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We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of
paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load
bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied.
Unexceptional coexistence of positive and negative Poisson’s ratio was reported for Miura-ori pattern,
which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern.
Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique
way of folding. This work paves the way to the study of intriguing properties of origami structures as
mechanical metamaterials.

M
echanical metamaterials, the man-made materials with mechanical properties mainly defined by their
structures instead of the properties of each component, recently have attracted great attention1–4.
Origami, creating three-dimensional (3D) structures from two-dimensional (2D) sheets through a

process of folding along creases, provides an interesting source for designing mechanical metamaterials and
has been transformed by mathematicians, scientists, and engineers to utilize the folded objects’ deformability and
compactness in applications ranging from space exploration (e.g., a foldable telescope lens5), to automotive safety
(e.g., airbags6), biomedical devices (e.g., heart stent7), and extremely foldable and stretchable electronics8,9.
Notable progress has been made in the area of origami theory including tree theory10 and its corresponding
computer program11, folding along creases12–14, and geometric mechanics of a periodic origami pattern15. Among
classes of origami patterns, a particular one, namely rigid origami, in which the faces between the creases remain
rigid during folding/unfolding and only the creases deform, is different from most origami patterns that require
faces bending or partial crumpling to make many-step folds. Idealized rigid origami possesses one of the most
obvious advantages of origami in terms of deformation, i.e., the deformation is completely realized by the folding/
unfolding at the creases and does not involve any deformation at the rigid faces4. The geometric characteristics,
such as the necessary condition around a single vertex for rigid origami16,17 have been studied, and a computer
simulator for rigid origami18 exists. There have also been made limited efforts to study the structural character-
istics of one particular rigid origami, namely Miura-ori19, as a mechanical metamaterial, with the main focus on
the negative Poisson’s ratio15,20, though these properties can be more rigorously examined. It is noticed that the
existing studies are mainly focused on periodic origami patterns (e.g., Miura-ori); however, non-periodic origami
patterns as mechanical metamaterials have not gained attention yet, partially due to the difficulties in theoretical
analysis and modeling. To span a much wider spectrum of using rigid origami as mechanical metamaterials, we
report a systematic study of two rigid origami folding patterns, not only the periodic Miura-ori but also a non-
periodic Ron Resch folding21 using combined analytical and numerical approaches. Specifically, we rigorously
address the commonly mistaken in-plane Poisson’s ratio of Miura-ori, which was believed to be always negative
but we show here that it can be positive as well, and its physical interpretation. The ubiquitous non-local
interactions between vertices of rigid origami patterns are captured through a non-local finite element approach
and the compressive buckling resistance of a Ron Resch tube is studied, which inspires a theoretical and
experimental study of the load bearing capability of the Ron Resch pattern. The result witnesses the superb load
bearing capability of this Ron Resch pattern. Based on the approaches in this paper, mechanical properties of
different rigid origami patterns, both periodic and non-periodic ones, can be readily studied.

Results
Unit cell and the whole pattern of a Miura-ori. Figure 1a illustrates a Miura-ori (n1, n2) in its folded state,
containing n1 (511) vertices in x1 direction and n2 (511) vertices in x2 direction, with x3 as the out-of-plane

OPEN

SUBJECT AREAS:
THEORY AND

COMPUTATION

MECHANICAL ENGINEERING

Received
19 May 2014

Accepted
14 July 2014

Published
7 August 2014

Correspondence and
requests for materials

should be addressed to
H.J. (hanqing.jiang@

asu.edu)

SCIENTIFIC REPORTS | 4 : 5979 | DOI: 10.1038/srep05979 1



direction. Its corresponding planar state is shown in Fig. 1b. The
geometry of a Miura-ori is defined by many identical rigid
parallelogram faces (with four gray ones highlighted in Fig. 1b)
linked by edges that can be folded into ‘‘mountain’’ and ‘‘valley’’
creases. The Miura-ori is a periodic structure and its unit cell is
shown in Fig. 1c, where the four parallelograms are identical with
the short sides of length a, the long sides of length b, and the acute
angle bg[0u,90u]. Since the necessary condition for rigid origami16,17

states that there are n 2 3 degrees of freedom, where n is the number
of edges at one vertex, Miura-ori with n 5 4 has only one degree of
freedom. Therefore, if the shape of a parallelogram face is prescribed,
i.e. b, a and b are given, one parameter wg[0u,2b], the projection
angle between two ridges, can be used to characterize the folding of
the unit cell of Miura-ori, with w 5 2b for the planar state and w 5 0u
for the completely collapsed state. The size of the unit cell is l 5

2bsin(w/2), w~2a
cos b

cos w=2ð Þ , and h~
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 b{ sin2 w=2ð Þ

p
cos w=2ð Þ , in x1,

x2, and x3 directions, respectively. It is noted that the length of the
‘‘tail’’ bcos(w/2) is not considered in the unit cell15. The periodicity of
this pattern only requires two dihedral angles a1g[0u,180u] and
a2g[0u,180u] to characterize the geometry (Fig. 1c), which are
given by

a1~cos{1 1{2
sin2 w=2ð Þ

sin2 b

� �
,

a2~cos{1 1{2 cot2 b tan2 w=2ð Þ
� � ð1Þ

and equal 180u for the planar state and 0u for the completely
collapsed state. When the whole structure of a Miura-ori is put in
an imaginary box with the dashed lines as the boundaries (Fig. 1a),
the dimension of the whole Miura-ori is then given by

