces. Finally, we 

studied the differences between different diagnostic groups with the multivariate tensor-based 

morphometry (mTBM) statistics (Leporé et al., 2008; Wang et al., 2010), which retain the full tensor 

information of the deformation Jacobian matrix, together with the radial distance, which retains 

information on the deformation along the surface normal direction. 

 

2.3 Hippocampus Segmentation and Surface Reconstruction 

All T1-weighted MR images were automatically segmented using FIRST (Patenaude et al., 2011). FIRST 

is a model based subcortical structure segmentation and registration tool developed as part of the FSL 

library, which is written mainly by members of the Analysis Group, FMRIB, Oxford, UK. We ran the 

run_first_all routine with default parameters tuned by FIRST as optimal for hippocampal segmentation. 

Among the results of the routine, we took the 3-phase image which contains the labels of the left and right 
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hippocampi as shown in Figure 1 (a). Then the binary image for each side was obtained by a simple 

thresholding process. Hippocampal surfaces were constructed with a topology-preserving level set method 

based on the binary segmentations (Han et al., 2003) and triangular surface meshes were obtained based on 

the marching cubes algorithm (Lorensen and Cline, 1987). After mesh refinement (Shi et al., 2013a), we 

obtained smooth surfaces that are suitable for generating conformal grids as shown in Figure 1 (b). Finally 

each of the smoothed meshes was aligned into the MNI standard space using a global affine transformation 

with a 9-parameter (3 parameters for translation, 3 parameters for rotation, and 3 parameters for scaling) 

matrix that was computed by FIRST (Patenaude et al., 2011).  

 

2.4 Conformal Grid Generation 

To facilitate hippocampal shape analysis, we generated a conformal grid on each surface and used it as a 

canonical space for the following surface registration and multivariate statistical analysis. To generate a 

planar surface conformal parameterization for a closed hippocampal surface, we applied an automatic 

algorithm, topological optimization, to introduce two cuts on a hippocampal surface to convert it into a 

genus zero surface with two open boundaries (Shi et al., 2013a). The locations of the two cuts are at the 

front and back of the hippocampal surface, representing its anterior junction with the amygdala, and its 

posterior limit as it turns into the white matter of the fornix. They are biologically valid and consistent 

landmarks across subjects. Given the hippocampal tube-like shape, these landmark curves can be 

automatically determined by checking the extreme points by searching along the first principle direction of 

geometric moments of surface (Elad et al., 2004; Wang et al., 2011; Zhang and Lu, 2004). For quality 

control purposes, we have manually checked the consistency of all landmark curves. Then the exact 1-form 

basis was computed with the open boundary surface (Wang et al., 2010). Later we computed the basis for 

all closed but non-exact 1-forms. The harmonic 1-form basis is the union of the exact 1-form basis and the 

closed but non-exact 1-form basis. By solving a linear system with the harmonic 1-form basis, we obtained 

the conjugate of the exact 1-form basis. The exact 1-form basis and its conjugate 1-form form the 

holomorphic 1-form basis, which induces a conformal grid on the hippocampal surface. Figure 1 (c) and 

(d) show two example hippocampal surfaces with their conformal grids. In both pictures, the overlaid 
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checkerboard texture is used to demonstrate the angle preserving property, i.e. the right angles on the 

planar checkerboard texture are well preserved after they are overlaid on hippocampal surfaces.  

The conformal parameterization of a surface contains a number of geometric features about the 

surface. In our system, we computed the local conformal factor and mean curvature, which uniquely 

determine a closed surface in 3D, up to a rigid motion (Gu et al., 2004). Conformal factor is the area ratio 

of an infinitesimal region around a point on the surface and an infinitesimal region around the same point 

on the planar parameter domain. It represents the intrinsic features of a surface. By contrast, the mean 

curvature represents the extrinsic features of a surface. Both measurements, the conformal factor and mean 

curvature, are local features which are defined on each surface vertex. Since the conformal factor and mean 

curvature encode both intrinsic structure and 3D embedding information, we call them the surface 

conformal representation. In our framework, conformal representation is adopted as surface features for 

automated surface registration. As shown in Figure 1 (e), we summed up the conformal factor and mean 

curvature and linearly scaled the dynamic range of the summation into [0, 255] to form the feature image 

of the surface. 

