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Abstract
Supply-demand processes take place on a large variety of real-world networked systems ranging from
power grids and the internet to social networking and urban systems. In amodern infrastructure,
supply-demand systems are constantly expanding, leading to constant increase in load requirement
for resources and consequently, to problems such as low efficiency, resource scarcity, and partial
system failures. Under certain conditions global catastrophe on the scale of thewhole system can occur
through the dynamical process of cascading failures.We investigate optimization and resilience of
time-varying supply-demand systems by constructing networkmodels of such systems, where
resources are transported from the supplier sites to users through various links.Here by optimization
wemeanminimization of themaximum load on links, and system resilience can be characterized
using the cascading failure size of users who fail to connect with suppliers.We consider two
representative classes of supply schemes: load driven supply andfix fraction supply. Ourfindings are:
(1) optimized systems aremore robust since relatively smaller cascading failures occurwhen triggered
by external perturbation to the links; (2) a large fraction of links can be free of load if resources are
directed to transport through the shortest paths; (3) redundant links in the performance of the system
can help to reroute the traffic butmay undesirably transmit and enlarge the failure size of the system;
(4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific
location of the trigger determines the specific route of cascading failure, but has little effect on the final
cascading size; (6) system expansion typically reduces the efficiency; and (7)when the locations of the
suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold
for heterogeneous networks in general, providing insights into designing optimal and resilient
complex supply-demand systems that expand constantly in time.

1. Introduction

Supply-demand processes associatedwith various types of resources ranging frommass and energy to
information are key tomodern social, technological, and eco-systems. The network of services in amodern
infrastructure such as hospitals, schools,firehouses, post offices, stores, power andwater stations, etc is one
example. Data networks in theworld-wide-web, the underlying physical networks (i.e., the Internet), and online
socialmedia are other examples. In an ecosystem, the energy transportation processes among different species in
a food chain can also be regarded as a supply-demand process.Mathematically, the dynamical properties of a
supply-demand process can be studied in the context of complex networks [1, 2]. Such a network is typically
time varying because of the constant addition of new suppliers into the system in response to rising demand. To
optimize the new suppliers in terms of their number and locations to ensure high efficiency is of great interest.
For example, for governmental social welfare agencies and commercial service industries, it is desirable to be
able to provide better services tomore people with fewer facilities. This optimization problem ismathematically
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challenging, attracting continuous interest of researchers fromvarious disciplines such as business, economics,
systems engineering, computer science, geography, and even biology [3–11].

In this paper, we investigate optimization and resilience of complex demand-supply networks from the
dynamical point of view,motivated by the fact that, in general, rapid expansion of any networked systemwill
inevitably affect the various dynamical processes that it supports. For a supply-demand network, expansion can
lead to increasing load requirement for resources, causing problems such as low efficiency, resource scarcity, and
small and large scale failures. Of particular interest is the dynamical process of cascading failures, which has been
studied extensively in the past butmostly for static networks [12–26]. Therewere also previous works on
dynamical processes on time-varying networks [27], in specific contexts such as genomics [28], oscillator
synchronization [29–32], opinion dynamics and evolutionary games [33, 34]. Theseworks, however,mainly
addressed the dynamics of the co-evolving systems of stable size. From the standpoint of time varying networks,
the distinct feature of a supply-demand network lies in the rapid expansion of its size. To our knowledge, the
effects of such expansion on network optimization and resilience have not been studied. Specifically, by
optimizationwemeanminimization of themaximum load Lmax on links, and by resilience wemean the system’s
ability to sustain cascading failures.When such failures occur, some demanders will be separated from the
suppliers. The number of the separated demanders corresponds to the size of the cascading failure, which can be
used as a quantitativemeasure to characterize the resilience of the system. An optimized supply-demand
network ismore robust to perturbation such as disabling or removal of links .

Due to the rapid expanding nature of supply-demand networks, analytic treatment of cascading dynamics
is extremely difficult.We thus rely on systematic numerical computations. Ourmain results are the following.
We find that the specific route to cascading failures depends sensitively on the location of the perturbed
link and its capacity (cf, figure 3). An intuitive approach tomitigating cascading failures is to have ‘redundant’
links in the network, links that are free of load.However, we find that these links play a ‘double-sword’ role:
they can help reroute the traffic but can also increase the final failure size of the system (cf, figure 4). The links
that handle neither too large nor too small load have a higher probability to trigger large scale cascading
failures upon perturbation (cf, figure 5). By considering various types of expansion and optimization schemes,
we alsofind that expansion typically reduces efficiency because it makes the present optimal locations of
suppliers immediately less optimal (cf, figures 7–9). Tomaintain efficient function of the system, the
locations of the suppliers need to be adjusted frequently over a larger region of candidate sites in response to
expansion.

