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Abstract 1 

Land surface energy balance in a built environment is widely modelled using urban 2 

canopy models with representation of building arrays as a big street canyon. Modification 3 

of this simplified geometric representation, on the other hand, leads to challenging 4 

numerical difficulties in improving physical parameterization schemes that are 5 

deterministic in nature. In this paper, we develop a stochastic algorithm to estimate view 6 

factors between canyon facets in the presence of shade trees based on Monte Carlo 7 

simulation, where an analytical formulation is inhibited by the complex geometry. The 8 

model is validated against analytical solutions of benchmark radiative problems as well as 9 

field measurements in real street canyons. In conjunction with the matrix method resolving 10 

infinite number of reflections, the proposed model is capable of predicting the radiative 11 

exchange inside the street canyon with good accuracy. Modeling of transient evolution of 12 

thermal filed inside the street canyon using the proposed method demonstrate the potential 13 

of shade trees in mitigating canyon surface temperatures as well as saving of building 14 

energy use. This new numerical framework also deepens our insight into the fundamental 15 

physics of radiative heat transfer and surface energy balance for urban climate modeling.  16 

 17 
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1.   Introduction 21 

Today, urban areas are home to more than half of the world’s population, with a 22 

projected urban population of 6.3 billion (68% total global population) in 2050 (United 23 

Nations, 2012). Complex landscape characteristics presented in a built environment has led 24 

to significant modification of surface partitioning of solar energy. Urban areas therefore 25 

have higher environmental temperatures than their rural surroundings, a well-known 26 

phenomenon as the “urban heat island” (UHI) (Oke, 1982; Taha, 1997; Arnfield, 2003). As 27 

a consequence, urban climate, as largely dictated by functions of manmade infrastructure 28 

and human stressors, has paramount effect on energy consumption in cities (Santamouris et 29 

al., 2001; Kikegawa et al., 2003). The past decade has seen increasing effort in reducing 30 

the impact of UHI on energy use with various mitigation strategies such as the use of cool 31 

pavements, green roofs, and shade trees (Akbari et al., 2001; Ouldboukhitine et al., 2014; 32 

Santamouris, 2014). Understanding the fundamental physics governing the working 33 

mechanisms of these strategies, especially on how they change the surface energy balance 34 

in urban canopies, is becoming increasingly pressing to researchers.  35 

In addition to thermal and optical properties of pavement materials (Sailor et al., 36 

2006; Synnefa et al., 2007), urban morphology plays a critical role in dictating UHI 37 

intensity and has a significant impact on building energy consumption (Wong et al., 2011). 38 

In particular, the geometry and density of building arrays are important contributors to the 39 

surface energy balance of built environments through radiative trapping and shading 40 

effects (Harman et al., 2004; Wang et al., 2011b). Radiosity algorithms have been 41 

developed to predict surface irradiance and interior illumination in urban environments 42 

(Robinson and Stone, 2005; 2006). Contributions of radiance from discretized patches, 43 
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partially obscured by the canyon geometry and presence of obstructions, are predicted 44 

using ray-tracing methods, and the associated view factors can be estimated. Radiosity 45 

methods exhibit good accuracy in predicting radiative transfer at building-revolving scales 46 

(with spatial resolutions < 10 km), as compared to other radiation models (Robinson and 47 

Stone, 2004).  48 

This study, on the other hand, focuses on the development of a radiative transfer 49 

model in urban canopies that will later be incorporated into numerical weather predictions 50 

of urban areas at city scales (with spatial resolutions ~10 – 100 km). At these large scales, 51 

numerical urban land surface models do not resolve detailed building and street canyon 52 

geometries, but rather resort to simplified representations. Currently, two broad types of 53 

representations of a “generic” urban area are adopted, viz. as a two dimensional (2D) street 54 

canyon (Nunez and Oke, 1976), or a three dimensional (3D) rectangular block (Aoyagi and 55 

Takahash, 2012). With these simplified geometric representations, building arrays are 56 

usually resolved by normalized roof, wall and road dimensions for 2D canyons (Kusaka et 57 

al., 2001), or by roof and frontal areas for 3D blocks (Grimmond and Oke, 1999). 58 

Currently, most urban surface energy models are based on the 2D street canyon 59 

representation of urban areas, e.g. the urban canopy models (UCM) adopted in the widely-60 

used Weather Research and Forecasting (WRF) platform (Chen et al., 2011).  With this 61 

geometric simplification, radiative heat exchange in urban areas can be analytically 62 

resolved based on the view factors among urban facets (sky, ground, and walls). While the 63 