 

2.5 Hippocampal Surface Registrations 

Similar to other tensor-based morphometry (TBM) work, e.g. (Chung, 2012; Davatzikos et al., 1996; Hua 

et al., 2011), we need to register each individual hippocampal surface to a common template surface for 

morphometric analysis. With the conformal parameterization and conformal representation, we convert the 

3D surface registration problem into a 2D image registration problem. The well-studied image fluid 

registration algorithm (Bro-Nielsen and Gramkow, 1996; D'Agostino et al., 2003) can be easily applied to 

induce a deformation flow in the parameter domain, which in turn enforces a high-order correspondence in 

3D. We introduced a correction term in the traditional Navier-Stokes equation to compensate for the 

parameterization area distortion. With conformal parameterization, the correction term was simply the 

conformal factor and the surface fluid registration can be easily developed by extending the Naiver-Stokes 

equation to drive flows on general surfaces, regardless of the underlying parameterizations. We call this 

method surface fluid registration (Shi et al., 2013a). 
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Furthermore, most image registration algorithms in the literature are not symmetric, i.e., the 

correspondences established between the two images depend on which image is assigned as the deforming 

image and which is the non-deforming target image. An asymmetric algorithm can be problematic as they 

tend to penalize the expansion of image regions more than shrinkage (Rey et al., 2002). Thus, in our 

system, we further extended the surface fluid registration method into an inverse consistent framework 

(Leow et al., 2005). The obtained surface registration is diffeomorphic. An example is as shown in Figure 

1 (e). For details of our inverse consistent surface fluid registration method, we refer to (Shi et al., 2013a). 

 

2.6 Surface Multivariate Morphometry Statistics 

Our multivariate morphometry statistical analysis consists of multivariate tensor-based morphometry 

(mTBM) (Leporé et al., 2008; Wang et al., 2009) and radial distance analysis (Pizer et al., 1999; 

Thompson et al., 2004).   This combines complementary information from mTBM, which measures 

deformation within surfaces, and radial distance, which measures hippocampal size in terms of the surface 

normal direction. 

The mTBM statistics have been carefully studied in brain structure morphology analyses and they 

can demonstrate improved signal detection power relative to more standard Jacobian matrix statistics (Shi 

et al., 2013a; Shi et al., 2013b; Wang et al., 2012; Wang et al., 2011; Wang et al., 2013). As mTBM retains 

the full information in the deformation tensor fields, it is very sensitive to deformations such as rotation, 

dilation, and shear along the surface tangent direction, which is perpendicular to the surface normal. Given 

the hippocampal tube-like shape, its atrophy and enlargement directly affect the distance from each surface 

point to its medial core (analogous to the center line in a tube). We call this distance the radial distance of 

a hippocampal surface. Radial distance mainly describes morphometric changes along the surface normal 

direction and has been applied in many subcortical studies (Bansal et al., 2000; Gerig et al., 2001; Morra et 

al., 2009b; Pizer et al., 1999; Thompson et al., 2004). Thus, these two statistics are complementary to each 

other. In this paper, we adopted the multivariate statistics proposed in (Wang et al., 2011) to study shape 

differences between groups with different diagnosis, APOE e4 dose, and healthy controls. 

As in our prior work (Wang et al., 2011), the mTBM was computed as a 3 × 1 vector consisting of 

the “Log-Euclidean metric” (Arsigny et al., 2006), computed as the matrix logarithm of the deformation 



 

9 

 

tensor. Given a hippocampal surface with the conformal parameterization as described in Sec. 2.4, the 

radial distance was computed as the distance from each parametric surface point to the center of 3D 

positions of the iso-u curves in the parameter domain (Wang et al., 2011), as shown by the red curves in 

Figure 1 (f). We formed the new multivariate surface morphometry statistic as a 4 × 1 vector consisting of 

the mTBM and radial distance.  

