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About 2.5 � 106 snapshots on microcrystals of photoactive yellow protein (PYP)

from a recent serial femtosecond crystallographic (SFX) experiment were

reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP

structural model is refined at that resolution. The result is compared to other PYP

models determined at atomic resolution around 1 Å and better at the synchrotron.

By comparing subtleties such as individual isotropic temperature factors and

hydrogen bond lengths, we were able to assess the quality of the SFX data at that

resolution. We also show that the determination of anisotropic temperature factor

ellipsoids starts to become feasible with the SFX data at resolutions better than

1.5 Å. VC 2015 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4919903]

INTRODUCTION

Photoactive Yellow Protein (PYP) is a blue light receptor in purple bacteria. It has been

discovered in the 1980s (Meyer, 1985) and has since generated vast interest by a large group of

researchers worldwide. After absorption of a blue photon, PYP enters a photocycle with numer-

ous intermediates that accumulate and decay on multiple time-scales from picoseconds to sec-

onds. The progression of the photocycle is controlled by a configurational change, a trans to cis
isomerization, of the central chromophore para-cinnamic acid (PCA) that is covalently linked to

Cys-69 of the protein (Fig. 1). The configurational change drives conformational changes of the

protein with distinct intermediates. Before the photocycle comes to an end, the chromophore

relaxes back to the trans configuration. Over the years, the photocycle has been extensively

investigated with time-resolved crystallography on time-scales from 100 ps, the pulse duration

of a synchrotron X-ray pulse, to seconds, when the reaction ends (Ihee et al., 2005; Jung et al.,
2013; Schmidt et al., 2004; Schmidt et al., 2013; and Schotte et al., 2012). However, there is

substantial interest to investigate the PYP reaction on ultrafast time-scales exploiting the femto-

second X-ray pulses at the Free Electron Lasers for hard X-rays (X-ray FELs). A proof-of-prin-

ciple experiment has been recently (June 2014) performed on PYP at the Linac Coherent Light

Source’s (LCLS) beamline CXI using time-resolved serial femtosecond crystallography (TR-

SFX) at near atomic (1.6 Å) resolution with time-delays 10 ns and 1 ls after an optical pump

laser pulse (Tenboer et al., 2014). The experiment shows that TR-SFX is feasible at an X-ray

FEL. The door is now open to explore faster time-scales and potentially the femtosecond time-

regime of the PYP photocycle. However, we anticipate that on the ultra-fast time-scale, struc-

tural changes are small and meaningful details can only be obtained if resolution is high

enough. Here, we make use of the roughly 2.5 � 106 snapshots that were collected during the
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June 2014 experiment in the dark to extend the resolution to 1.46 Å. We refined the PYP struc-

tural models against the SFX data at this resolution, and compared sensitive parameters such as

temperature (B-) factors and hydrogen bond lengths to those derived from models that were

obtained from in-house X-ray sources at near atomic resolution or synchrotron X-ray sources at

atomic resolution.

METHODS

Methods are published earlier (Tenboer et al., 2014). In brief: PYP micro-crystals were

grown from highly concentrated PYP. The crystals were about 5 lm long needles with 2 lm

diameter (Fig. 2(a)). The suspension (5 � 1011 crystals/ml) was jetted into vacuum by a gas

dynamic virtual nozzle (Weierstall et al., 2012). FEL X-ray pulses of 40 fs duration containing

about 1011 photons/pulse were directed on the jet about 75 lm from the nozzle exit. The tem-

perature of the jet was not controlled. However, since the jet velocity is about 10 m/s, the

75 lm path through the vacuum of the chamber until it is intercepted by the X-rays translates

to about 7.5 ls. Assuming a cooling rate of 106 K/s, the jet cools about 7.5 K. Hence, the tem-

perature at the X-ray FEL beam intersection can be estimated to be about 15 �C, which is close

to ambient (room) temperature. Diffraction patterns were collected by a Cornell SLAC Pixel

Area Detector (CSPAD) located 75.1 mm from the jet. The center of the CSPAC was

FIG. 2. (a) Microcrystals in the Neubauer counting chamber, (b) diffraction pattern on the CSPAD. The electronic attenua-

tion mask is shown in orange.