In section 2, we define supply-demand networks and introduce two types of supply schemes for systems
under expansion: load driven supply (LDS) andfixed fraction supply (FFS). In section 3, we study the interplay
between optimization and resilience in terms of cascading failures triggered by removal of a single link. In
section 4we provide an understanding, through extensive numerics, of how the expansion affects optimization.
In section 5, we present conclusions and discussions.

Figure 1. Illustration of an expanding supply-demand network. Filled gray and open circles denote the sites occupied by suppliers and
demanders, respectively. Each demander orders one unit of resource from the nearest suppliers, with load divided uniformly among
all the shortest paths. (a)Demanders 1, 2, and 3 receive resources from the supplier 4 through the respective shortest paths. The
maximumedge load =L 3 2max is labeled by ‘⋆’. (b) For the expanded systemof size seven, Lmax is increased to 4. (c) Addition and
optimization of the location of one new supplier to reduce Lmax. (d)Optimal configuration of suppliers.
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2.Models of supply-demand networks

A supply-demand network consists of two components: suppliers that provide certain types of resources or
services, and demanders that exploit the resources or use the services. Resources can be, e.g., data packets in
Internet, electric power, water supply in an urban system, public transportation devices, etc. To conveniently
quantify the resources, we conceive them as being composed of packets [2] that flow from suppliers’ sites
(sources) to demanders’ sites (destinations). The suppliers and demanders are connected together through a
networked structure— a kind of complex transportation network.

We assume that the amount of resource supported by each supplier is unlimited, and each demander orders
one unit of resource from the nearest supplier(s) through the shortest path(s) in the underlying network. The
unit resource to each demander is equally divided among suppliers with identical shortest paths, as illustrated in
figure 1. If there are x shortest paths, regardless of the number of suppliers, the share orweight of each path is

x1 . The load L on a given edge is the sumover the shares of all the paths through it [2], as shown infigure 1. The
load is thus a variant of the link betweenness [35] with respect to sources and destinations. For the realistic
situationwhere the traffic capacityC on every edge is limited, themaximum edge load Lmax is an important
parameter determining the performance of the supply-demand system. The optimal locations of suppliers
subject tominimization of Lmax can be found throughmethods such as simulated annealing [36, 37] and genetic
algorithms [38, 39].

In an expanding systemof population growth,more resources are required from time to time, introducing
more load to the underlying supply-demand network. As illustrated infigure 1(a), the network grows from a
given optimized initial state with one supplier (filled circle) and three demanders (open circles). The number of
sites is thus = + =N S D 4, with S andD denoting the numbers suppliers and demanders, respectively. The
maximumedge load is =L 3 2max (marked by⋆).When three newnodes are introduced into the system, as
shown infigure 1(b), themaximum load becomes =L 4max , which does not necessarily occur on the original
maximum-load edge. As a new supplier is added to the system to relieve edge overloading, its location plays an
important role inminimizing Lmax. Figure 1(c) and (d) illustrate the two outcomes for the two possible locations
of the new supplier, where the location infigure 1(d) is the optimal one.

We consider two types of expansionmechanisms: LDS and FFS. The systemwith an increasing number of
demandersmay cause certain edges to become overloaded. Through LDS, once Lmax exceeds a pre-assigned
upper bound of edge capacityC, new suppliers are added and optimized in systemone by one until Lmax

becomes smaller thanC. Addition and optimization of suppliers take place on the same time scale as the

Figure 2.Cascading failures of a supply-demand network under different levels of optimization. (a) Edge-load distribution of the system
optimized to a given value of Lmax ranging from 113.44 to 8.87. The inset shows the corresponding plot on a double-logarithmic scale.
(b)Number of failed demanders at each time step triggered by an attack targeted at themaximum-load edge at t=0. (c) Total number
of failed demanders Df versus Lmax. The solid lines are for eye guide. The underlying network is scale-free with sizeN=1000, S=10,
average degree 〈 〉 =k 6, and total number of edgesE=3000. The edge capacity parameter is α = 0.6.
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expansion of the network. For FFS, afixed fraction of nodes are arranged to be suppliers as the system expands,
i.e., the number of suppliers increases proportionally with the system size, and the locations of the new suppliers
are optimized over thewhole system, or in the newly established region composed of the latest set of nodes added
to the system. In this case, there is separation in time scales in that the network can expandmuch faster than
suppliers are added into the system and optimized, where the expansion rate ΔN is an externally adjustable
parameter.We employ the simulated annealing algorithm [36, 37] to optimize the locations of the new
suppliers. The representative growing scale-free networkmodel [40] is adopted to describe the underlying
expanding supply-demand network, where adding nodes in the course of network growth corresponds to
introducingmore demanders and thusmore load into the system. The network growth rule is set according to
the two types of expansionmechanisms, LDS and FFS. In LDS, nodes (withm initial links) are added into the
systemone by one. In FFS, a group of nodes are added before each optimization process. The so generated scale-
free network has power-law degree distributionwith the scaling exponent γ ≃ 3 and average degree 〈 〉 =k m2 .
In addition, after optimizing the locations of the suppliers under different scenarios (see details in section 4),
suppliers are found to have a preference to large degree sites.