 

2.7 Statistical group difference 

To assess group differences with multivariate statistics, we applied Hotelling's 
2T  test (Cao and Worsley, 

1999; Hotelling, 1931; Kim et al., 2012; Thirion et al., 2000) on sets of values in the log-Euclidean space 

of the deformation tensors. For each surface vertex, given two groups of 𝑛 × 4-dimensional vectors, 

𝑆𝑖, 𝑖 = 1,2, … , 𝑝, 𝑇𝑗, 𝑗 = 1,2, … , 𝑞, we used the Mahalanobis distance 𝑀 to measure the group mean 

difference, 

𝑀 =
𝑁𝑆𝑁𝑇

𝑁𝑆+𝑁𝑇
(𝑆̅ − �̅�)𝑇∑−1(𝑆̅ − �̅�).                                                       

where 𝑁𝑆 and 𝑁𝑇 are the numbers of subjects in the two groups,  𝑆̅ and �̅� are the means of the two groups 

and ∑ is the combined covariance matrix of the two groups (Leporé et al., 2008; Wang et al., 2011; Wang 

et al., 2010).  

Specifically, for each hippocampal surface point, we ran a permutation test with 10,000 random 

assignments of subjects to different groups to estimate the statistical significance of the areas with group 

difference in surface morphometry. We also used a pre-defined statistical threshold of 𝑝 = 0.05 at each 

surface point to estimate the overall significance of the group difference maps by non-parametric 

permutation testing (Holmes et al., 1996; Nichols and Holmes, 2002). In each case, the covariate (group 

membership) was permuted 10,000 times and a null distribution was developed for the area of the average 

surface with group difference statistics above the pre-defined threshold in the significance map. The 

overall significance of the map is defined as the probability of finding, by chance alone, a statistical map 

with at least as large a surface area beating the pre-defined statistical threshold of 𝑝 = 0.05. This omnibus 

p-value is commonly referred to as the overall significance of the map (or the features in the map), 

corrected for multiple comparisons. It basically quantifies the level of surprise in seeing a map with this 
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amount of the surface exceeding a pre-defined threshold, under the null hypothesis of no systematic group 

differences. The permutation test on the overall rejection areas is used to evaluate the significance of 

overall experimental results and correct the overall significant p-values for multiple comparisons. Figure 1 

(g) shows an example of the significance p-map with uncorrected p-values, which is used to visualize the 

surface regions with significant differences between groups. 

 

3. Results 

3.1 Effects of APOE e4 genotype 

To explore whether the presence of the APOE e4 allele was associated with greater hippocampal atrophy, 

we conducted two experiments to study the effects of APOE e4 genotype on hippocampal morphometry in 

two populations:  

(1) APOE e4 carriers versus non-carriers in the full ADNI cohort; 

(2) APOE e4 carriers versus non-carriers in the non-demented cohort.  

The experiments aimed to determine if the APOE e4 allele was associated with hippocampal atrophy in all 

subjects or in subjects who have not yet developed AD. By contrast with (Shi et al., 2013a), the study in 

this paper is more rigorous as the APOE e4 non-carriers are those subjects who are homozygous non-

carriers (e3/e3). Subjects with one e2 allele, i.e., e2/e3 and e2/e4 were excluded due to the possible 

protective effect of e2 allele for AD (Morra et al., 2009b).  

In the 725 subjects of known APOE e4 genotype, there were 322 non-carriers (all homozygous for 

APOE e3) and 343 APOE e4 carriers. The non-demented cohort consisted of 506 subjects who were either 

MCI or control subjects, including 270 e4 non-carriers and 236 e4 carriers. Figure 2 shows the statistical 

p-map for the full ADNI cohort (N=665; 322 non-carriers and 343 carriers). Non-blue colors show vertices 

with statistical differences at the nominal 0.05 level, uncorrected for multiple comparisons. As shown in 

Figure 2, the APOE e4 carriers differed significantly from the non-carriers (p<0.0002). Figure 3 shows 

the p-map for the non-demented cohort (N=506; 270 non-carriers and 236 carriers). After correcting for 

multiple comparisons, the difference remained highly significant (p<0.0027).  
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3.2 APOE e4 dose effects: difference comparison between heterozygous and homozygous APOE e4 

carriers 

To explore whether APOE e4 allele dose affects hippocampal surface morphometry and how this atrophy 

is related to normal aging, we studied hippocampal morphometry between persons homozygous for the 

APOE e4 allele and those heterozygous for this allele. We studied group differences between heterozygous 

and homozygous APOE e4 subjects in the full ADNI cohort, and in the non-demented APOE e4 carrier 

cohort in ADNI baseline dataset.  

