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Boutet,f Stefan P. Hau-Riege,b Christopher Kupitz,d Marc Messerschmidt,f,h John I.

Ogren,g Tom Pardini,b Kenneth J. Rothschild,g Leonardo Sala,a Brent Segelke,b

Garth J. Williams,f James E. Evans,c Xiao-Dan Li,a Matthew Coleman,b Bill Pedrinia*

and Matthias Frankb

aPaul Scherrer Institute, 5232 Villigen PSI, Switzerland, bLawrence Livermore National Laboratory, 7000 East Avenue,

Livermore, CA 94550, USA, cEnvironmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,

3335 Innovation Boulevard, Richland, WA 99354, USA, dArizona State University, 300 East University Drive, Tempe,

AZ 85287, USA, eCenter for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany, fLinac

Coherent Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025, USA, gPhysics Departement, Boston University,

590 Commonwealth Avenue, Boston, MA 02215, USA, and hNational Science Foundation BioXFEL Science and

Technology Center, 700 Ellicott Street, Buffalo, NY 14203, USA. *Correspondence e-mail: bill.pedrini@psi.ch

Previous proof-of-concept measurements on single-layer two-dimensional

membrane-protein crystals performed at X-ray free-electron lasers (FELs)

have demonstrated that the collection of meaningful diffraction patterns, which

is not possible at synchrotrons because of radiation-damage issues, is feasible.

Here, the results obtained from the analysis of a thousand single-shot, room-

temperature X-ray FEL diffraction images from two-dimensional crystals of a

bacteriorhodopsin mutant are reported in detail. The high redundancy in the

measurements boosts the intensity signal-to-noise ratio, so that the values of the

diffracted intensities can be reliably determined down to the detector-edge

resolution of 4 Å. The results show that two-dimensional serial crystallography

at X-ray FELs is a suitable method to study membrane proteins to near-atomic

length scales at ambient temperature. The method presented here can be

extended to pump–probe studies of optically triggered structural changes on

submillisecond timescales in two-dimensional crystals, which allow functionally

relevant large-scale motions that may be quenched in three-dimensional

crystals.

1. Introduction

X-ray diffraction is one of the most prominent methods used

to investigate the structure of biological molecules, as

witnessed by the huge number of structures deposited in open-

access databases in recent decades. Many of the challenges

have been related to the fight against radiation damage, which

limits the minimal size of the three-dimensional crystals that

can be measured. Continuous progress has now made it

possible to collect data from crystals as small as few micro-

metres at synchrotron sources. Recently, data collection

without cryogenic protection of the samples has been

demonstrated at synchrotrons (Botha et al., 2015; Nogly et al.,

2015; Martin-Garcia et al., 2017), which opens the way to time-

resolved studies on millisecond timescales that require

physiological temperature conditions.

X-ray free-electron lasers (X-ray FELs; Emma et al., 2010;

Pile, 2011) allow the extension of X-ray crystallography

towards even smaller crystals, down to the submicrometre
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range. Radiation damage is overcome via ultra-intense and

ultrashort X-ray pulses, with the data being collected in the

diffraction-before-destruction mode (Boutet et al., 2012). This

has made it possible to address very delicate, challenging

protein targets (Liu et al., 2013; Zhang et al., 2015, 2017) with

X-ray FELs. Room-temperature measurements are permitted,

and accessing the femtosecond time scale is possible via

pump–probe experiments, which are typically triggered by an

external laser source (Kern et al., 2013; Tenboer et al., 2014;

Pande et al., 2016; Young et al., 2016; Suga et al., 2017; Aquila

et al., 2012).

Even more challenging than three-dimensional nanocrystals

are two-dimensional crystals, which consist of a periodic

arrangement of molecules in a two-dimensional layer. This

state of aggregation is of interest, especially in the case of

membrane proteins, because it may better reproduce the

conditions that occur within the cell membrane (Fujiyoshi,

2011). Furthermore, the all-important structural changes

induced by external stimuli (Rosenbaum et al., 2009; Deupi et

al., 2012) are expected to follow the natural dynamics, being

less hindered by the steric contacts from molecules in the

neighbouring layers than in a three-dimensional crystal. The

X-ray diffraction power of two-dimensional protein crystals

is orders of magnitude smaller than that of their three-

dimensional counterparts because they consist of one (or a

few) molecule layers and because the signal is spread over

one-dimensional Bragg rods instead of being concentrated in

Bragg spots. Therefore, before the era of X-ray FELs, two-

dimensional membrane-protein crystals could only be studied

successfully at high resolution by electron microscopy or

diffraction (Unwin & Henderson,

1975a,b; Ceska & Henderson, 1990;

Kunji et al., 2000; Kühlbrandt et al.,

1994; Schertler et al., 1993; Henderson et

al., 1990; Gonen et al., 2005). The benefit

of using electrons resides in the obser-

vation that the ratio between elastic

scattering and damaging absorption

events is substantially more favourable

compared with X-rays (Henderson,

1995).