2D street canyon representation of a built terrain is attractive due to its geometric 64 

simplicity, any incremental modification to the geometry can lead to laborious effort or 65 

even formidable challenges in modifying physical parameterizations of UCMs. 66 
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Of particular importance to this study, recent advances in urban climate modeling 67 

demonstrate that it is critical to include urban vegetation and the associated hydrological 68 

processes for UCMs to realistically capture the surface energy budgets, especially the 69 

latent heat (Grimmond et al., 2010, 2011). This requirement has led to new urban 70 

parameterization schemes that integrate urban vegetation, grass or trees, in street canyons 71 

to enable direct soil-vegetation-atmosphere interactions (Lemonsu et al., 2012; Wang et al., 72 

2013). On the other hand, these changes necessarily bring up new modeling challenges, 73 

such as how the shading effect of trees in a street canyon can be realistically represented? 74 

Analytical formulation of view factors with the presence of trees in a street canyon will be 75 

extremely difficult, if not impossible, given a variety of geometry of trees, needless to 76 

mention their spatial locations and sizes. In addition, degraded air quality in urban areas 77 

can modify the optical and radiative properties in the canopy layer (Prabhakar et al., 2014) 78 

and challenge the assumption of air as a non-participating (transparent, non-scattering, and 79 

non-absorbing) medium for radiative transfer in urban areas. This is particularly concerned 80 

for cities with severe pollution, e.g. heavy PM 2.5, PM 10 and aerosol loads in megacities 81 

in northern China (Sun et al., 2006; Li et al., 2007).   82 

To address these new challenges, one naturally resorts to stochastic approaches based 83 

on random sampling, e.g. a Monte Carlo method. Monte Carlo simulations of radiative 84 

heat transfer have a long history of development (Howell, 1968, 1998; Yang et al. 1995). 85 

While its advantage may not be obvious for problems with simple geometries and ideal 86 

transmitting media, Monte Carlo is an excellent technique for modeling complex terrains 87 

and anthropogenic sources of emissions presented in highly urbanized environments. The 88 

main advantage of Monte Carlo is that when the problem complexity increases, the 89 
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numerical expense of analytical methods involving mathematical integration of radiative 90 

transport equation increases exponentially, while that of Monte Carlo procedures only 91 

increases linearly (Howell, 1968). In the literature, only a handful number of Monte Carlo 92 

methods were available for radiative heat transfer in street canyons. The most recent model 93 

by Krayenhoff et al. (2014) is probably the only one that takes into account the presence of 94 

trees in urban canopies. However, their work was developed for a multi-layer UCM with 95 

probabilistic distribution of building heights, and there was a lack of comparison to field 96 

measurements.  97 

In this paper, we derive a Monte Carlo algorithm for radiative exchange in 2D street 98 

canyons, incorporating the presence of trees (or generic obstacles alike) and their shading 99 

effect. In combination with matrix method for infinite radiative reflections as well as 100 

analytical method for heat conduction through the building envelope, a new modeling 101 

framework is developed for capturing energy balance inside a street canyon with realistic 102 

representation of radiative exchange based on stochastic procedures. The proposed method 103 

is validated against benchmark radiative transfer problems using analytical method, as well 104 

as in-situ measurements in urban areas. The validated model is then applied to study the 105 

effect of various canyon and tree geometries on the radiative exchange in a street canyon. 106 

Shading effect of trees lead to reduced surface temperature of canyon facets (walls and 107 

roads), as well as potential saving of building energy.  108 

The proposed method for radiative exchange is developed for a simplified 2D “big 109 

canyon” with particular applications to numerical weather prediction of urban areas at 110 

large (neighborhood to city) scales, via incorporation into the widely used WRF-UCM 111 

platform. With improved model accuracy of resolving radiative heat fluxes as well as 112 
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surface temperatures at each canyon facet, the proposed method will enhance the 113 

predictability of the overall numerical framework on other surface energy budgets, viz. 114 

sensible and latent heat and thermal storage in built environments. Future development and 115 

applications of this numerical framework will also help to provide useful guidelines for 116 

urban landscape management and sustainable urban planning in terms of, e.g. solar energy 117 

harvest, heat island mitigation, and/or building energy efficiency.  118 

 119 

2.   Model algorithms 120 

In this section, we present the detailed algorithms and formulation of the proposed 121 

numerical framework, including the Monte Carlo method for estimating view factors in a 122 

street canyon with shade trees, and the matrix inversion for resolution of infinite 123 

reflections among canyon facets. Note that the proposed method is developed for longwave 124 