FIG. 1. Structure of PYP, ribbon representation, rainbow color distinguishes different moieties. Arg-52 and PCA chrom-

phore are marked. Red bars mark regions with comparatively high disorder. Right panel: exemplary electron density (on

the 1.3 r level) of the chromophore region.
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electronically attenuated by about a factor of �7 to allow for an increase in the dynamic range

that allows the simultaneous collection of low and high resolution reflections (Fig. 2(b)). With

this setup, about 2.5 � 106 diffraction patterns (snapshots) were collected in the dark (Table I).

Snapshots containing Bragg reflections were identified by CHEETAH (Barty et al., 2014).

Indexing and integration was done by CrystFEL (White et al., 2012). The indexing ambiguity

of the hexagonal PYP crystals was solved by methods (Brehm and Diederichs, 2014)

implemented in CrystFEL.

Refinement was carried out with “REFMAC5” (Murshudov et al., 2011) using the “log-

likelihood residual.” B-factors were averaged for individual amino acid residues by

“MOLEMAN” (Kleywegt et al., 2001) over the backbone atoms N, Ca, C, and O. These B-

factors hBiind were plotted as a function of residue number. The trans/cis isomerization of the

chromophore is controlled by three hydrogen bonds (Fig. 3(a)). Two extend from the phenolate

oxygen (O4) of the chromophore head to Od of Glu-46 and Og of Tyr-42, and the third hydro-

gen bond is formed by the carbonyl-oxygen of the chromophore foot and the peptide bond

nitrogen of Cys-69. The lengths of the O4-Od and O4-Og hydrogen bonds might depend also on

the bond length of the chromophore ring C4’ to the hydroxyl oxygen O4 (Fig. 3(a)), which is

set to the relatively large value 1.362 Å by a restraint in the “REFMAC5” library file

“mon_lib.cif.” If the X-ray data are weak and low resolution, this restraint enforces short

hydrogen bonds. However, we tested this by setting the restraint to 1.238 Å, which is typically

found in older “CNS” (Brunger et al., 1998) and “XPLOR” (Brunger et al., 1990) parameter

files. This should bias the refinement towards longer hydrogen bonds. Refinement was carried

out with either restraints (see below). The lengths of the hydrogen bonds were measured by the

program “COOT” (Emsley et al., 2010) and compared to those found within existing structures

in the literature.

RESULTS

The SFX data were integrated to a resolution of 1.37 Å. However, the Rsplit is unacceptable

(84.3%) at this resolution, and it is difficult to use it to determine a resolution limit. The I/sigI

(Table I) which is frequently used in crystallography to determine the resolution limit is differ-

ently determined in SFX due to the lack of profile fitting, the large shot-to-shot intensity varia-

tions as well as spectral fluctuations of the FEL X-ray beam (Karplus and Diederichs, 2012;

White, 2014; and White et al., 2012). In order to estimate that limit, we used Fourier Shell

Correlation (FSC), Eq. (1), which is output by REFMAC5 (Brown et al., 2015). The FSC is

routinely employed in electron microscopy where it is the “gold-standard” to estimate the reso-

lution limit (Scheres, 2012). The FSC was calculated to 1.37 Å in 25 resolution bins (Eq. (1))

and plotted as a function of 4 sin2h=k2 ¼ 1
d2, where d is the resolution

FSC ¼

X
h

jFobsjjFcalcj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h

jFobsj2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

h

jFcalcj2
r : (1)

TABLE I. Data collection statistics (last resolution shell: 1.49–1.46 Å).