Among the APOE e4 carriers, 81 subjects were homozygous (e4/e4) and 262 were heterozygous 

(e3/e4) for APOE e4 allele. Figure 4 shows the statistical p-map for all APOE e4 subjects. The e4 

heterozygotes differed significantly from the e4 homozygotes (p<0.0129 after multiple comparisons 

correction with the permutation test). Excluding those APOE e4 carriers in the AD group, the non-

demented APOE e4 carrier group consisted of 189 e4 heterozygotes and 47 homozygotes. Figure 5 shows 

the statistical p-map for non-demented APOE e4 carriers. However, after correcting for multiple 

comparisons, the effect was not significant (p=0.142). (There may be some subthreshold difference for the 

right hippocampus, but a larger sample size would be needed to detect it, if present). 

 

3.3 APOE e4 dose effects: difference comparison between APOE e4 non-carriers and carriers with 

different APOE e4 dose 

To further study the APOE e4 dose effects, we divided the subjects into three groups, APOE e4 

homozygotes, heterozygotes, and non-carriers. We performed group difference analysis between two 

groups and compared the statistical power. We hypothesized that morphometric differences would be 

greater in APOE e4 homozygotes than heterozygotes, who would in turn show greater deformities 

compared to e4 non-carriers.  

Figures 6 and 7 show how APOE e4 non-carriers differ in hippocampal shape from APOE e4 

heterozygotes and homozygotes in the full ADNI cohort and the non-demented cohort, respectively. 

Figure 6 shows the statistical p-map for the full ADNI cohort. Non-blue colors show vertices with 

statistical differences, at the nominal 0.05 level, uncorrected. As shown in Figure 6 (a), the APOE e4 
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heterozygotes differed from e4 non-carriers (p<0.0031). Figure 6 (b) shows the statistical p-map for the 

full ADNI cohort and demonstrates that the APOE e4 homozygotes differed from e4 non-carriers 

(p<0.0001). Figure 6 (b) also shows more extensive statistically significant areas of difference than those 

in (a), for both the left and right hippocampal surfaces. 

After excluding AD subjects from these three groups, we repeated the group difference analysis 

among APOE e4 non-carriers (e3/e3, N=270), e4 heterozygotes (e3/e4, N=189) and e4 homozygotes 

(e4/e4, N=47). Figure 7 (a) shows the statistical p-map for the non-demented cohort (N=459; 270 non-

carriers (e3/e3) and 189 APOE e4 heterozygous carriers (e3/e4)). The APOE e4 heterozygotes differed 

from the e4 non-carriers (p<0.017). Figure 7 (b) shows the p-map for the non-demented cohort (N=317; 

270 non-carriers (e3/e3) and 47 APOE e4 homozygous carriers (e4/e4)) and showed that the APOE e4 

homozygotes differed from the e4 non-carriers (p<0.006). Similar to Figure 6, the homozygous vs. non-

carrier comparison showed more extensive areas of difference in the uncorrected p-maps. 

In Figure 8, the cumulative distribution functions of the p-values observed for the contrast of 

APOE e4 carriers versus non-carriers are plotted against the corresponding p-value that would be expected, 

under the null hypothesis of no group difference, for the four experiments shown in Figures 6 and 7. For 

null distributions, the cumulative distribution of p-values is expected to fall approximately along the dotted 

line. Large deviations from that curve are associated with significant signal, and greater effect sizes 

represented by larger deviations. The theory of false discovery rates (FDR) (Benjamini and Hochberg, 

1995) gives formulae for thresholds that tend to control false positives at a known rate. This protocol was 

adopted in several of our prior papers (Shi et al., 2013a; Shi et al., 2013b; Wang et al., 2011; Wang et al., 

2013; Wang et al., 2010) as an empirical standard to compare effects in group difference analysis. We note 

that the deviation of the statistics from the null distribution generally increases from heterozygotes vs. non-

carriers to homozygotes vs. non-carriers in both the full ADNI cohort and non-demented cohort studies.  

As such, although more rigorous statistical tests are certainly necessary, from the p-maps and CDF 

plots, we can observe the trend that in all groups, APOE e4 homozygotes appear to differ more from non-

carriers than do e4 heterozygotes, suggesting a clear APOE e4 dose effect. 