3.Optimization and resilience

In general, random errors or an intentional attack can trigger cascading failures. To understand how such
failures can occur in a supply-demand network provides away to assess the resilience of the system.

For a static supply-demand networkwith a given configuration of suppliers, the load on each edge is known
a priori. A reasonable assumption [12] is that the capacityCi of edge i is proportional to its load Li:

α= +C L(1 ) , (1)i i

Figure 3.Effects of edge capacity on cascading failures. (a), (b)Numbers of failed demanders and disabled edges, denoted as Df and Ef ,
respectively, versus the tolerance parameterα. The results from the ten different network configurations aremarked by different
symbols. (c) Average distance fromdisabled edges to the closest suppliers, denoted by −Re s, versusα. This results indicates that, for
systemswith small values ofα, the edges near the suppliers aremore likely to be involved in the cascading process. (d)Number of
clusters of failed demanders, denoted as nd, versus α, where the solid symbols indicate the results from ten different network
configurations, and the symbols connected by lines correspond to the average values. (e), (f) Temporal behaviors of ΔDf and ΔEf ,
and (g), (h) accumulated amounts of D t( )f and E t( )f , respectively, withα ranges from0.1 to 0.5 (denoted by different open symbols).
The supply-demand network hasN=1000 nodes and E=3000 edges.
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where the parameter α > 0 is an adjustable tolerance parameter.When one edge fails towork (due either to
random failure or to an intentional attack), the set of paths passing through this edgewill no longer be available,
leading to a global redistribution of load over thewhole system. Any edgewith new load >L Ci i will fail to
deliver the resources to the demanders, and this causes the load to redistribute again, and so on. The cascade of
overload failures can cut off a large number of paths from suppliers to demanders, leading to catastrophic
failures of the demanders. A feature that distinguishes this type of cascading failures frompreviously studied
ones [12–26] is that here, the failures are result of edge overload instead of node overload.

To characterize the extent of edge-overload induced cascading failures in a supply-demand network, we use
the quantity Df , the number of demanders that are not connected to any supplier and thus fail to function, due
to the network’s inability to deliver the required resources to them. For convenience, we call them failed
demanders.

Figure 4.Effect of redundant edges on cascading process. For a supply-demand network and its variant inwhich all redundant edges are
removed, (a) number of failed demanders and (b) number of failed edges versus time in a cascading event. Results for the original
network are plotted using red open symbols while those for the variant network are represented by black filled symbols. (c), (d) The
corresponding accumulated numbers of D t( )f and E t( )f , respectively. In (b) and (d), the results from the original network (with
E = 3000 edges) are plottedwith y-axis labeling on the left, and the results from the variant networkwithout redundant edges (with
E = 1944 edges) correspond to y-axis labeling on the right.

Figure 5.Cascading size and probability triggered by single attack on edges. For a supply-demand network of sizeN=1000, E=3000 and
S=10, (a) cascading size Df triggered by a single attack on edges of load L for different values ofα and (b) the corresponding
probability Pc of cascading process. (c) Fraction of loaded edges that trigger the cascading process. The simulation results (denoted by
symbols) in (b) and (c) are averaged over ten network realizations, and the solid curves are for eye guidance.
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Figure 6.Origin of gap inDf. Size Df of the cascading process triggered by a single attack on edge of load L for different values ofα
(denoted by different symbols) in the supply-demand networks with various combinations of the network parametersN, S and 〈 〉k .
The upper (a)–(c) andmiddle (d)–(f) rows of panels have =S N0.01 and =S N0.02 , respectively. The bottom rowof panels
compares the results from the networkwith increasing average degree 〈 〉k .