L~ n1{1ð Þb sin w=2ð Þ,

W~ n2{1ð Þa cos b

cos w=2ð Þzb cos w=2ð Þ;

H~
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 b{ sin2 w=2ð Þ

p
cos w=2ð Þ

ð2Þ

and thus the imaginary volume occupied by this Miura-ori is given by

V~L|H|W: ð3Þ

Apparently even the Miura-ori is periodic, its size in x2 direction
(i.e. W) is not proportional to its counterpart for the unit cell, w, due
to the existence of the ‘‘tail’’ with length bcos(w/2). Consequently, it is
not accurate to use the unit cell to study the size change of a whole
Miura-ori (e.g., Poisson’s ratio), particularly for smaller patterns
(e.g., used in15,20).

In-plane Poisson’s ratio of Miura-ori. In-plane Poisson’s ratio of
Miura-ori is believed to be negative from intuitive observations and
as testified by some theoretical studies using the unit cell (Fig. 1c)15,20.
An accurate mean to define the Poisson’s ratio is to use the size of a

Figure 1 | Illustrations of Miura-ori. (a) A Miura-ori (n1, n2) in its folded state with n1 vertices in x1 direction, n2 vertices in x2 direction. x3 is the

out-of-plane direction. Specifically for this illustration, n1 5 11, n2 5 11, b 5 45u and a=b~1=
ffiffiffi
2
p

. (b) A Miura-ori in its planar state, corresponding to

(a). The solid lines represent ‘‘mountain’’ creases that remain on the top after folding. The dashed lines represent ‘‘valley’’ creases that remain on the

bottom after folding. (c) A unit cell of a Miura-ori. a1,a2 are two dihedral angles. In each parallelogram, the length of the short side is a and that of the long

side is b, with the acute angle of b. The projected angle between the two ridges is w. The size of the unit cell is l, w, and h, in x1, x2, and x3 directions,

respectively. (d) A non-local element for Miura-ori that focuses on the central vertex.
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whole Miura-ori, instead of using the unit cell. Specifically, the in-

plane Poisson’s ratio n12 is defined as n12~{
e11

e22

����
e22?0

, where

e11~
dL
L

and e22~
dW
W

are the infinitesimal strains in x1- and x2-

directions, respectively. Using equation (2), the in-plane Poisson’s
ratio n12 is obtained as

n12~{ cot2 w=2ð Þ n2{1ð Þg cos bz cos2 w=2ð Þ
n2{1ð Þg cos b{ cos2 w=2ð Þ , ð4Þ

where g 5 a/b. Another in-plane Poisson’s ratio n21 is just the
reciprocal of n12. Figure 2a shows the contour of n12 as a function
of angle w and a combination parameter (n2 2 1)gcosb. Clearly, n12

can be negative or positive, which is different from commonly

observed negative in-plane Poisson’s ratio. The boundary
separating the negative and positive regimes of n12 is defined by
vanishing the denominator of n12, i.e., (n2 2 1)gcosb 5 cos2(w/2).
At this boundary, n12 flips between positive and negative infinities;
thus n12g[2‘,1‘]. For one scenario, where n2 5 5 (small pattern),
g 5 1/2, b 5 78.5u, and thus (n2 2 1)gcosb , 1, n12 is positive for
wg[0,101.5u] and changes to negative for wg[101.5u,2b]. For
another scenario, n2 5 13 (large pattern), g~1=

ffiffiffi
2
p

, b 5 45u, and
thus (n2 2 1)gcosb . 1, n12 stays negative, as reported by others
using the unit cell15,20; and the Miura-ori becomes an auxetic
material. Similar analysis can be applied on the out-of-plane
Poisson’s ratios. Details can be found in the Supplementary
Information, Section ‘‘Out-of-plane Poisson’s Ratio’’.

Figure 2b provides an intuitive explanation of the sign change in
the in-plane Poisson’s ratio n12. For the specific example with n1 5 n2

5 5, g 5 1/2 and b 5 78.5u, the size of this Miura pattern in x1

direction, L, decreases monotonically from the planar state to the
collapsed state, which is pictorially shown in the three insets for w 5

157u(52b), w 5 140u, and w 5 20u with L1 . L2 . L3. In contrast to
L, the respective size of this pattern in the x2 direction, W, does not
change monotonically with the angle w. From the planar state to the
collapsed state, W1 . W2 but W2 , W3, which gives n12 , 0 when L
and W change in the same direction and n12 . 0 when L and W
change in the opposite direction. The non-monotonic change of W is
due to the ‘‘tail’’ term bcos(w/2) in equation (2), which was missed in
previous studies15,20. As shown in the Supplementary Information,
Section ‘‘Change of Length W’’ for more details, the two terms in W
(equation (2)) dominate at different stage of folding.

In addition to the negative and positive in-plane Poisson’s ratio of
the Miura-ori, the ranges of Poisson’s ratios, specifically,
n12g[2‘,1‘], n13g[0,‘], n23g[2‘,‘] (see Supplementary
Information, Section ‘‘Out-of-plane Poisson’s Ratio’’) are also fas-
cinating if the range of Poisson’s ratio for common materials is
considered as the reference, i.e., ng[21,0.5]. Now we interpret these
fascinating phenomena in terms of shear and bulk modulus of
Miura-ori.