 

4. Discussion 



 

13 

 

Prior studies of APOE e4 carriers (Caselli et al., 2011; Caselli et al., 2009; Caselli et al., 2010; Reiman, 

2007) have helped to define and characterize preclinical AD with possible implications for primary AD 

prevention research. Essential to this effort are sensitive biomarkers that can track disease progression in 

the absence of symptoms. Imaging endophenotypes are promising, but further refinement of their 

relevance in early stage disease is needed (Frisoni et al., 2010). MRI hippocampal morphometry may help 

move disease detection earlier and evaluate the effectiveness of promising disease-slowing and prevention 

therapies in a shorter time and a more cost-effective way. Much recent research has used brain imaging to 

study how APOE e4 allele affects hippocampal morphometry in patients and cognitively normal people 

(Farrer et al., 1997; Lehtovirta et al., 1995; Lemaitre et al., 2005; Morra et al., 2009a; Morra et al., 2009b; 

Mueller and Weiner, 2009; Pievani et al., 2011; Qiu et al., 2009; Reiman et al., 1996; Shi et al., 2013a). 

Our study has two main findings. First, as one of the largest hippocampal morphometry studies to 

date, involving 725 baseline ADNI subjects, we found that, for the non-demented subjects, the APOE e4 

genotype is associated with greater hippocampal deformation. Second, our novel hippocampal surface 

morphometry method (Shi et al., 2013a; Shi et al., 2013b), which involves conformal mapping, inverse 

consistent surface fluid registration and multivariate statistical analysis, automatically processed all ADNI 

baseline imaging data and was as or more sensitive to APOE e4 effects than some previously reported 

methods, e.g., (Morra et al., 2009a; Morra et al., 2009b), that have used the ADNI dataset. 

Our work is related to the shape modeling of hippocampal surfaces. The Large Deformation 

Diffeomorphic Metric Mapping (LDDMM) (Joshi and Miller, 2000) has been used to deform labeled 

anatomical templates of the hippocampus onto new images, using a combination of manual landmarking of 

points on the hippocampus and 3D fluid image registration (Csernansky et al., 2000; Haller et al., 1996; 

Wang et al., 2007). In the LDDMM method, the surface of the hippocampus is parcellated a priori using a 

neuroanatomical template into three zones to approximate the locations of underlying subfields, and 

LDDMM is used to generate the hippocampal surfaces of all subjects and to register the surface zones 

across subjects. Another important shape modeling approach models the hippocampal surface using 

spherical harmonic functions (SPHARM) (Gutman et al., 2009; Shen et al., 2009; Styner et al., 2004), and 

uses the coefficients of the harmonic expansion to infer shape differences between patient groups and 

controls. Other methods (Van Leemput et al., 2009; Wang et al., 2006; Wang et al., 2003; Yassa et al., 
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2010; Yushkevich et al., 2010) segment hippocampus into different regions and  analyze the volume and 

shape changes of these subfields. These methods compute volumetric image registration between template 

and individual subject and translate and visualize the deformation on surfaces. In hippocampal subfield 

shape analysis work (Apostolova et al., 2010a; Cho et al., 2011; Morra et al., 2009a; Qiu et al., 2009; Shi 

et al., 2013a; Thompson et al., 2004), the morphometry comparison was performed by registering 

hippocampal surfaces with geometric feature analysis. This type of methods affords the benefits of high 

resolution information from the hippocampal surface representation and efficient numerical solutions to 

register and analyze surface deformation across subjects. 

In our APOE e4 carrier vs. non-carriers experiments, comparisons with both the non-demented and 

the full ADNI cohorts yielded significant differences that were apparently more pronounced on the left 

hippocampal surface. A prior study (Morra et al., 2009b), which conducted  similar experiments with a 

smaller number of images in ADNI baseline dataset (N=490) was only able to achieve significance for the 

left hippocampal surfaces on the full ADNI cohort but did not detect significant differences in the non-

demented cohort. That aside, our finding of  more significant areas on the left than on the right side, agree 

with (Morra et al., 2009b), despite differences in our image segmentation methods, surface 

parameterization and registration algorithms, and statistics. Our results also agree with another APOE e4 

study with manually segmented hippocampal surfaces (Pievani et al., 2011). 