Figure 7.Required suppliers in expanding systemswith load driven supply (LDS). (a)Number of suppliers S as a function of the system
sizeN. (b) Linear plots and (c) log–log plots of S versusC forN=800 and 1500 under LDS (open symbols fitted by dashed lines) and
SGO (filled symbols fitted by solid lines). The power-law decay of S towards the critical valueC* with exponents β = 1.3 and 1.0 for
LDS and SGOare plotted, respectively. The underlying scale free network has the average degree of 〈 〉 =k 6. The results are averaged
over ten randomnetwork realizations.
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3.1.Optimization and resilience
In a supply-demand network, optimization of suppliers’ locations leads tominimally possible value of Lmax.
What is then the interplay between optimization and resilience? Figure 2(a) shows the load distributions of a
systemwith different values of Lmax, from a random initial configuration of suppliers with =L 113.44max (open
circles) to optimal configurationwith =L 8.87max .We see that, in the optimization process of reducing Lmax,
the qualitative features of the load distribution remainmostly unchanged. In particular, the region of the
distribution remains broad. Furthermore, for randomor optimal configuration of suppliers, over 35%of the
edges have load L=0. Intuitively, these ‘redundant’ edges provide ‘room’ for the system to recover when the
number of edges that carry load is reduced due to failures. However, amore careful examination (see figure 4)
shows that, while the redundant edgesmay help to reroute the traffic, an undesirable consequence is that they
also promote the propagation of cascading failures and lead to larger cascading size.

Single attack upon nonzero-load edgemay trigger a cascade of failures. For simplicity, wefirst consider
attacks targeted at themaximum-load edge. As an example, we show infigures 2(b) and (c) the incremental
number (denoted by ΔDf ) of failed demanders versus time and the corresponding asymptotic numbers,
respectively, for networks with different values of Lmax. The edge capacitiesCi in each network are set according
to the load definition in equation (1).We see that, the better the system is optimized (i.e., with smaller value of
Lmax), the cascading process is relativelymore benign in the sense that the failure spreading is slower. In contrast,

Figure 8.Maximum edge load under fixed fraction supply (FFS). For network expansion under FFS,maximumedge load Lmax versus
the system sizeN, for expansion rate Δ =N 100, 200, and 500. The optimization schemes considered are ELO (filled symbols) and
EGO (open symbols). For comparison, the results fromSGO (solid curve) for the corresponding static systems are also shown. Results
are averaged over 40 statistical realizations, and the fraction of suppliers is a=0.1.

Figure 9.Average degree of suppliers in expanding systems. The average degree 〈 〉ks of all the suppliers (blackfilled squares) and those at
each time step (open symbols labeled by g1–g6) in systems under optimization schemes (a) EGO and (b) ELO, respectively. The
expansion rate of the systems are Δ =N 500 and Δ =S 5. The SGO results for the static systemwith the corresponding values ofN
and S (red filled circles) are also included for comparison.
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if a systemhas a large value of Lmax as for the casewhere the locations of suppliers are arranged randomly, the
cascading process ismore devastating in the sense thatmanymore demanders fail to reach suppliers.We thus see
that, although the original objective of optimizing the locations of the suppliers does not seem to be directly
related to system resilience, a better optimized network is apparentlymore resilient against intentional attacks.
The results shown infigure 2 keep unchanged qualitatively when the parameters of the system such asN, S, andE
are changed. In addition, for a given system, once a cascading process is triggered by an attack on a single edge,
the failure size Df is independent of the specific location of the attack, as shown infigures 5(a) and 6. To gain
more insights into the interplay between optimization and resilience, in the followingwe study the optimal
systemwith varying edge capacities, i.e., onewithminimal value of Lmax, from the perspective of perturbation on
edges with different load.

3.2. Cascading failures in systems of varying edge capacities
We study the role of edge capacityCi in the cascading process, which can be varied systematically through the
tolerance parameter α (equation (1)). Figures 3(a) and (b) show the asymptotic number of the failed demanders
(Df , the cascading size), and the number of disabled edges Ef at the end of the cascading process, respectively,
versus α for ten different network realizationswith identical values of the parametersN, S,E and 〈 〉k , but
generated fromdifferent random seeds.We see that, as the edge capacityCi is increased, Df decreases
monotonically, but Ef exhibits a nonmonotonic behavior around α = 0.2 for some network realizations as
shown in the inset offigure 3(b). In addition, the details of the cascading process is quite sensitive to the specific
topology of the network, resulting in different critical values ofα abovewhich the network is free of cascading
dynamics.