(diffuse) thermal radiation, which is appropriate for street canyons with direct solar 125 

irradiance shaded by obstructions and trees.  126 

 127 

2.1.  Monte Carlo method for radiative view factors 128 

Consider an energy bundle (radiative “ray”) between two generic surfaces, as shown 129 

in Fig. 1, emitting from surface 1 and received by surface 2. The radiative view factors F12, 130 

with a ray radiated from a generic area A1 and incident on another generic area A2, is given 131 

by,  132 

 
1 2

1 2
12 2 12

1

1 cos cos
A A

F dA dA
A S

η η
π

= ∫ ∫ , (1) 133 
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where η1 and η2 are the angle between the ray and the surface normal of A1 and A2, 134 

respectively; and S is the path length of the ray. Properties that must be satisfied by view 135 

factors matrix include: self-view factor for a flat facet must be zero, and no radiant energy 136 

can be lost, i.e.  137 

 
1

0,  no summation over ; 1
N

ii ij
j

F i F
=

= =∑ . (2) 138 

In addition, the reciprocal relation holds, i.e. 139 

 1 12 2 21A F A F= . (3) 140 

In particular, the view factors between the four urban facets of the 2D street canyon 141 

(the “sky”, two walls, and the road, without trees) can be solved by analytical integration, 142 

and are given by (Sparrow and Cess, 1978) 143 

 
2

1SG GS
H HF F
W W

= = + − 
 

, (4) 144 

 
2

1WW
W WF
H H
= + − 

 
, (5) 145 

 
21 1 1

2SW GW
H HF F
W W

  = = − + + 
   

, (6) 146 

 
21 1 1

2WS WG
W WF F
H H

  = = − + + 
   

, (7) 147 

where subscripts S, G, and W denote sky, ground, and wall, respectively, H is the building 148 

height, and W is the width of canyon, as shown in Figure 2.  149 

It is straightforward to verify that the analytical formulas observe the properties of 150 

view factors in Eqs. (2)-(3). Analytical formulas of view factors, such as Eqs. (4)-(7), are 151 
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handy to use but may become difficult to formulate in more complex problems. For 152 

example, analytical computation of view factors for a street canyon with trees, as shown in 153 

Figure 2, is hitherto absent (Krayenhoff et al., 2014). The Monte Carlo method, on the 154 

other hand, invokes a probabilistic sampling of all rays emitted from surface by taking a 155 

“random walk”, and avoids the difficulty inherent in the integration process of Eq. (1) for 156 

complex geometry (Howell, 1968). To randomize the radiative exchange process, the 157 

direction of the emitted bundle can be determined by the polar angle θ1 and the azimuthal 158 

angle η1, each associated with a random number Rθ and Rη as: 159 

 1

2
Rθ

θ
π

= , (8) 160 

 1sinRη η= . (9) 161 

The emitting coordinates of all four canyon facets of a 2D street canyon, are given by 162 

 ;e x e zx WR z HR= = , (10) 163 

where Rx and Rz are the random numbers associated with emitting coordinates xe and ze 164 

from a given canyon facet in x and z directions, respectively, W the canyon width, and H 165 

the wall height. To track the incident location of a ray transfer between two parallel 166 

surfaces, only one coordinate will be involved. From the geometry, it is straightforward to 167 

show that between ground and sky, and the two parallel walls 168 

 1 1tan cos ,  between sky and groundi ex x H η θ= + , (11) 169 

 1 1tan cos ,  between wallsi ez z W η θ= + , (12) 170 

The incident coordinates of a ray transferring between two perpendicular surfaces are 171 

slightly more complicated, as given by 172 
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1 1