To our knowledge, this is the first study to use a surface-based approach to study APOE e4 gene 

dose effects on the hippocampal morphometry differences among subjects with two copies, one copy and 

no copies of the APOE e4 allele. Although most current approaches use cortical and substructural volume 

measures (den Heijer et al., 2010; Dewey et al., 2010; Holland et al., 2009; Jack et al., 2004; Jack et al., 

2003; Ridha et al., 2008; Vemuri et al., 2008a; Vemuri et al., 2008b; Wolz et al., 2010), recent research 

(Apostolova et al., 2008; Apostolova et al., 2010b; Chou et al., 2009; Costafreda et al., 2011; Ferrarini et 

al., 2008; Luders et al., 2012; Madsen et al., 2010; Morra et al., 2009b; Qiu et al., 2010; Styner et al., 2005; 

Thompson et al., 2004; Yang et al., 2012) has demonstrated that surface based subregional structure 

analysis can offer some advantages over volume measures. Our work identified significant differences in 

hippocampal shape between subjects heterozygous and homozygous for APOE e4 allele in the full ADNI 

study but did not detect such a difference on the non-demented cohort. When comparing these two groups 
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with homozygous non-carriers (e3/e3), we detected significant differences in all four experiments. 

Furthermore, our empirical examination of the effect size clearly suggested that the homozygous APOE e4 

carriers showed greater atrophy than heterozygous APOE e4 carriers in both full ADNI and non-demented 

cohorts. 

Consistent with prior studies of APOE e4 effects on hippocampal surfaces, e.g., (Morra et al., 

2009b; Pievani et al., 2011), both heterozygous and homozygous APOE e4 patients show greater 

deformities for the left than the right hippocampus. By contrast with comparisons of APOE e4 carriers vs. 

non-carriers, differences between the heterozygous and homozygous APOE e4 groups were greater on the 

right side than on the left. Some prior research on hippocampal volume (Farrer et al., 1997; Lemaitre et al., 

2005) also found that when comparing the heterozygous and homozygous APOE e4 groups, the right 

hippocampus may have more pronounced atrophy than the left side. However, contradictorily, when 

comparing these two groups with non-carriers, some other works (Farrer et al., 1997; Lemaitre et al., 2005) 

found greater atrophy on the right side. The inconsistency may be due to the algorithms used, as with 

surface based method and the new statistics we introduced, more local subtle changes may be captured, 

which may be missed by the global volume based method. More systematic validation and comparison 

studies are warranted.  

Another important goal is to study differences between APOE e4 non-carriers and carriers within 

the cognitively normal group, i.e., healthy control subjects. As there were only 2 control subjects 

homozygous for the APOE e4 allele, tests of dose effects were underpowered in healthy control group. 

Thus we only compared APOE e4 carriers vs. non-carriers within the control group. Our experiments 

(N=177, 125 non-carriers (e3/e3) vs. 52 APOE e4 carriers (e3/e4 or e4/e4)) identified greater deformities 

on the left hippocampus than the right side but no statistically significant differences were detected after 

multiple comparisons correction (p=0.34). This is perhaps due to the low number of healthy control 

individuals with the APOE e4 genotype (Table 1). The association between APOE e4 and hippocampal 

atrophy may be detectable in a much larger sample. 

In our work, we applied a nonparametric, multivariate permutation testing on Hotelling's T
2
 

statistics. Due to the Hotelling’s T
2
 test, comparisons of different genetic groups were only conducted pair-

wisely. However, the multivariate analysis of variance (MANOVA) (Smith et al., 1962) may be also 
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applicable to analyze our multivariate statistics. MANOVA is a generalized form of univariate analysis of 

variance (ANOVA). It is used when there are two or more dependent variables. MANOVA has been 

successfully applied to human brain mapping research, e.g. (Bartley et al., 1997; Poline et al., 1996).  It 

may be particularly useful for us to check the hippocampal morphometry differences among subjects with 

two copies, one copy and no copies of the APOE e4 allele. We plan to apply MANOVA in our ongoing 

AD prevention research. 