The nonmonotonic behavior of Ef infigure 3(b) signifies a counterintuitive phenomenon: increasing the
edge capacity can reduce the number of failed demanders but can simultaneously causemore edges to fail. A
detailed check of the underlying cascading process reveals that varying edge capacity can affect the route (or
trajectory) of the cascading process in the network. Figures 3(c) and (d) show the average distance from failed
edges to their nearest suppliers, denoted by −Re s, and the number of clusters of failed demanders, denoted by nd,
respectively. For α = 0.1, the edges near the suppliers (smaller distance −Re s) fail rapidly and the failed
demanders separated from the suppliers form a few large clusters andmany small clusters. This is indication that
large amount of edges among demanders are not involved in the cascading process. For relatively larger α values
(e.g., 0.2),more edges fail (corresponding to larger Ef values in (b)) but the distance −Re s to suppliers becomes
larger, as shown infigure 3(c), implying failure of edges among demanders that leads to the emergence of smaller
clusters of failed demanders, as indicated infigure 3(d) through the larger values of nd. Overall, in contrast to the
monotonically decreasing behavior of Df , the nonmonotonic behavior in Ef with a peak at about α = 0.2
indicates a strong variance in the cascading trajectory through the network. In particular, small edge capacities
induce local edge failures close to suppliers and result in large cascading size, while larger edge capacity leads to
more edge failures but relatively smaller cascading size.

Examples of the temporal behaviors of Df and Ef are shown infigures 3(e)–(h) for α = 0.1–0.5.We see that
cascading dynamics in systemswith smaller values ofα aremore severe with largerfinal failure size and shorter
duration, while for large values ofα cases, the process spreadsmore slowly.We also see two factors that
contribute to the cascading failures: (1) failures of edges and subsequent load redistribution that can trigger
overload of the remaining edges in a cascadingmanner, and (2) reduction of total traffic flow in the systemdue
to disconnections of demanders from the suppliers. Thefinal extent of the cascading process is result of the
balance of these two factors.

3.3. The role of redundant edges in cascading dynamics
Fromfigure 2, we see that a considerable fraction of edges are in fact free of load for various degree of
optimization. Are the redundant edges useful tomitigate overloading and cascading failures? To address this
question, we calculate the numbers of failed demanders and failed edges for the original network and for its
variant inwhich all the redundant edges are removed. The results are shown infigure 4. Surprisingly, we see that
removal of all the redundant edges can always inhibit the cascading process. This counterintuitive phenomenon
can be explained, as follows. The redundant edges serve to providemore rerouting paths from the suppliers to
the demanders in load redistributionwhen some nonzero-load edges are disabled. As shown infigure 4, the
original systemwith redundant edges (red open symbols) has smaller values of Df and ΔDf for several initial
time steps during the cascading process as compared to the variant systemwithout redundant edges (blackfilled
symbols). However, the ‘saved’ demanders that are connected to the suppliers via newpaths through redundant
edges will bringmore loads to thewhole system, leading tomore dramatic cascading failures.

For the networkwithout redundant edges, there are fewer rerouting paths available. As a result, even though
some demanders would fail initially, the path structure between the suppliers and demands are relativelymore
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stable,making the extent of load redistribution less severe and effectively inhibiting the cascading dynamics. In
addition to this load redistribution issue, wefind that for the networkwith redundant edges, isolation of the
supplier, namely failures of all the edges towards demanders for a given supplier, occurswith a higher
probability.

3.4. Effect of edge load on cascading process
The results obtained so far are for cascading failures triggered by a single attack on the edgewith themaximum
load Lmax. A question is whether an attack on an arbitrary edge of load <L Lmax can induce a cascading process.
Figure 5(a) shows the cascading size Df versus the load of the attacked edge for systemswith different values ofα.
Wefind that Df is independent of the load of the attacked edge as the value of Df is distributed randomly in a
small interval. Thismeans that, the location of the initial edge failure has little effect on thefinal cascading size,
once the process has taken place. Asα is increased, Df decreases.