Diffraction pattern 2 463 000

Hits 170 853 (7% of total)

Indexed 118 260 (69% of hits, 4.8% of total)

Resolution 1.46 Å

# unique reflections 16787

Competeness [%] 100

I/sigI 9.0 (0.3)

Rsplit (%) 6.89 (56.7)
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To evaluate the resolution limit, we refined a PYP model with increasing resolution limits

and stopped increasing the resolution when the FSC between the observed SFX amplitudes

(jFobsj) and those calculated from the model (jFcalcj) falls below 50%, which happened at

1.46 Å (Fig. 4). For the refinement, we started with the original PYP model (Borgstahl

et al., 1995) with PDB (Berman et al., 2002)-entry 2PHY. We removed the double confor-

mations in 2PHY and the water molecules. After rigid-body and restrained refinement, water

molecules were added and double conformations were identified using Fo-Fc difference

electron density maps. The refinement settles at 16.5% Rcryst and 20.1% Rfree (Table II).

The average B-factor is 13.5 Å2. Anisotropic B-factor refinement decreases the R-factors

further to 11.9% and 18.1%, respectively (Table II). Isotropic temperature factors averaged

over the backbone atoms, hBiind, are shown in Fig. 5(a) (black line). Hydrogen bond distan-

ces of the chromophore head to Glu-46 and Tyr-42 are 2.54 Å and 2.49 Å, respectively

(Table II).

DISCUSSION

The number of unique reflections at 1.46 Å (16787, Table I) determined from the

�2.5� 106 SFX snapshots enables the refinement of an anisotropic B-factor model. The

FIG. 3. The chromophore pocket in PYP. (a) Hydrogen bonds marked by blue dashed lines; the pCA chromophore, Tyr-42,

Glu-46, and Cys-69 are marked. Distances found in the refined PYPSFX structure are indicated. (b) Chromophore pocket

residues with thermal ellipsoids (gray) from anisotropic individual B-factor refinement against the SFX data at 1.46 Å reso-

lution, (c) thermal ellipsoids from cryo-crystallography at 0.82 Å resolution. The ellipsoids are 2-fold enlarged for clarity.

The gray bar in (b) denotes an average displacement, hDxi, of about 1 Å. (a) produced by PYMOL (DeLano, 2006), and (b)

and (c) by CHIMERA (Pettersen et al., 2004).
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resulting thermal ellipsoids are shown in Fig. 3(b). Notably, Rcryst and Rfree factors decrease

substantially. Obviously, the PYP structural model that includes anisotropic temperature factor

ellipsoids is superior to the one with only isotropic B-factors. In Fig. 3(c), the thermal ellipsoids

from a PYP structure refined to 0.82 Å with conventional macromolecular crystallographic

(MX) data at cryogenic temperatures are shown (for the model see below, and Table II). The

ellipsoids hardly differ regardless whether SFX or ultra-high resolution data are used. This is an

indication that SFX provides adequate data for such a refinement. The gap between Rcryst and

FIG. 4. Fourier Shell Correlation and Rsplit as function of 1/d2 (d is resolution). Open triangles and dashed-dotted line:

FSCwork, solid squares and dashed line: FSCfree, solid line and spheres: Rsplit. Vertical long dashed line: 1.46 Å resolution.

TABLE II. Refinement statistics, B-factors, and hydrogen bond lengths. H1: PCA-phenolate oxygen to Glu-42 Od. H2:

PCA-phenolate O to Tyr-42 Og, H3: PCA-carbonyl O1 to Cys-69 N. All studies were performed on hexagonal P63 wt-PYP

crystals with unit cell parameters (depending on temperature) around a¼ b¼ 66 Å, c¼ 40 Å.

PYPSFX PYPB293 PYPA293 PYPA110 PYPG149

pdb this study 2PHY 1OTB 1OT9 INWZ

X-ray source LCLS rotating anode APS APS SSRL

Method SFX rotation rotation rotation rotation

Crystal size 2 � 2 � 5 lm3 250 � 250

� 1000 lm3

180 � 180

� 500 lm3

180 � 180

� 500 lm3

200 � 200

� 800 lm3

T (K) 288a 293 293 110 149

Resolution (Å) 1.46 1.4 1.10 1.00 0.82

Refine REFMAC5 XPLOR SHELX97 (Sheldrick, 2008) SHELX97 SHELX97

hBi (Å2) 13.5 11.7 19.4 12.1 11.3

Baniso yes no yes yes yes

Rcryst/Rfree (%) 16.5/20.1b 18.6/22.6 13.3/16.1 13.4/16.1 12.3/14.4

11.9/18.1c

Hydrogen bonds (Å)