,  from walls to sky/ground
tan cos

e
i

zx
η θ

= , (13) 173 

 
1 1

,  from sky/ground to walls
tan cos

e
i

xz
η θ

= , (14) 174 

Tracing a ray emitting from surface A1 with random motion, it is relatively straightforward 175 

to see if it actually absorbed by surface A2 using Monte Carlo algorithm, by checking the 176 

incident coordinates. For example, if the incidental horizontal coordinate falls within the 177 

spatial location of ground, i.e. 0 ix W≤ ≤ , the emitted ray is considered as received by the 178 

ground; it is “missed” by the ground otherwise.  179 

 180 

2.2.  Matrix solution of net radiation 181 

Given i-th facet in a street canyon, with 1 i N≤ ≤ and N the total number of facets, it 182 

is associated with a range of radiative fluxes, namely the irradiance (i.e. the total incoming 183 

radiation) Ιi, the radiosity (the total outgoing) Ji, the emittance (the total emitted) Mi, and 184 

the net radiative flux Qi, respectively. Assuming all facets are opaque, these fluxes are not 185 

independent but related by 186 

 
1

N

i j ji
j

I J F
=

=∑ , (15) 187 

 ( )1i i i iJ M Iε= + − , (16) 188 

 i i iQ M J= − , (17) 189 

where subscripts ‘i’ and ‘j’ are facet indices, ε is the emissivity and Fji are the view factors 190 

for radiation transfer from j-th to i-th surface, as defined in Eq. (1). 191 

The quantity of interest is the net radiation flux, which involves the radiosity from 192 

other facets incident on the surface of interest. Combining Eqs. (15) and (16), we have 193 
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 ( )
1

1
N

i i i j ji
j

J M J Fε
=

= + − ∑ . (18) 194 

Clearly the solution of the problem involves recurrence of radiosity at a generic surface Ji. 195 

Exact solution therefore invokes solving the geometric series associated with multiple 196 

(infinite) radiative reflections. Rewrite Eq. (18) as 197 

 ( )
1 1

1
N N

i i i j ji j ji
j j

M J J F Jε
= =

= − − = Γ∑ ∑ , (19) 198 

where ( )1ij ij i ijFδ εΓ = − − . The matrix ijΓ  always has an inverse, which is denoted as 199 

1

ij ij

−
   Ψ = Γ    . Thus for each facet, we have 200 

 
1

,
1

N
i i

i j ji i
j i

J MJ M I
ε=

−
= Ψ =

−∑ , (20) 201 

and 202 

 
1

1

if 1

if 1
1

N

ji j i i
j

N
i

i ji j i
j

i
i

F M M

Q
M M

ε

ε
ε

ε

=

=


− =

=  Ψ −
 ≠

−

∑

∑
. (21) 203 

For each facet, the material emissivity and temperature are known quantities. For diffusive 204 

thermal radiation, the emittance is diffuse and longwave in nature, and can thus be 205 

expressed using Boltzmann’s law: 206 

 4
i i iM Tε σ= , (22) 207 

where σ = 5.67×10−8 W m−2 K−4 is the Stephen-Boltzmann constant. Note that Eqs. (20)-208 

(21) represent the matrix solution of radiative heat exchange between canyon facets. When 209 

the view factor matrix Fij is analytically determined, these solutions are hereafter referred 210 
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to as “exact” for they analytically resolves infinite number of reflections between canyon 211 

surfaces through matrix inversion.   212 

 213 

3.   Model Validation 214 

In this section, we first examine that if the radiative view factors predicted by Monte 215 

Carlo algorithm agree with the analytical values for a bare street canyon absent of trees. 216 

Next, the predicted view factors are used in the matrix method for prediction of net 217 

radiation arising from canyon facets under thermal equilibrium. Lastly, the validated 218 

Monte Carlo algorithm will be applied to estimate ground and wall temperatures in a real 219 

street canyon during a night cooling episode.   220 

 221 

3.1.  Estimation of radiative view factors 222 

The numerical algorithm for estimating view factors using Monte Carlo simulations 223 

(MCS) is outlined in Eqs. (8)-(14). Using random samples, the accuracy of Monte Carlo 224 

method, as expected, improves with the sample size. Taking the view factor between sky 225 

and ground FSG as example, Figure 3 shows the model accuracy as a function of number of 226 

samples. With a sample size of 1,000, MCS is capable of predicting the view factor with 227 

reasonable accuracy, as compared to the analytical formulation, while MCS with a sample 228 

size of 10,000 yields results with negligible discrepancy. For subsequent simulations, we 229 

will use the sample size of 10,000. Predictions of other street canyon view factors exhibit 230 

similar trend with respect to sample size. The comparisons of all four view factors between 231 