Interestingly, infigure 5(a), a gap of Df in the range [20, 400]can be observed. Extensive simulations are
carried out on networks with different values of parametersN,E, and S to understand the gap. Figure 6 plots a
typical set of results.Wefind that the systemswith larger values ofN, smaller values of S, or larger values of 〈 〉k
have larger gaps in Df .More specifically, we observe the following: (1) thewidth of the gap is proportional to the
sizeN (see figures 6(a)–(f)), (2) larger number of suppliers can reduce thewidth of the gap (comparing
figures 6(a), (d), figures 6(b), (e), andfigures 6(c), (f)), and (3) an increase in the average degree 〈 〉k , i.e., larger
number of edges will enlarge thewidth of the gap (figures 6(g)–(i)). These results imply that the emergence of
the Df -gap can be attributed to the tree structure of suppliers which result in strong correlations among the nodes
in the cascading process, where the supply tree of a given supplier is composed of all the paths alongwhich the
supplier provides resources to demanders. Once a cascading process is triggered, the strong correlation among
nodes (through the supply trees) will induce a relatively large failure size Df , rather than a continuous increase
in Df from zero. A gap in Df thus emerges between the cases with andwithout cascading failures. Furthermore,
for a systemwith fewer suppliers (small S), the supply tree has longer paths and larger size on average, which
induces stronger correlation among the nodes. Compared to the opposite case of larger value of S (panels (d)–(f)
infigure 6], in the small S systems (panels (a)–(c) infigure 6), an initial single attack can trigger a cascading
process of larger size, generating a larger gap in Df . In addition, the existence of redundant links enlarges the
cascading size. An increase in the average degree 〈 〉k (panels (g)–(i) infigure 6), which leads to an increasing
number of redundant links, results in a larger value of Df and a larger gapwidth in Df .

Figure 5(b) shows the probability Pc for the occurrence of cascading failures versus load L of the initially
failed edge. Equivalently, Pc is the fraction of edges with load L onwhich a single attack triggers cascading. There
is a non-monotonic relation betweenPc and L, indicating that an attack on some edgewithmedian load ismore
likely to trigger a cascading process. Additionally, as shown infigure 5(b), for the case of smallα values, e.g., 0.1
or 0.2, the system is fragile in the sense that an attack on any edgewith >L 4 will trigger cascading failures with
probability one. For largerα values, e.g., α = 0.3, the non-monotonic behavior ofPc becomes apparent.

Figure 5(c) shows the total fraction F of edges that can trigger a cascading process versus α, which
corresponds to the probability cascading process due to random edge failure.We see that, asα is increased

through a critical value α ≈* 0.8, the system is immune to cascading failures under any single-edge attack. This
can also be seen infigures 5(a) and (b)where, for α > 0.8, no cascading occurs and both the failure size Df and
the cascading probability Pc approach zero.

4.Optimization of growing supply-demand networks

Weconsider the standard growing, scale-free networkmodel [40] for two supply scenarios: (1) LDS and (2) FFS.
For LDS, arrangement and optimization of suppliers take place on the same time scale as that of expansion of the
network. For FFS, the rate of network expansion is larger than that of optimization.

4.1. Scenario of LDS
When a system expands, loads on edges increase withmore demanders, and new suppliers are required due to
the limited edge capacityC. The new supplier can be anywhere in the network except for those locations already
occupied by previous suppliers. The goal is to select optimal locations for the new suppliers whichminimize
Lmax. If Lmax is larger thanC after addition of one supplier, another supplier can be added into the system at some
optimal location. This process continues until <L Cmax . Since the amount of resource supported by each
supplier is unlimited, the systemwith fewer suppliers (smaller value of S) would satisfy all of the demanders
throughmore long range paths, provided that no edge is overloaded.When toomany paths are needed, some
edges will inevitably be overburdened, requiringmore suppliers at appropriate locations.
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Figure 7(a) shows a typical relationship between the number S of suppliers and system sizeN for LDS, where
the edge capacity limitC ranges from2.1 to 9.1. Because of the linear increase of SwithN, the average output of
each supplier ≡ −O N S S( ) is approximately a constant for any given capacityC. However, the output
depends onC due to the dependence of S onC. For comparison, we also analyze the strategy of static global
optimization (SGO)where, for a given static network of sizeN and identical edge capacityC, the locations of all S
suppliers are optimized synchronously over thewhole system to obtain the lowest value of Lmax. In SGO, if
optimization of the S suppliers is unable tomeet the condition ⩽L Cmax , onemore supplier will be added and
the locations of all the +S 1 suppliers will be recalculated. This process is repeated iteratively until the system
satisfies the constraint ⩽L Cmax . Notably, different fromLDS, in determining the supplier locations under the
SGO strategy, information about the evolutionary history of the network is not needed, i.e., the ‘elder’ suppliers
are notfixed.