Miura-ori subjected to shear and hydrostatic deformation. To
study the shear deformation that is non-uniform across the Miura-
ori, we developed a numerical approach to characterize the geometric
features of the Miura-ori, i.e., the non-local interactions between
rigid faces. As shown in Fig. 1b, the vertex marked by the solid
blue dot not only interacts with its nearest-neighboring vertices
(marked by the solid red dots) through the rigid faces, but also its
second-neighboring vertices (marked by the solid green dots)
through dihedral angles. Thus the interactions between vertices are
non-local. This non-local nature is ubiquitous in rigid origami and
can be more complicated for other patterns, which can be further
illustrated by the Ron Resch pattern21, detailed in the Supplementary
Information, Section ‘‘Non-local Interactions in the Ron Resch
Pattern’’ (e.g., Supplementary Fig. S3). We developed a non-local
finite element based model and Fig. 1d shows the non-local
element for Miura-ori. Details can be found in Methods.

Supplementary Figure S4 shows a deformed state of a (n1 5 13, n2

5 13) Miura-ori subjected to a finite shear force in the negative x1

direction. Here it is noticed that an initially periodic Miura-ori
deforms non-uniformly under shear loading, which disables the def-
inition of a shear modulus. It is seen that the Miura-ori responds in
an opposite way to shear force. Specifically and clearly, the vertical
lines tilt to the positive x1 direction, as the shear force is applied along
the negative x1 direction. This opposite relationship is thus consistent
with n12g[2‘,1‘].

The bulk modulus K of Miura-ori can be defined the same way as
that in continuum mechanics to link the hydrostatic pressure p and
the volumetric strain h(5e11 1 e22 1 e33),

Figure 2 | Poisson’s ratios of Miura-ori. (a) Contour plot of in-plane

Poisson’s ratio n12 as a function of w and the combined parameter

(n2 2 1)gcosb. (b) Explanation of negative and positive in-plane

Poisson’s ratio n12.
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1
K

~
h

p

����
p~0

, ð5Þ

Using the principle of superposition (details given in the Supple-
mentary Information, Section ‘‘Bulk Modulus of Miura-ori’’), the
bulk modulus K is given by

1
K

~
1{n21{n31

E11
z

1{n12{n32

E22
z

1{n13{n23

E33
, ð6Þ

where E11~
ds11

de11

����
de11~0

, E22~
ds22

de22

����
de22~0

, E33~
ds33

de33

����
de33~0

are the

tangential moduli of the stress-strain curve. Using the work conjug-

ate relation, stresses are expressed as s11~
LWtot

Le11
, s22~

LWtot

Le22
,

s33~
LWtot

Le33
, where Wtot 5 Utot/V is the elastic energy density with

Utot given by Supplementary Eq. S2 and V given by equation (3). As
shown in the Supplementary Information, Section ‘‘Range of Tensile
and Bulk Modulus’’ for details, the tensile (E11, E22, E33) and bulk
moduli (K) have a wide range of variation and some of them vary
from 0 to infinity, such as K.

Ron Resch pattern and its buckling resistance. Next we study a
non-periodic rigid origami folding, namely a Ron Resch pattern,
using the developed non-local finite element approach. The Ron
Resch pattern and its non-local elements are given in
Supplementary Fig. S3. To illustrate the non-periodicity, several
Ron Resch patterns (specifically, a Ron Resch dome, a tube and a
stingray) have been studied and the histograms of the three dihedral
angles b1, b2, and b3 are shown in Supplementary Fig. S5. It is
obvious that the Ron Resch pattern is non-periodic and the
importance of a universal numerical platform to study this type of
rigid origami is thus apparent. We first study the buckling resistance
of a Ron Resch tube (Fig. 3a). A Ron Resch tube in its folded state
contains many equilateral triangles. As shown in the zoom-in details
in Fig. 3a, the dihedral angles b1g[0u,90u] and b1g[90u,180u].
Because of the folded state, the centroids of these equilateral
triangles form spikes pointing to the central axis of the Ron Resch
tube as shown in the top view of Fig. 3a. The boundary condition for
the axial compressive buckling is that one end of the tube is fixed and
the other is subjected to a compressive force, which is the same as the
Euler buckling. Figure 3b shows the compressive force normalized by
kRR/b varies as the compressive strain increases, and the insets show
some characteristic snapshots at the compressive strains of 13%, 30%
and 45% from left to right, respectively. Here kRR is the spring
constant of the hinges for dihedral angles (detailed in the
Supplementary Information, Section ‘‘Work Conjugate Relation –
Stress and Moduli for Miura-ori’’), and b is the size of the right
triangles (Supplementary Fig. S3). It is interesting to find that
buckling does not occur, which can be explained by the negative
Poisson’s ratio. Upon compression, the two dihedral angles b1 and
b2 decrease, which lead to the further pushing the spikes towards the
central axis of the tube. Thus the compression leads to a shorter tube
with smaller radius due to the negative Poisson’s ratio (the leftmost
inset of Fig. 3b). Further compression leads to an even smaller tube
radius (the middle inset of Fig. 3b). Eventually, the equilateral
triangles form completely folded states, which is captured by b1 5

0u, b2 5 120u and results in a much smaller tube radius (the
rightmost inset of Fig. 3b). At the completely folded state, the tube
cannot be further compressed because of the rigidity. Thus, axial
compressive force does not lead to the buckling of a Ron Resch tube.