urban facets by Monte Carlo and analytical methods are shown in Figure 4. The 232 
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discrepancy between predictions by the two methods is nearly indiscernible, for canyon 233 

aspect ratio H/W ranging from 0.01 to 100. Also note that the most drastic change of all 234 

four view factors occur around H/W ~ 1.0, and covers the practical range of actual street 235 

canyon dimensions around 0.2 to 10. This observation highlights the importance of 236 

accurate prediction of radiative view factors for real street canyons.  237 

 238 

3.2.  Net radiation of canyon facets in thermal equilibrium 239 

With the view factors being accurately estimated by the Monte Carlo method, we 240 

then apply the method to predict the net radiation from each urban facet under thermal 241 

equilibrium, in conjunction with the matrix method outlined in Section 2.2. Emissivity is 242 

set to be 1.0 for sky (canyon top) εW = εG = 0.95, where subscripts W and G denote 243 

properties of walls and the ground, respectively. The surfaces enclosing the street canyon 244 

(c.f. Figure 2) are set to be in constant temperatures as: sky Ta = 300 K, ground TG = 290 K, 245 

east wall TW1 = 290 K, and west well TW2 = 295 K. Note that these values are chosen rather 246 

arbitrarily for demonstration purpose, and they do not affect the accuracy of the model 247 

predictions. The results of comparison between the Monte Carlo and the exact methods, as 248 

functions of the canyon aspect ratio, are shown in Figure 5: here the exact solution refers to 249 

the combination of analytical formulation of view factors in Eqs. (4)-(7) and the matrix 250 

method for net radiation with infinite reflections in Section 2.2. It is clear that the MCS 251 

predictions are in good agreement with the exact solution. As a function of canyon aspect 252 

ratio, the most significant variation happens again around H/W ~ 1.0, indicating the view 253 

factors are dominating the radiative energy distribution among different street canyon 254 

facets. It is also noteworthy that the model is capable of resolving differences in surface 255 
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temperatures of two opposite walls, given that their net radiation can be accurately 256 

determined.  257 

 258 

3.3. Transient nocturnal cooling episode 259 

Given that the proposed model is capable of predicting both view factor and net 260 

radiation with good accuracy as compared to the analytical method, here we further test the 261 

model for its capability of predicting surface temperatures, in conjunction with numerical 262 

procedures for heat conduction. In this study, we adopt a spatially-analytical scheme for 263 

solving heat conduction through solid ground and walls, based on the Green’s function 264 

approach (Wang et al., 2011a). The temperature distribution for a finite wall with one-265 

dimensional (1D) spatial domain 0 x d≤ ≤  where d is the wall thickness, is given by a 266 

convolution integral equation as (Carslaw and Jaeger 1959; Cole et al., 2011): 267 

 ( ) ( ) ( ) ( ) ( ), 1 20 0
, , ,

t t

W i WT x t T q t dG x q t dG d xt t t t= + − − − −∫ ∫ , (23) 268 

where q1 and q2 are the heat fluxes at the two surfaces of the wall; and G is the Green’s 269 

function (fundamental) solution of a homogeneous heat conduction problem. For a finite 270 

wall with thickness d, the Green’s function solution is given by 271 

 
( ) ( ) ( )22 / 2

, exp
4

21 2 erfc
2

n

n

t x nd
G x t

k t

x nd
x nd

k t

α π
α

α

∞

=−∞

∞

=−∞

 −
= − 

  
− 

− − 
 

∑

∑
, (24) 272 

where k and α are the thermal conductivity and diffusivity, respectively; and erfc(.) is the 273 

complimentary error function. Equations (23)-(24) can be readily evaluated using 274 
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numerical integration, given the knowledge of boundary conditions q1 and q2, and the 275 

initial condition Ti. A detailed solution procedure for Green’s function approach can be 276 

found in Wang et al. (2011a).  277 

Note that canyon ground, unlike walls bounded by two (building interior and exterior) 278 

boundaries, can be treated as a 1D semi-infinite solid domain, bounded only at the upper 279 

surface with an effective adiabatic (zero flux) condition at the lower boundary (in deep 280 

soil). Thus the solution of surface temperature of the ground can be approximated by a 281 

closed-form formula (Nunez et al., 1976; Wang et al., 2011a), as  282 

 ( ), ,

2 /G
s G i G G

G

t
T t T Q

k
α π

= + , (25) 283 

where Ts is the surface temperature; and QG is the net radiation received at the ground 284 

surface, as predicted using matrix method with infinite reflections by Eq. (21). 285 