H1: Glu-46 2.54/2.55d 2.69 2.58 2.59 2.58

H2: Tyr-42 2.49/2.49d 2.71 2.51 2.50 2.48

H3: Cys-69 2.78 2.69 2.82 2.75 2.72

aEstimated.
bIsotropic B-factor refinement.
cAnisotropic B-factor refinement.
dlong C4’–O4 bond restraints/short C4’–O4 restraints.
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Rfree indicates a certain degree of overfitting, which is, however, acceptable in the light of the

improved refinement statistics.

In Table II, five different PYP models are compared: PYPSFX (this study), PYPB293, the

original model determined by the Getzoff group (Borgstahl et al., 1995), PYPA293 and PYPA110,

which were both determined at atomic resolution by Anderson and colleagues (Anderson et al.,
2004) at room temperature (293 K) and cryogenic temperatures (110 K), respectively, and

PYPG149 which has been determined to ultra-high resolution (0.82 Å) by Genick and coworkers

(Getzoff et al., 2003) at 149 K. Hence, two room temperature structures and two structures

determined at cryogenic temperatures are available and can be compared to PYPSFX. PYPA293

has the highest overall B-factor, hBi. To reach 1.1 Å resolution, exposure times to the synchro-

tron X-rays had to be long. Accordingly, the absorbed X-ray dose is quite high, especially with

the relatively small crystals (Table II). Since at room temperature PYP does not show specific

local damage (Schmidt, Srajer et al., 2012), the high B-factor reflects global damage. In Fig.

5(a), the temperature factor averaged over individual residue back bone atoms hBiind is plotted

as a function of the residue number. The hBiind for the PYPA293 (red line) are larger than those

for PYPSFX (black line) and PYPB293 (blue line). The global damage is revealed by the offset

of the red curve with respect to the others. However, for PYP, the global damage does not

affect the functionality (the kinetic properties) of the PYP ensemble in the crystal (Schmidt

et al., 2012). Despite the potentially higher B-factor, the PYPA293 structure is functionally rele-

vant. The smallest B-factor at room temperature is found in the original model PYPB293, which

was determined with relatively large crystals and correspondingly low absorbed dose on a

home source (Borgstahl et al., 1995). Its hBi is as small as those hBsi determined at cryogenic

temperatures in PYPA110 and PYPG149.

When crystals are frozen, the structural distribution and integrity is maintained even at

higher doses (Garman and Weik, 2011; Owen et al., 2006), and resolution as high as 0.82 Å

can be reached without noticeable radiation damage. The PYPSFX structure on the other hand

shows also low B-values, which are close to the cryogenic structures and the in-house model.

This is yet an additional proof that SFX is, due to the “diffraction-before-destruction” principle

(Chapman et al., 2011), (almost) free of radiation damage even at room temperature, although

doses that are deposited in the tiny crystals may be orders of magnitude higher than the safe

dose (Lomb et al., 2011). It can be speculated that the small difference between the hBi of the

original model PYPB293 (Fig. 5(a), blue line) and that of PYPSFX (Fig. 5(a), black line) reflects

FIG. 5. B-factors averaged over the main chain atoms N, Ca, C, and O and plotted as a function of residue number. (a) B-

factors from room temperature structures, black: PYPSFX (1.46 Å), blue: PYPB293 (1.4 Å), red: PYPA293 (1.10 Å); (b) B-

factors in cryo-structures compared to PYPSFX (1.46 Å, thick black line): red: PYPA110 (1.10 Å), blue: PYPG149 (0.82 Å).