Load bearing capability of a Ron Resch plate. This intriguing
buckling resistance phenomenon motivates a further study of the

load bearing capability of the Ron Resch pattern. The compressive
load applied on top of a Ron Resch dome leads to a completely
compact and flat state (namely, a Ron Resch plate), where the
equilateral triangles collapse to three-fold structures with b1 5 0u,
b2 5 120u, and b3 5 90u (Fig. 3c). Figure 3d shows the striking load
bearing capability of a Ron Resch dome folded from a single sheet of
20-lb copy paper: a 32.4 lb load is carried by a Ron Resch plate with
actual mass 4.54 g. This remarkable capability is mainly a result of
the folded structure, not the material properties of the paper, which
suggests that origami can produce exceptional mechanical
metamaterials. Figure 3e shows snapshots of the bottom of Ron
Resch plate when 3-lb load (left panel) and 32.4-lb load are applied
(right panel). It is found that at the failure point (where the 32.4-lb
load is applied), the tips of the three-fold structures are flattened and
instability occurs. To compare the load bearing capability of a Ron
Resch plate with three-fold supporting structures and commonly
seen six-fold ones that are used in airplane wings, the buckling
analysis is conducted to compute their critical compressive loads
Pcr by using finite element package ABAQUS (details are given in
the Supplementary Information, Section ‘‘Buckling Analysis of a Ron
Resch Plate and a Six-Fold Supporting Structure’’). Figures 3f and 3g
show the first buckling modes for the Ron Resch plate and the six-
fold structure. By assigning the same geometric parameters
(including thickness and height of the support) and material
properties (including elastic modulus and Poisson’s ratio), Pcr of
the Ron Resch plate is about 50% larger than that of the six-fold
structure. Though the six-fold structure has higher symmetry to
increase Pcr in a linear fashion (i.e., Pcr , order of symmetry), the
decreasing height of the support for the Ron Resch plate from the
center to the surroundings increases Pcr in a quadratic fashion (i.e.,
Pcr , 1/height2), which endows a higher load bearing capability of the
Ron Resch plate. This result suggests that generalized Ron Resch
patterns with higher order symmetry22 would have even greater
load bearing capability.

Discussion
This paper paves the ways towards the study of interesting and
unique geometric and mechanical properties of origami structures
as mechanical metamaterials. It is expected that through a combina-
tion of this approach and multiphysics simulations (e.g., COMOSL
Multiphysics), more interesting properties can be explored. For
example, the negative response between shear force and deforma-
tion, and infinite tensile and bulk modulus may lead to some unique
sound and vibration behaviors. When integrated with functional
materials on origami patterns with micrometer feature sizes (e.g.,
the size of its rigid faces), such as nanowires and two-dimensional
materials, the foldability of the origami pattern would provide
unique tunable metamateirals with intriguing optical, electrical and
magnetic properties, which is in fact under pursue. When combined
with applications, the analysis of origami as mechanical metamater-
ials can help to guide the development of origami based devices8,9. As
all of these properties and applications are rooted from the way of
folding, origami also provides a unique and powerful way on man-
ufacturing. For example, plywood with unusually strong load bearing
capability at the completed folded state can be manufactured in
large-scale and low-cost by pre-creasing the wood panel based on
the Ron Resch pattern. It is thus believed that origami may provide
many interesting applications in science and engineering.

Methods
Non-local finite element method. Starting from the energy perspective, the elastic
energy stored in a folded state is just the rotational energy at the creases since all the
faces are rigid. If the creases are considered as elastic hinges, the elastic energy takes
the quadratic term of the dihedral angels between creases. For the Miura-ori, the
elastic energy can be written as

www.nature.com/scientificreports
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Figure 3 | Load bearing of Ron Resch patterns. (a) A Ron Resch tube subjected to an axial compressive load, where the top view is given for the cross-

section before the load is applied. (b) Normalized axial compressive force as a function of axial strain. Three representative states are shown as the insets at

different strain levels. Their cross-sections and zoom-ins are also shown. Same scales are used in (a) and (b). (c) Illustration of a Ron Resch dome deforms

to a completely collapsed state upon compressive load from the top, where the three-fold supporting structure is shown in the inset. (d) Photographic

image showing the load bearing capability of a Ron Resch pattern at its completely collapsed state. (e) Photographic images showing the three-fold

structures before (left panel) and after (right panel) the failure point is reached. The inset shows the instability. (f) Finite element simulation showing the

first buckling mode of a Ron Resch plate with a three-fold supporting structure. (g) Finite element simulation showing the first buckling mode of a six-

fold supporting structure.
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Utotal~
X

a1

1
2

kMo
1 a1{a1,eq
� 	2

z
X

a2

1
2

kMo
2 a2{a2,eq
� 	2

, ð7Þ

where kMo
1 and kMo

2 are the spring constants of the hinges for dihedral angles a1 and a2

for Miura-ori (superscript ‘‘Mo’’), respectively; a1,eq and a2,eq are the corresponding
dihedral angles for a1 and a2 at the undeformed state (or equivalently, just folded
state); the summation runs over all dihedral angles. Similarly, the elastic energy can be
readily constructed for the Ron Resch pattern,

Utotal~
X

b1

1
2

kRR
1 b1{b1,eq


 �2
z
X

b2

1
2

kRR
2 b2{b2,eq


 �2

z
X

b3

1
2

kRR
3 b3{b3,eq


 �2
,

ð8Þ

where the superscript ‘‘RR’’ denotes the Ron Resch pattern and the subscripts have a
similar meaning as explained for the Miura-ori. It is reasonable to take
kMo

1 ~kMo
2 ~kMo , and kRR

1 ~kRR
2 ~kRR

3 ~kRR , for paper folding (although in most
machine-made papers, the fibers tend to run in one direction and so the hinge
constants for edges running in different directions will be different).