Figures 7(b) and (c) respectively show the linear and log–log plots of the value of S versusC for two instants
of timewhen the system size isN=800 and 1500 (circles and squares, respectively) both for LDS (open symbols)
and SGO (filled symbols).We observe the following power-law decay of SwithC:

∼ β−S NC , (2)

where the power-law decay exponent is β = 1.3 for LDS and 1.0 for SGO. The dashed curves and solid curves
respectively are the least square fittings to the results fromLDS and SGO. Take LDS as an example, the systems in
the lower-left region below the dashed curve infigures 7(b) and (c), i.e., thosewith inadequate suppliers or too
small values ofC, will have a large number of overloaded edges, while those corresponding to upper regions
above the curves have redundant capacities. IfC is adjustable, one can see from figure 7(b) that the initial
increase inC (e.g., from1 to about 6) dramatically reduces the number of additional suppliers, making
enhancingC a highly efficient strategy for avoiding overloading. However, increasingC in the larger capacity
region is not effective at reducing the number of new suppliers. In addition, the larger S of LDS compared to
SGO implies that, for a static systemof a given size, the SGO strategy requires fewer suppliers as compared to an
expanding system evolved to the same size, inwhich the addition and optimization of suppliers are driven by
overload events. This can be attributed to thememory effect in the expanding system, e.g., immobility of the
existent suppliers.

To gain further insights, we consider the extreme case of one supplier, i.e., S=1. For such a system, edge
capacityC approachingN is sufficient for the system to avoid overload. The critical valueC*, belowwhich
overload on edge occurs, is indicated infigure 7(c).We find that theC* values for the systemswith LDS and SGO
coincidewith each other, which can be attributed to the fact that the two different optimization schemes have no
effect on the one-supplier system. AsC is decreased further, the SGO scheme requires fewer suppliers and
consequently performs better. The power-law exponents from the LDS and SGO schemes respectively are
β = 1.3 and 1.0, implying their different responses to decreasingC. The simple relation ∼S C N· , which holds
for the SGO scheme, is due to its sufficient and global utilization of edges. The LDS scheme, however, generates
small inhomogeneous distribution of loads and thus requiresmore suppliers to avoid overloading. In addition,
asC is decreased to the extreme case of <C 1, the number of suppliers S diverges with the system size for both
schemes.

These results suggest that, to avoid overloading in an expanding supply-demand system, an effective scheme
needs to simultaneously take into account two factors: (1) enhancement of edge capacity limitC, and (2)
addition of suppliers.

4.2. Fixed fraction supply
In supply-demand networks under LDS, the number of demanders expands one at a time, i.e., the expansion
rate is Δ =N 1. In this case, the edge load is sensitive to each unit increment ofN. In a realistic situation, the
expansion rate ΔN for a system subject to optimization can be large. For example, a group of suppliers can be
added into the system simultaneously. It is thus of interest to generalize the LDS scheme. To capture the essential
features of this variant, we study the simple scheme denoted by FFSwhere afixed fraction of suppliers is added to
the system constantly. That is, we assume S= aN or, equivalently, Δ Δ=S a N . The advantage of this setting is
that it is not necessary to consider the relatively complicated situation of overloading under limited edge
capacity. In this approach, Lmax is effectively ameasure of the systemperformance, andwe focus on how Lmax is
affected by the value of the expansion rate ΔN . A useful indicator is the available optimization region for
suppliers. The solutionwill be somewhat trivial if the locations of all suppliers can be optimized over thewhole
systemwithoutmemory at any time—SGO scheme.However, this is over simplified because, in a real situation,
the cost to add a new supplier (e.g., a hospital, afire house or a school) in an already established region (e.g., an
old urban district) can often bemuch higher than that to have the supplier in a newly developed region.
Motivated by this consideration, we propose two realistic optimization schemes inwhich the new ΔS suppliers
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at each time step are located in regions of (a) all sites except those already occupied by the elder suppliers
(evolving global optimization) (EGO) and (b) the ΔN newly added sites (evolving local optimization) (ELO).

We carry out a comparative analysis of the results fromEGO, ELO, and SGO schemes under system
expansion. Figure 8 shows Lmax for expansion rate Δ =N 100, 200, or 500, where the system evolves from a
small initial sizeN0 to a larger sizeN=3000. The number of suppliers isfixed at =S N0.1 (a=0.1).We see that
the ELO scheme (filled symbols) generally leads to higher values of Lmax, implying lower efficiency as compared
with the EGO cases (open symbols). In fact, expansion of the system generally changes the global supply-
demand configuration. It cannot function optimally for the present systemby simply combining the elder
suppliers distributionwhichwas optimized tofit within the original system and the new suppliers distribution
whichwas optimized separately in the new region.However, under the EGO scheme, the locations of the new
suppliers are optimized in thewhole system, leading tomuch smaller values of Lmax so as to have a betterfit with
the new configuration. That is, the larger optimization region for new suppliers associatedwith EGO can yield
higher efficiency for the supply-demand process.We also see that, for both ELO and EGO, the systemswith
larger expansion rate performbetter than thosewith smaller rate, which can also be attributed to the larger
optimization region for new suppliers. The size of the optimization region for ΔS new suppliers is

Δ− +N t S t N( ) ( ) for the EGOcase, and ΔN for the ELO case, both increasing with the expansion rate ΔN .
In comparison to the two evolving optimization schemes, EGO andELOwhere the locations of the elder

suppliers are constrained due to the prior system evolution, the SGO scheme requires the smallest number of
suppliers, as shown infigure 8 (the solid curve). The locations of suppliers in both EGOandELO can satisfy the
demands of the systembut only temporarily and partially. A disadvantage of SGO in spite of its higher efficiency,
lies in cost because the elder sites occupied previously by demanders or suppliers need to be reestablished.