Red bars: regions of comparably higher disorder, where the disorder can be partially frozen out.
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some crystal disintegration during the end of the 40 fs X-ray FEL pulse that may be precluded

by using even shorter X-ray FEL pulses. The hBiind of the PYPSFX structure are compared to

those of the cryogenic structures in Fig. 5(b). The hBiind are almost identical although the struc-

tures were determined at different resolutions, at different temperature settings, and from very

different crystal sizes. There are notable differences, though, between the cryogenic structures

and PYPSFX around residues 16–22, 80–88, and 112–117. All three moieties are loops with lit-

tle crystal contacts (see Figs. 1 and 5(b), red bars). Their motions can be frozen out by lowering

the temperature which increases the Debye Waller factor and the scattering power into the

Bragg reflections at low temperatures. The mentioned loop from residue 112–117 might play an

important role to mitigate the signal from the chromophore pocket to the periphery of the pro-

tein (Ihee et al., 2005; Tenboer et al., 2014).

Hydrogen bonds are important for the functionality of the PYP chromophore (Anderson

et al., 2004). They fix the chromophore head between Glu-46 and Tyr-42 (Fig. 3, and Table II).

In the original model PYPB293, no unusual hydrogen bond lengths were reported (Table II). The

high resolution room and low temperature structures unexpectedly showed that the hydrogen

bonds are much shorter (Table II), which supports the idea of a chromophore configuration that

is ready to move. Short hydrogen bonds are energetically unfavorable. The chromophore head

must be pressed into the hydrogen network due to interactions with amino-acids of the chromo-

phore pocket. Without pocket relaxation the head is tightly kept in position. When a blue photon

is absorbed, a trans to cis isomerization occurs. Since at very early times (100 ps to 1 ns) the

pocket relaxations are very limited (Jung et al., 2013; Schotte et al., 2012), the chromophore

head cannot move. Instead, the tail rotates (Ihee et al., 2005; Jung et al., 2013; and Schotte

et al., 2012). However, when the pocket relaxes at longer times on the ls to ms time-scale (Ihee

et al., 2005; Schmidt et al., 2013), the chromophore is ready to snap out of its position. In addi-

tion, the putative signaling pB state is very long lived (Schmidt et al., 2013), because the forma-

tion of the dark state requires the formation of this tightly knit chromophore pocket. The struc-

tural refinement against the SFX data corroborates this view. The hydrogen bonds are short

(Table II), irrespective of whether long restraints for the C4’-O4 bond (1.362 Å) or short

restraints (1.238 Å) are employed. The hydrogen bonds are much alike to those observed in the

highest resolution structures. Moreover, even when the C4’–O4 bond is biased by the short

1.238 Å restraint, it elongates by 0.11 Å to 1.347 Å. This result is also obtained from the highest

resolution structures emphasizing again the excellent quality of the SFX data.

Our results show that SFX determines structures in their functional form which are compa-

rable to those determined at both room temperature and cryogenic temperatures at highest reso-

lutions possible. Unlike summarized recently in a review (Schlichting, 2015), the quality of our

SFX data is superb. Synchrotron like data quality and resolution are reached at room tempera-

ture without suffering from radiation damage. The attenuation mask (Fig. 2(b)) allowed the

accurate determination of low resolution intensities without impairing the quality of the high

resolution data. Furthermore, the CSPAD tile geometry (Fig. 2(b)) can be exquisitely well

determined by refining individual tile positions with help of the X-ray data (Tenboer et al.,
2014). All of this resulted in highly accurate amplitudes even in the presence of an indexing

ambiguity and without introducing partiality models (Kabsch, 2014; Sauter et al., 2013). For

the collection of the �2.5 � 106 snapshots, about 6 h of FEL beamtime is necessary. With an

average jet flow of 22 ll/min, about 7.6 ml of crystal slurry is dissipated which contains roughly

500 mg of microcrystalline protein. It is desirable, therefore, to reduce the number of required

X-ray snapshots with computational methods (Sauter, 2015; Uervirojnangkoorn et al., 2015;

and White, 2014) to obtain comparable data quality within much shorter beamtimes, collecting

a much smaller number of snapshots from a much lower amount of protein.

SUMMARY

We push the resolution of macromolecular serial femtosecond crystallography to 1.46 Å.

Anisotropic B-factor refinement starts to become possible with SFX data at that resolution. The
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structures show little to no evidence of radiation damage even at ambient temperatures and are

comparable to ultrahigh (atomic) resolution structures.
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