Because the dihedral angles are completely determined by the coordinates of
vertices in rigid origami, the elastic energy can also be expressed as a function of
coordinates of vertices, i.e., Utotal 5 Utotal(x), where x~ x1,x2, � � � ,xNð ÞT and xi is the
position of a vertex i, and N is the total number of the vertices. When the external load
�Fi is applied at vertex i, the total potential energy is Ptotal xð Þ~Utotal{

X
i

�Fi
:xi . The

equilibrium state of a rigid origami corresponds to a state of minimum energy and can
be given by

LPtotal

Lx
~0, ð9Þ

which needs to be solved to reach the equilibrium state of a rigid origami. There are
many approaches that can be utilized to solve Supplementary Eq. S3, such as the
conjugate gradient method and steepest descent method that just use the first deri-
vatives of Ptotal, or the finite element method that uses both the first derivative (as the

non-equilibrium force P~{
LPtotal

Lx
) and the second derivatives (as the stiffness

matrix K~
L2Ptotal

LxLx
) of Ptotal. The governing equation for the finite element method

is

K:u~P, ð10Þ

where u 5 x 2 x(0) is the displacement of the vertices with x(0) as the initial position of
the vertices. For nonlinear systems, equation (10) is solved iteratively until the
equilibrium characterized by the vanishing non-equilibrium force P 5 0. For discrete
vertices in rigid origami that has a great deal of similarity with atomic systems, the
finite element method has been extended to capture the non-local interactions23,24.

There are two aspects to consider when the finite element method is used. Firstly, to
calculate the non-equilibrium force P and stiffness matrix K, the elastic energy Utotal

needs to be explicitly written as a function of vertex coordinates, which is detailed in
the Supplementary Information, Section ‘‘Nonlinearity of the Elastic Energy with
respect to the Coordinates of Vertices’’. Therefore, iteration is needed. Secondly, non-
local elements are required to capture the non-local interactions within a single
element. For example, those nine vertices marked by blue, red and green dots in
Fig. 1d form one non-local element for the Miura-ori, focusing on the central vertex
marked by the blue dot. Similar non-local elements (i.e., all solid circles and open
circles in Supplementary Fig. S3) are constructed for the Ron Resch pattern, as shown
in Supplementary Fig. S3. It may be noticed that the definition of non-local elements
depends on specific rigid origami patterns and in each pattern different elements are
formed for different types of vertices. These non-local elements are implemented in
the commercial finite element package, ABAQUS, via its user defined elements
(UEL).
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Change of Length W 

The length W is given by Eq. (2) of the main text.  Figure 1Sa shows the derivatives of W’s two 

terms, i.e., ( ) ( )2
cos1

cos / 2
n βη

φ φ
 ∂

− 
∂   

 and 
( )cos / 2φ
φ

∂   −
∂

, along with W, as a function of φ, for 

1 2 5n n= = , 1 / 2η =  and 78.5β =  , the same parameters used in Fig. 2b.  It can be seem that these 

two derivatives work against each other with ( ) ( )2
cos1 0

cos / 2
n βη

φ φ
 ∂

− > 
∂   

 to decrease W, while with 

( )cos / 2
0

φ
φ

∂    <
∂

 to increase W, from a planar state to a collapsed state.  Therefore, the one among 

these two derivatives with larger absolute value dominates the change of W.  It is apparent that when one 

folds a Miura-ori from its planar state to a collapsed state, ( ) ( )2
cos1 0

cos / 2
n βη

φ φ
 ∂

− > 
∂   

 dominates 

firstly to decrease W.  Once the stationary point is reached, 
( )cos / 2

0
φ
φ

∂    <
∂

 starts to dominate and 

increase W.  

 

Out-of-plane Poisson’s Ratio 

Using Eq. (2) in the main text, the out-of-plane Poisson’s ratios, related to in-plane strains upon height 

change, are given by 

 

( ) ( )

( ) ( ) ( )
( ) ( )

33

33

2 2 2
11

13 2
33 0

2 2 2
222

23 2 2
33 20

cot 2 sin sin 2
cos

sin sin 2 1 cos cos 2

cos 1 cos cos 2

n

n

ε

ε

φ β φεν
ε β

β φ η β φεν
ε β η β φ

→

→

 − = − =

   − − −   = − =
 − + 

 (S1) 

where 33
dH
H

ε =  is the strain in x3-direction.  Figure S1b shows that ν13 is positive across the entire 

range of φ, due to 0 ,2φ β ∈ 
 , and monotonically decreases from ∞  to 0 as the Miura-ori varies from 
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its completely collapsed state ( 0φ =  ) to the planar state ( 2φ β= ), i.e., [ ]13 0,ν ∈ ∞ .  For an extreme 

case when 90β →   or 0φ →  , 13ν →∞ .  Figure S1c shows ν23 for 2 13n =  and 0.5η = .  It is 

observed that 23ν  can be both negative and positive, separated by a boundary defined by 

( ) ( )2
2 1 cos cos 2n η β φ− =  which is shown as the white dashed line.  Figure S1c also shows that 

[ ]23 ,ν ∈ −∞ ∞ . 