The proposed method is tested for a nocturnal cooling event in the Grand-view 286 

district of Vancouver, measured by Nunez and Oke (1976) during September 9-11, 1973. 287 

The street canyon dimensions are d = 0.3 m, H = 7.31 m, and W = 7.54 m. Thermal 288 

properties of walls and the ground are: (ρcp)W = 2.09×106 J K−1 m−3, kW = 1.6 W m−1 K−1, 289 

(ρcp)G = 1.88×106 J K−1 m−3, kG = 1.6 W m−1 K−1, where ρ an cp are the density and 290 

specific heat; and εW = εG = 0.95. The nocturnal cooling episode was measured after sunset 291 

with calm winds, so the short wave radiation, sensible and latent heat fluxes are neglected 292 

in both the measurement and modelling. The initial longwave radiation is measured as 339 293 

W m−2. Surface temperatures of the canyon walls and ground predicted by the combined 294 

numerical framework (Monte Carlo simulation of view factors, matrix method for net 295 

radiation, and Green’s function approach for heat conduction), are compared with field 296 
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measurements, as shown in Figure 6. The overall agreement between model predictions 297 

and observations is reasonably good, with temperature discrepancy less than 1 oC in 298 

general.  299 

 300 

4.  Model applications and discussion 301 

With the proposed numerical framework validated against benchmark radiative 302 

transfer problems and in-situ measurements, we proceed to apply the model to street 303 

canyons with shade trees. We first test the effect of tree crown sizes on view factors 304 

between canyon facets, followed by its implications to surface temperature evolution and 305 

building energy consumption given diurnal atmospheric forcing. Some of the assumptions 306 

made in the proposed methods and future model extensions are also discussed.  307 

 308 

4.1. Effect of tree sizes on view factors 309 

For simplicity, we ignore the size of tree trunks due to its relative small dimension as 310 

compared to tree crowns. Further, in this study, tree crowns assume circular cross-sectional 311 

shapes, as shown in Figure 2, with a radius of Rt. As the vertical variability is not explicitly 312 

resolved in the 2D urban canyon, and subsequently in the single layer UCM adopted in 313 

WRF, we do not account complex tree geometries, e.g. roof top shading and probabilistic 314 

distribution of tree heights in this paper, such as those developed in multi-layer UCMs by 315 

Krayenhoff et al (2014). With presence of trees in the street canyon, radiative exchange 316 

between canyon facets will be partially “blocked” by tree crowns. Thus, trees will 317 

effectively shade canyon facets by intercepting radiative rays, with their actual shading 318 
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effect depending on the size of the tree crowns. Figure 7 demonstrates this shading effect 319 

as a function of canyon aspect ratio. Note that even with a very small tree crown size (Rt/W 320 

= 0.1), all radiative view factors are effectively reduced. As tree crown size increases, 321 

more radiation will be intercepted by trees and view factors further decrease. In addition, 322 

the shading effect is more significant for shallower canyons (with smaller H/W ratios). 323 

This is because for deep canyons, walls in the street canyon are already presented an 324 

important factor for shading, and the additional shading by trees are less prominent.  325 

 326 

4.2. Canyon temperature and building energy consumption 327 

Next, we apply the combined numerical framework to test the effect of tree sizes on 328 

diurnal evolution of canyon temperatures and building energy use. The model is driven by 329 

in-situ measurement of atmospheric and radiative forcings at Maryvale, Phoenix, Arizona 330 

on 04 June 2012 (clear day), measured by an eddy covariance flux tower. More details on 331 

the instrumentation and data quality control of the field measurement can be found in 332 

Chow et al. (2014). Relevant models parameters are given by measurement or previous 333 

model calibration as: d = 0.3 m, H = 15 m, W = 20 m, kG = 1.6 W m−1 K−1, 334 

kW = 1.3 W m−1 K−1, (ρcp)W = 1.26×106 J K−1 m−3,  (ρcp)G = 2.00×106 J K−1 m−3, and εW = 335 

εG = 0.95. Diurnal variation of the atmospheric temperature and net (shortwave + 336 

longwave) downwelling radiation at the canyon top is plotted in Figure 8(a).  337 