The current work focuses on describing structural differences at the group level and establishing 

the correlation between morphometry changes and genetic variance. The current work mainly explores the 

difference among multivariate statistics without considering the trends of the metric changes. Investigating 

the trend for multi-variables as a whole (in the context of multivariate type analysis) might be difficult, but 

it would be useful for us to explore this “trend analysis” on individual statistics. For example, a medically 

interesting question could be that which individual statistics is more monotonic among these 3 groups 

(non-carriers, heterozygotes and homozygotes of e4). In our prior work (Shi et al., 2013b), we used TBM 

to visualize the metric trend for prematurity study but it may not directly explain the outcome achieved 

with mTBM features. We plan to explore more along this direction in our future work. The answers to 

these questions will make our results more intuitive to be understood and eventually help our methods to 

be adopted quickly by the medical community. 

This study has two limitations. First, as the participants are elderly, the ADNI subjects may not be 

the best representative of patient populations in clinical trials. Our ongoing work that studies the Arizona 

APOE cohort (Caselli et al., 2009) which consists of cognitively normal subjects with a wider age span 

may validate or extend our current ADNI findings. We have obtained another cohort dataset from AIBL 

(Australian Imaging, Biomarkers and Lifestyle Study of ageing) (AIBL, 2013; Ellis et al., 2009). In 

addition, our ongoing research on ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) 

(Thompson et al., 2013) may potentially provide new and rich datasets for cross-validation. Replication 

attempts will be made to corroborate our current biomedical discoveries.”  Second, because of the 

extremely low number of APOE e2 carriers in ADNI dataset (Table 1), we excluded them from our APOE 

e4 studies but did not perform any additional studies to show that APOE e2 might be protective.  
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5. Conclusion 

We recently developed our MRI-based computer-assisted hippocampal surface morphometry system that 

uses conformal maps to induce well-organized grids on surfaces. This simplifies a number of downstream 

computations of derivatives and metrics. In addition, the surface metric tensor, computable from the 

conformal grid, has a multivariate structure that contains a great deal of information on local surface 

geometry. Its components follow a log-Euclidean law that affects their possible range of values and their 

statistical distributions. The resulting set of surface tensor methods encodes a great deal of information that 

would otherwise be inaccessible, or overlooked.  

We applied our system to study hippocampal shape differences between subjects in the ADNI 

dataset with two copies, one copy, and no copies of the APOE e4 allele, a common susceptibility gene for 

late-onset AD. We found significant differences between APOE e4 carriers and non-carriers in both full 

ADNI and non-demented cohorts, with more deformation of the left hippocampus than the right. Within 

the full ADNI cohort, the e4 homozygotes demonstrated more deformities than the e4 heterozygotes. Our 

work supports prior reports that the APOE e4 genotype is associated with accelerated brain atrophy along 

with disease progression, and that these differences can be mapped to morphological changes in 

subsections of the hippocampal surface. Future studies will test this framework in cognitively normal 

subjects for the detection of preclinical AD. 
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Figure 1. A chart showing the key steps in our system. MR images were automatically segmented by FIRST to 

extract the hippocampal substructure (a). After the hippocampal surfaces were constructed from FIRST 

segmentations (b), we computed their conformal parameterizations with holomorphic 1-forms (c and d). Then feature 

images were generated by combining the local conformal factor and mean curvature that were computed from the 

conformal parameterizations. After the inverse consistent fluid registration was done in the feature image domain, we 

deformed the surfaces using the obtained displacements (e). The new statistics consisting of radial distance and 

multivariate TBM were computed at each point on the resultant matching surface (f). Then the Hotelling T
2
 test was 

applied to study genetic influence of APOE e4 allele (g). 
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Figure 2. Illustration of local shape differences (P values) between the APOE e4 noncarriers (e3/e3, N = 322) and 

carriers (e3/e4 and e4/e4, N = 343) in the full ADNI cohort. Nonblue colors show vertices with statistical differences, 

at the nomial 0.05 level, uncorrected. The overall significance after multiple comparisons with permutation test is P < 

0.0002. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 

 

 
Figure 3. Illustration of local shape differences (P values; a) between the APOE e4 noncarriers (e3/e3, N = 270) and 

carriers (e3/e4 and e4/e4, N = 236) in the non-demented cohort (MCI and controls). Nonblue colors show vertices 

with statistical differences, at the nomial 0.05 level, uncorrected. The overall significance after multiple comparisons 

with permutation test is P < 0.0027. 
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Figure 4. Illustration of local shape differences (P values) between the heterozygous APOE e4 carriers (e3/e4, N = 