 

Nonlinearity of the Elastic Energy with respect to the Coordinates of Vertices 

Depending on the type of rigid origami and the number of dihedral angles per unit cell, the elastic 

energy can be always expressed by 

 ( )2

,
1

1
2

n

i

T

total i i i eq
i

U k
α

α α
=

= −∑∑ , (S2) 

where ik  are the stiffness constants of the dihedral angles iα  with ,i eqα  as the equilibrium angle, and 

nT  is the number of types of dihedral angles.  To obtain the stiffness matrix K and non-equilibrium 

force P, we need to express totalU  in terms of the coordinates of vertices. 

Considering the case of Miura-ori where nT =2, the two dihedral angles are given as 

 
( )

( )

2
1

1 2

1 2 2
2

sin 2
cos 1 2

sin

cos 1 2cot tan 2

φ
α

β

α β φ

−

−

 
= − 

 
 = − 

, (S3) 

where φ is the projection angle between two ridges. 0 ,90β  ∈ 
   and 0 ,2φ β ∈ 

 .  Using the 

distances between the three vertices 1, 2, 3 (Fig. 1c) that form this angle, φ can be determined by using 

the cosine rule, 

 
2 2 2

1 12 13 23

12 13

cos
2

R R R
R R

φ −  + −
=  

 
, (S4) 
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where ijR  is the distance between vertices i and j.   

By combining Eqs. (S2) to (S4), a relationship between the elastic energy and the coordinates of 

vertices can be obtained.  Clearly, this relationship is nonlinear, i.e., totalU  is nonlinear with respect to 

the coordinates of vertices. 

 

Bulk Modulus of Miura-ori 

The bulk modulus K of Miura-ori can be defined by 

 
0

1

pK p
θ

=

= , (S5) 

where p is the hydrostatic pressure.  Using the principle of superposition, when only ( )11p σ=  is 

applied and 22 33 0σ σ= = , we have ( )21 31 111θ ν ν ε= − − , where 11σ , 22σ 33σ  are normal stresses in 

x1, x2, and x3 directions, respectively.  Using a similar approach for 22σ  and 33σ , the bulk modulus K 

is given by ( ) ( ) ( ) 3311 22
21 31 12 32 13 23

11 22 33

1 1 1 1
K

εε εν ν ν ν ν ν
σ σ σ

= − − + − − + − − , where 11 22 33 pσ σ σ= = = .  

For vanishing nominal stress 11 22 33 0σ σ σ= = → , the tensile moduli are given by 

 
11 22 33

3311 22

11 11 22 22 33 330 0 0

1 1 1, ,
E E Eσ σ σ

εε ε
σ σ σ

= = =

= = = . (S6) 

Thus the bulk modulus K is given by 

 21 31 12 32 13 23

11 22 33

1 1 11
K E E E

ν ν ν ν ν ν− − − − − −
= + + . (S7) 

Here the tensile moduli are the tangential moduli of the stress-strain curve, i.e., 

11 22 33

3311 22
11 22 33

11 22 330 0 0

,  ,  
d d d

dd dE E E
d d dε ε ε

σσ σ
ε ε ε

= = =

= = = . 
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Work Conjugate Relation – Stress and Moduli for Miura-ori 

 The elastic energy density totW  for a (n1, n2) Miura-ori is given by 

 
( )( ) ( ) ( )( ) ( )2 2

1 2 1 1 1, 1 2 2 2 2,
1 12 1 1 2
2 2

Mo Mo
eq eq

tot

n n k n n k
W

V

α α α α− − − + − − −
= , (S8) 

where 

 ( ) ( )
( ) ( ) ( ) ( )2 2 2

1 22

sin 2
1 1 cos cos 2 sin sin 2

cos 2
V n ab n a b

φ
β φ β φ

φ
 = − − + −   (S9) 

is the volume of this (n1, n2) Miura-ori.  The work conjugate relation provides stress by taking 

derivatives of totW  with respect to strains, i.e.,  

 11 22 33
11 22 33

, , .tot tot totW W W
σ σ σ

ε ε ε
∂ ∂ ∂

= = =
∂ ∂ ∂

 (S10) 

Since the Miura-ori is a periodic structure and for a given Miura-ori (i.e., fixed (n1, n2), a, b, and β), the 

deformation can be solely determined by a single parameter φ, these derivatives can be implemented by 

taking derivatives with respect to φ, i.e.,  

 11 22 33
11 22 33

/ / /, , .
/ / /

tot tot totW W Wφ φ φ
σ σ σ

ε φ ε φ ε φ
∂ ∂ ∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂

 (S11) 

The strains are explicitly given by 

 

( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

11

2
2

22 2
2

2

33 2 2

1 2cot 2

tan 2 1 cos cos 2
2 1 cos cos 2

tan 2 cos
2 sin sin 2

dL d
L

n a bdW d
W n a b

dH d
H

ε φ φ

φ β φ
ε φ

β φ

φ β
ε φ

β φ

= =

 − −
= =  

− +  

= = −
 − 

. (S12) 