Note that this paper is focused on the radiative exchange in a street canyon, so 338 

turbulent (sensible and latent) heat fluxes are not accounted in energy transport. For an arid 339 

city like Phoenix, latent heat during a clear day is usually very small (<10% of the 340 
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irradiance), while the sensible heat flux can be significant (maximum daily sensible heat is 341 

300 W m−2 on June 04, 2012 in Phoenix). So the negligence of turbulent heat is a crude 342 

assumption. To include sensible and latent heat in surface energy balance, it requires 343 

sophisticated physical parameterization schemes involving wind velocity, surface 344 

roughness, atmospheric stability, humidity, soil moisture, and complex hydrological 345 

processes (precipitation, infiltration, and surface runoff) (see Wang et al., 2013). It remains 346 

a challenging task to build a complete land surface model based on stochastic simulations 347 

including all physical processes. Furthermore, the Monte Carlo algorithm assumes 348 

completely random emission angles of a ray (see Eqs. (8)-(9)), i.e. canyon facets are 349 

Lambertian and opaque, and radiative rays are diffusive. This is not the case when direct 350 

solar radiation is first impinged on a canyon facet. A sun-lit wall when receiving 351 

directional solar radiation, for example, is certainly at higher temperature than a shaded 352 

wall. One way to include that effect is to estimate a “shadow length” in a street canyon as a 353 

function of city location, canyon orientation, and time of the day (Kusaka et al., 2001). 354 

Nevertheless, the assumption of diffusive radiation is valid for subsequent reflections using 355 

the matrix method.  356 

A comparison of model estimate of ground surface temperature and field 357 

measurements is shown in Figure 8(b), with no tree shading in the model. Despite the 358 

above-mentioned limitation of the model, its prediction is comparable with the 359 

measurement (with a R2 = 0.945). Next, we include shade trees in the canyon with different 360 

crown sizes. The result of model predictions for diurnal evolution of canyon surface 361 

temperatures is shown in Figure 9(a). The shading effect is clearly demonstrated in that 362 

when the tree crown size increases, surface temperatures of wall and ground decrease. A 363 
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increase of crown size from 0.5 m to 1.0 m leads to the reduction of surface temperatures 364 

up to 6-7 oC around noon.  365 

Given the temperature profile through the wall is calculated using the Green’s 366 

function approach in Eq. (23), the conductive heat flux entering the building can be 367 

computed using Fourier’s law, 368 

 ( ) ( ) ( ) ( ) ( )1 20 0
, , ,

t t
W

W
dTq x t k k q t dG x q t dG d x
dx

t t t t ′ ′= − = − − − − −  ∫ ∫ , (26) 369 

at x = d. This flux is a good indicator for energy consumption inside the building to offset 370 

the heat inflow/outflow through building envelop and to maintain the interior thermal 371 

comfort through operation of heating, ventilation, and air-conditioning systems. The model 372 

predicted heat flux entering the building through wall is presented in Figure 9(b), for 373 

various tree sizes. Again, it is clear that in the absence of trees, building interiors receives 374 

large heat inflow (positive) through the wall in a clear summer day (June 04). When trees 375 

are presented, the magnitude of heat inflow decreases significantly with the tree size, 376 

indicating the potential of shade trees for building energy saving.  377 

 378 

5.   Concluding remarks 379 

A new numerical framework is developed for radiative heat exchange in street canyons 380 

with shade trees, by combining the Monte Carlo simulation of view factors and matrix 381 

method for infinite reflections. The model is validated against analytical solutions of 382 

benchmark radiative transfer problems as well as field measurements in real street canyons. 383 

Results of comparison show that the model is of capable of predicting radiative view 384 
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factors, surface temperatures, and net radiation of canyon facets with good accuracy, in 385 

both steady state and transient cases. We then apply the model to study the effect of shade 386 

trees and their sizes on the diurnal evolution of canyon surface temperatures in conjunction 387 

with a Green’s function approach for heat conduction. It is manifested that shade trees are 388 

effective in reducing canyon surface temperatures, with the shading effect enhanced by 389 

increasing tree sizes. The presence of trees in a street canyon demonstrates good potential 390 

in reducing cooling energy consumption as it mitigates the heat inflow into the building 391 

through walls.  392 

In addition, Monte Carlo method is also a powerful tool in computing absorption and 393 

scattering of radiation if complex participating media (e.g. dust, soot, pollen, etc.) are 394 

presented in street canyons. By randomizing radiation using energy bundles, scattering 395 

deflects a ray’s direction, and absorption causes a ray to be intercepted. The frequency, 396 

direction, and fraction of attenuation due to either scattering or absorption can be simulated 397 

by random numbers and as functions of scattering or absorption coefficients. This 398 

treatment is particularly useful for cities with heavy atmospheric pollution, either caused 399 

by natural sources with seasonal occurrence or by constant industrial sources. By inclusion 400 

of participating media, numerical models will improve accuracy in simulating radiative 401 

exchange and thermal field in an urban canopy layer, which will subsequently enhance 402 

numerical capacity in, e.g. building energy model or land-atmosphere interactions.   403 
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Caption of Figures: 524 