262) and the homozygous APOE e4 carriers (e4/e4, N = 81) in the full ADNI cohort. Nonblue colors show vertices 

with statistical differences, at the nomial 0.05 level, uncorrected. The overall significance after multiple comparisons 

with permutation test is P < 0.0129. 
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Figure 5. Illustration of local shape differences (P values) between the heterozygous APOE e4 carriers (e3/e4, N = 

189) and the homozygous APOE e4 carriers (e4/e4, N = 47) in the non-demented cohort. Nonblue colors show 

vertices with statistical differences, at the nomial 0.05 level, uncorrected. The overall significance after multiple 

comparisons with permutation test is P < 0.142. 
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Figure 6. Illustration of local shape differences (P values) between the APOE e4 noncarriers (e3/e3, N = 322) and 

heterozygous carriers (e3/e4, N = 262; a), between the APOE e4 noncarriers (e3/e3, N = 322) and homozygous 

carriers (e4/e4, N = 81; b), in the full ADNI cohort. Nonblue colors show vertices with statistical differences, at the 

nomial 0.05 level, uncorrected. The overall significances after multiple comparisons with permutation test are P < 

0.0031 for (a) and P < 0.0001 for (b). 
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Figure 7. Illustration of local shape differences (P values) between the APOE e4 noncarriers (e3/e3, N = 270) and 

heterozygous carriers (e3/e4, N = 189; a), between the APOE e4 noncarriers (e3/e3, N = 270) and homozygous 

carriers (e4/e4, N = 47; b), in the non-demented cohort. Nonblue colors show vertices with statistical differences, at 

the nomial 0.05 level, uncorrected. The overall significances after multiple comparisons with permutation test are P < 

0.017 for (a) and P < 0.006 for (b). 
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Figure 8. Illustration of cumulative distribution functions of the P values observed for the contrast of APOE e4 

carriers versus noncarriers, plotted against the corresponding P value that would be expected under null hypothesis of 

no group difference, for the four experiments shown in Figures 6 and 7. We note that the deviation of the statistics 

from the null distribution generally increases from heterozygotes vs. noncarriers to homozygotes vs. noncarriers in 

both the full ADNI cohort and non-demented cohort studies, suggesting that the APOE e4 allele dose may be 

associated with more accelerated atrophy of hippocampus. 
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Table 1 Demographic information of studied subjects in ADNI baseline dataset. 

 ApoE 
Genotype 

Number of 
Subjects 

Gender 
(M/F) 

Education Age MMSE at 
Baseline 

AD e2/e2 0 - - - - 

e2/e3 4 1/3 15.00±2.24 74.25±8.26 22.00±1.58 

e2/e4 4 0/4 15.75±1.79 79.25±5.12 24.75±2.17 

e3/e3 52 27/25 15.15±2.05 76.96±8.58 23.23±2.05 

e3/e4 73 44/29 14.62±3.16 75.93±6.43 23.42±2.00 

e4/e4 34 20/14 14.71±2.67 71.92±7.17 23.44±1.83 

Control e2/e2 1 1/0 16 70 30 

e2/e3 24 12/12 15.83±3.14 76.13±5.68 28.83±1.14 

e2/e4 2 2/0 13.00±1.00 76.50±5.50 27.50±2.50 

e3/e3 125 69/56 16.20±2.71 76.29±4.83 29.18±0.89 

e3/e4 48 25/23 16.13±2.73 76.50±4.48 29.25±0.83 

e4/e4 4 2/2 16.75±1.92 73.75±3.34 29.00±0.71 

MCI e2/e2 0 - - - - 

e2/e3 15 7/8 15.93±2.86 76.67±7.44 27.60±1.50 

e2/e4 10 7/3 16.50±2.33 74.20±8.58 28.00±1.26 

e3/e3 145 95/50 15.81±2.94 76.20±7.71 27.23±1.77 

e3/e4 141 91/50 15.61±3.06 74.82±6.63 26.94±1.76 

e4/e4 43 25/18 15.81±2.57 71.81±5.91 26.84±1.95 
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