Thus the stresses are obtained as 



6 
 

 

( )

( ) ( ) ( )
( ) ( )

( ) ( )

11

2
2

22 2
2

2 2

33 2

2 tan / 2

2cot / 2 1 cos cos / 2
1 cos cos / 2

2cot / 2 sin sin / 2

cos

V
n a b

V n a b

φ
σ κ

φ β φ
σ κ

β φ

φ β φ
σ κ

β

=

− +
=

− −

 − = −

, (S13) 

where 

 

( )( ) ( ) ( )
( )

( )( ) ( )
( ) ( )

1 2 1 1 1, 2 2

1 2 2 2 2, 2 2

cos / 2
2 1

sin sin / 2

cos1 2
cos / 2 sin sin / 2

Mo
eq

Mo
eq tot

n n k

dVn n k W
d

φ
κ α α

β φ

βα α
φφ β φ

= − − −
−

+ − − − −
−

. (S14) 

The moduli are given by 

 

11

22

33

11 11
11

11 110 0

22 22
22

22 220 0

33 33
33

33 330 0

/
/

/
/

/
/

d

d

d

d d dE
d d d

d d dE
d d d

d d dE
d d d

ε φ

ε φ

ε φ

σ σ φ
ε ε φ

σ σ φ
ε ε φ

σ σ φ
ε ε φ

= =

= =

= =

= =

= =

= =

. (S15) 

Implementation of Eq. (S15) leads to 

 

( )

( ) ( ) ( )
( ) ( )

( ) ( )

2
11 2

22
22

22 2 2
2

22 2 2

33 2 4

tan 2

1 cos cos 2
cot 2

1 cos cos 2

cot 2 sin sin 2
cos

Mo

Mo

Mo

kE
ab

nkE
ab n

kE
ab

ζ φ
ξ

η β φζ φ
ξ η β φ

φ β φζ
ξ β

=

 − +
=  

− −  

 − =

 (S16) 

where ( )( ) ( ) ( )( )4 2
1 2 1 24 2 1 cos 2 1 2 cosn n n nζ φ β = − − + − −   and

( ) ( ) ( ) ( ) ( ) 3 22 2 2
1 21 sin 2 1 cos cos 2 sin sin 2n nξ φ η β φ β φ   = − − + −    .  Here Mok  is the spring 

constant of the hinges for dihedral angles for Miura-ori. 
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Range of Tensile and Bulk Modulus 

 Given that [ ]1 3,n ∈ ∞ , [ ]2 3,n ∈ ∞ , and 0 ,2φ β ∈ 
 , [ ]11 0,E ∈ ∞  with 0 for the completely 

collapsed state ( 0φ =  ) and ∞  for the planar state ( 2φ β= ), [ ]33 0,E ∈ ∞  with 0 for the planar state 

( 2φ β= ) and ∞  for the completely collapsed state ( 0φ =  ).  E22 varies from a finite positive value 

(depending on n1, n2, and φ) to ∞ at both the planar and completely collapsed states.  Figures S2a-c show 

the tensile moduli 11E , 22E , and 33E  normalized by 2/Mok ab  as a function of φ for a few 

representative n1 and n2, and 1 / 2η = , 45β =  .  Above discussed trends are observed. 

 Now we study the bulk modulus using Eq. (S7).  Since some extreme values (e.g., 0, ∞, and −∞ ) 

present in either tensile moduli or Poisson's ratios, it is interesting to study the extreme values of K.  At 

0φ → , 21 31

11

1
E
ν ν− −

→∞ , 12 32

22

1 0
E
ν ν− −

→ , and 13 23

33

1 0
E
ν ν− −

→ , thus the bulk modulus 0K → .  

At 2φ β→ , 21 31

11

1 0
E
ν ν− −

→ , 12 32

22

1 0
E
ν ν− −

→ , and 13 23

33

1
E
ν ν− −

→∞ , thus the bulk modulus 

0K → .  Another interesting point is at a particular state (φ) for the prescribed n1, n2 and β, the right 

hand of Eq. (S7) vanishes, which provides an infinity bulk modulus.  The vanishing of the right hand of 

Eq. (S7) is determined by the numerators, specifically 21 311 ν ν− − , 12 321 ν ν− − , and 13 231 ν ν− − , and 

again the condition of vanishing these three terms is given by their numerators.  Based on Eq. (4) in the 

main text and Eq. (S1), the numerators of 21 311 ν ν− − , 12 321 ν ν− − , and 13 231 ν ν− −  happen to be 

identical,  

 
( ) ( )( )

( ) ( )( ) ( )

6 4 2

2 3 3
2 2

2cos 2 cos 2 1 cos

1 cos 2 cos cos 2 1 cosn n

φ φ β

η φ β β η β

− +

+ − + − −
. (S17) 

The vanishing of the expression (S17) provides a particular state of folding characterized by the angle φ 

and dependent on n2 to reach an infinity bulk modulus.  Figure S2d shows the bulk modulus K 
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normalized by 2/Mok ab  as a function of φ for a few representative n1 and n2, and 1 / 2η = , 45β =  , 

where the signature of changing from 0 to ∞ and then 0 is represented. 