Figure 1. Schematic of radiative transfer between two generic surfaces 525 

Figure 2. Cross sectional view of 2D street canyon with trees. The cross section of tree 526 

crowns is simplified as circles with radius Rt.  527 

Figure 3. Effect of sample size on Monte Carlo prediction of view factor FSG: (a) as a 528 

function of canyon aspect ratio, and (b) as a function of sample sizes at H/W = 1.0. 529 

Figure 4. View factors of radiative heat exchange between canyon facets as functions of 530 

the canyon aspect ratio H/W; subscripts S, G, and W denote sky, ground, and wall, 531 

respectively. The sample size is 10,000 for the Monte Carlo simulations.  532 

Figure 5. Comparison of net radiation of different canyon facets at thermal equilibrium, as 533 

predicted by the exact and the proposed hybrid methods. Surface of the four enclosing 534 

surfaces are set as Ta = 300 K, TG = 290 K, TW1 = 290 K and TW2 = 295 K.   535 

Figure 6. Comparison of averaged wall and ground temperatures predicted by the model 536 

and field measurements in the canyon during the night cooling episode. 537 

Figure 7. Monte Carlo simulation of view factors of radiative heat exchange between 538 

canyon facets with trees, as functions of the canyon aspect ratio H/W. In this case, the 539 

canyon width W is fixed as 20 m, and the centre of tree crown height is located at H/2.  540 

Figure 8. Model application with (a) radiative forcing measured on 04 June 2012, Phoenix, 541 

AZ, and (b) comparison between model prediction and measurement of ground surface 542 

temperature. 543 

Figure 9. Model prediction of diurnal variation of (a) surface temperatures, and (b) heat 544 

conducted into building through walls. Diurnal radiative forcing is the same as in Figure 8.   545 

546 
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 547 
 548 

Figure 1. Schematic of radiative transfer between two generic surfaces 549 

550 
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 551 
Figure 2. Cross sectional view of 2D street canyon with trees. The cross section of tree 552 

crowns is simplified as circles with radius Rt.   553 
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(a) 

 
(b) 

 
 554 

Figure 3. Effect of sample size on Monte Carlo prediction of view factor FSG: (a) as a 555 

function of canyon aspect ratio, and (b) as a function of sample sizes at H/W = 1.0.  556 
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 557 
Figure 4. View factors of radiative heat exchange between canyon facets as functions of 558 

the canyon aspect ratio H/W; subscripts S, G, and W denote sky, ground, and wall, 559 

respectively. The sample size is 10,000 for the Monte Carlo simulations.   560 
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 561 
Figure 5. Comparison of net radiation of different canyon facets at thermal equilibrium, as 562 

predicted by the exact and the proposed hybrid methods. Surface of the four enclosing 563 

surfaces are set as Ta = 300 K, TG = 290 K, TW1 = 290 K and TW2 = 295 K.    564 
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 565 
Figure 6. Comparison of averaged wall and ground temperatures predicted by the model 566 

and field measurements in the canyon during the night cooling episode.  567 
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 568 
Figure 7. Monte Carlo simulation of view factors of radiative heat exchange between 569 

canyon facets with trees, as functions of the canyon aspect ratio H/W. In this case, the 570 

canyon width W is fixed as 20 m, and the centre of tree crown height is located at H/2.   571 
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(a) 

 
 

(b) 

 
 572 

Figure 8. Model application with (a) radiative forcing measured on 04 June 2012, Phoenix, 573 

AZ, and (b) comparison between model prediction and measurement of ground surface 574 

temperature.  575 
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(a) 

 
(b) 

 
 576 

Figure 9. Model prediction of diurnal variation of (a) surface temperatures, and (b) heat 577 

conducted into building through walls. Diurnal radiative forcing is the same as in Figure 8.   578 
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