The scale free topologywe assume for the supply-demand systemhas a heterogeneous degree distribution.
Based on extensive simulations, wefind that the optimal locations for the suppliers under SGO in static systems
tend to favor the hub nodes. Even for ELO and EGO, new suppliers have a preference to large degree sites.
Figures 9(a) and (b) show the average degrees of suppliers fromEGOandELO, respectively, for Δ =N 500 and
Δ =S 5. As the system expands continuously, with each new generation having 495 demanders and 5 suppliers,
the average degree 〈 〉ks of suppliers in each generation (labeled as g1–g6with open symbols, respectively)

exhibits a power-law scalingwithN as 〈 〉 ∼k Ns
1 2, which can be attributed to the degree preferential

attachment process [40]. In particular, in the continuum limit the degree of the ith site added to the system at ti
increases as
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for which the solution is = βk t m t t( ) ( )i i with β = 1 2 and t corresponding to the number of sitesN. This leads
to the observed scaling relation 〈 〉 ∼k Ns

1 2. However, the average degree over all the existing suppliers for EGO,
ELO (blackfilled squares), and SGO (red filled circles) exhibits a somewhat different behavior. Especially,
suppliers fromEGOhave the same rising trend but a smaller average degree with respect to SGO. The average
degree associatedwith ELO still exhibits a power-law decay behavior, since the new suppliers are constrained
within the newly generated small-degree sites.

5. Conclusion

Rapid expansion of infrastructure is ubiquitous in themodern time, inwhich various supply-demand processes
take place. Does expansionmake the systemmore fragile or the opposite or,more generally,what is the interplay
between expansion and resilience? In this paper, we systematically investigate the expansion, optimization, and
resilience of supply-demand networks. Firstly, we study the effects of optimization on the locations of suppliers,
and those of enhancement of edge capacity on the resilience of the system via characterization of cascading
failures of demanders triggered by perturbation to links.Wefind that, in general, the optimized systems (with
smaller values of themaximum edge load) aremore robust because the size of cascading failures is typically
smaller. For edges withmedian load, there is a higher probability that a single attack can trigger cascading
failures. Once a cascading process is initiated, its size does not depend on the specific location of the original link
that triggers the process. The pattern of cascading failures also depends strongly upon the capacity of links,
where a smaller capacity can lead tomore rapid andmassive cascading failures of demanders and the disabled
edges are closer to the locations of suppliers on average.We alsofind that the ‘redundant’ edges with zero load
play a paradoxical role, i.e., while they can help reroute the traffic so as to ensure that demanders are connected
to suppliers, they can undesirably increase the failure size of thewhole system. Taking into account various types
of expanding and supply schemes, we study the effect of size expansion on the system efficiency. Under the LDS

11

New J. Phys. 17 (2015) 063029 S PZhang et al



schemewhere suppliers are added one by one into the system in responses to overloading, the required number
of suppliers S scales with the capacity limitC as a power law. For the FFS scheme, both local and global
optimization strategies requiremore suppliers in comparisonwith the result of global optimization in static
systems of the same size. In general, system expansionmakes the present optimal location of suppliers quickly
non-optimal, reducing the system efficiency. If the locations of the suppliers are optimized over a larger region of
available sites, fewer suppliers are required. Extensive simulations show that these results hold for heterogeneous
networks in general.

The supply-demand systemswithheterogeneous structures numerically investigated in this paper can be a
prototypemodel for real world infrastructure systemsunder constant expansion, such as supply chains, logistic
networks [41],flight networks, and the Internet. Our results provide initial insights into the resilience of such
systems, forwhich further efforts are justified due to the importance of the problem. In particular, in the real
world there are supply-demandnetworks that do not possess the scale-free topology, such as urban traffic systems
and power grids. The issues associatedwithweighted nodes anddirected-weighted edges taking into account the
nonhomogeneous capacities and specific function of suppliers and edges are also important, aswell asmultiple
layer or interdependent structureswithmore complicated coupling amongdifferent supply-demand processes.
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