 

Non-local Interactions in the Ron Resch Pattern 

Figure S3a shows the planar state of a Ron Resch pattern, which features some equilateral triangles 

connected by some right triangles.  The insets of Fig. S3a show two different folded states of Ron Resch 

patterns with the upper left one for a dome shape and the upper right one for a completely collapsed state 

or namely, a Ron Resch plate.  Three dihedral angles, 1β , 2β , and 3β  are required to describe this 

rigid origami folding (Fig. S3b).  When 1 2 3 180β β β= = =  , i.e., all triangles are in the same plane, it 

represents a planar state (e.g., Fig. S3a).  When 1 0 ,180β  ∈ 
  , 2 0 ,180β  ∈ 

  , and 3 0 ,180β  ∈ 
  , it 

corresponds to a curved state, illustrated by the upper left inset of Fig. S3a as an example.  When 

1 0β =  , 2 120β =  , 3 90β =  , it describes another planar but more compact state (illustrated by the upper 

right inset of Fig. S3a), by the name of a Ron Resch plate.  It is noticed that there are two types of 

vertices in a Ron Resch pattern, specifically, the centroids of the equilateral triangles (e.g., the vertex 

marked by a solid blue dot in Fig. S3a) and vertices between the right and equilateral triangles (e.g., the 

vertex marked by an open blue dot in Fig. S3a).  The non-local feature can be similarly observed from 

these two vertices.  For example for the solid blue vertex, it is seen that its motion influences its 

nearest-neighbor vertices (i.e., the ones marked by solid red dots) through dihedral angles 1β  and 2β , 

and its second-neighbor vertices (i.e., the ones marked by solid green dots) through dihedral angles 3β . 

 

Buckling Analysis of a Ron Resch Plate and a Six-Fold Supporting Structure 

These two structures are all periodic so that only the unit cells are utilized to conduct the buckling 

analysis.  Figure S6 shows the unit cell of these two structures.  Same thickness, height of supporting, 

elastic modulus and Poisson’s ratio are assigned to the two models.  The finite element package 
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ABAQUS is used, where the eigenvalues of the different modes can be calculated by using the built-in 

buckling module.  Critical load then can be obtained by using 

 
th thi i

crP Pλ=   (S18) 

where 
thi

crP  is the critical load for the ith mode, P  is the infinitesimal load applied in the simulation, 

thiλ  is the ith eigenvalue.  For the Ron Resch plate, 284,258 R3 (3-node triangular shell) elements are 

used, with the fixed displacement boundary conditions along the in-plane directions of the plate and the 

spike.  Contact at the spike between the ground plane and the Ron Resch plate is considered.  A very 

small concentrated load is applied at the centroid of the plate.  For the six-fold supporting structure, 

249,268 S4 (4-node doubly curved shell) elements are used.  Same boundary conditions and loads are 

applied.  The cross-sectional properties and material properties of these two structures are the same.  

Here only the first buckling mode is concerned.  The buckling analysis shows that the critical load for 

the Ron Resch plate is 57% higher than that for the six-fold supporting structure.  
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S1. Geometry characteristics of Miura-ori. (a) Change of size W. Here the 

change rate of W’s two terms with respective to φ is also shown. (b) Contour plot of out-of-plane 

Poisson's ratio ν13 as a function of φ and β.  (c) Contour plot of out-of-plane Poisson's ratio ν23 as a 

function of φ and β.   

 

(a) 

(b) (c) 
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Supplementary Figure S2. Tensile and bulk moduli for the Miura-ori.  (a) Tensile modulus E11 as a 

function of φ for (3,3) and (13,13) Miura-ori.  (b) Tensile modulus E22 as a function of φ for (3,3) and 

(13,13) Miura-ori.  (c) Tensile modulus E33 as a function of φ for (3,3) and (13,13) Miura-ori.  (d) Bulk 

modulus K as a function of φ for (3,3) and (13,13) Miura-oris.  Here 1 / 2η = , 45β =   and all 

moduli are normalized by 2/Mok ab . 

 

(a) (b) 

(c) (d) 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3. Ron Resch pattern.  (a) The planar state of a Ron Resch pattern, where the 

solid lines are for “mountain” creases and the dashed lines are for “valley” creases.  Insets are two 

different folded states.  On the upper left is a dome shape and the upper right is a completely collapsed 

state.  (b) Three dihedral angles β1, β2, and β3 are needed to describe a Ron Resch pattern.  (c) One type 

of non-local element for the Ron Resch pattern with the centroid of the equilateral triangle as the central 

vertex.  (d) Another type of non-local element for the Ron Resch pattern with the intersections between 

pleated triangles as the central vertex. 

 

(a) (b) 

(c) (d) 
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Supplementary Figure S4. Shear deformation of a Miura-ori.  Deformation of a (13,13) Miura-ori 

under shear loading along the negative x1 direction.  It is observed that the opposite relationship between 

shear loading and shear deformation.  
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Supplementary Figure S5. Histograms of the three dihedral angles (a) 1β , (b) 2β , and (c) 3β  for 

three Ron Resch patterns, namely a Ron Resch dome, a tube and a stingray. 

 

(a) 

(b) 

(c) 
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Supplementary Figure S6. Unit cell for buckling analysis. (a) Completed collapsed Ron Resch plate. 

(b) Six-fold supporting structure.  

 

(a) 

(b) 
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