With the advent of X-ray FELs,

dynamical studies with unprecedented

time resolution became possible using

three-dimensional protein crystals.

From this perspective, data collection

from two-dimensional crystals at X-ray

FELs in a serial femtosecond crystallo-

graphy (SFX) mode was explored.

During initial beamtime at the Coherent

Diffraction Imaging (CXI) endstation

of the Linac Coherent Light Source

(LCLS) in May 2012 we collected, to

our knowledge, the first ever two-

dimensional crystal X-ray diffraction

patterns in transmission. The crucial

improvement with respect to previous

unsuccessful attempts was to focus the beam down to several

hundred nanometres, tailored to the typical size of a two-

dimensional crystal. Thus, it was proven that the available

X-ray flux at CXI is sufficient to counteract the extremely

weak diffraction power (Frank et al., 2014). Later, in May

2013, better sample-preparation and delivery methods allowed

a dozen indexable diffraction images to be recorded from

single two-dimensional crystals of bacteriorhodpsin, exhi-

biting clear signals up to 7 Å resolution (Pedrini et al., 2014).

In November 2013 a third CXI beamtime took place,

devoted to exhaustive investigations of two-dimensional

crystals of different proteins prepared on various supports and

following different protocols. The remarkable improvements

in the data-collection automation at CXI allowed larger data

sets to be recorded than previously possible in a few shifts of

beamtime, which was the key to boosting the quality of the

data-analysis outcome. We report here on the results obtained

from a data set of about 1000 images recorded from

two-dimensional crystals of a bacteriorhodopsin mutant

(bR-D96N). The data set was collected in the ‘untilted’

configuration, meaning that the X-ray beam perpendicularly

hit the membrane on which the two-dimensional crystals were

deposited. We explain in detail the protocol used to identify

and index the diffraction patterns, as used in part in a previous

publication (Pedrini et al., 2014) but since upgraded to handle

patterns containing multiple lattices. The huge redundancy in

the observation of each reflection was exploited by suitably

adding up images to enhance the Bragg peak signals and in

parallel obtain a much more homogeneous background. Thus,

peaks to a resolution of at least 4 Å (corresponding to the
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Figure 1
Sample support. (a) Sketch of the chip carrying the two-dimensional bR-D96N crystals (the
membrane thickness is not to scale). (b) Picture showing the two faces of the chip, with the face
encountered by the incoming X-ray beam on the right. (c) Picture of various chips fixed on the
metallic frame that was mounted on the translation stages inside the CXI vacuum chamber for
X-ray diffraction data collection. The chip carrying the two-dimensional bR-D96N crystals is
delimited by the dashed blue line.



detector edge) are clearly visualized, and their intensity is

determined in a reliable manner with a signal-to-noise ratio of

above 7 in the highest resolution bin.

This represents a proof-of-principle study, in which we show

that the intrinsic limitation in the signal-to-noise ratio of

reflections from monolayers can be efficiently dealt with

thanks to the high redundancy of the data, and that this allows

the resolution limit of the experiment to be extended. In x4, we

briefly address the other key aspect of reconstructing the

intensity in three-dimensional reciprocal space and demon-

strating that it encodes useful structural information, which

will be the subject of a future article.

2. Methods

2.1. Sample preparation

Purple membrane was isolated from Halobacterium

salinarum expressing the mutant gene for bR-D96N, and
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Figure 2
Data-analysis protocol. The flowchart shows an overview of the applied data-analysis protocol. The various steps are described in x2.3. The columns with
dotted-line borders correspond to one diffraction image, from which one or more lattices are identified.



detergent-stabilized two-dimensional crystal solutions were

prepared using previously described procedures (Frank et al.,

2014; Pedrini et al., 2014). The two-dimensional crystals were

washed with water and suspended in 0.5%(w/v) glucose to a

final protein concentration of 0.5 mg ml�1 just before appli-

cation onto the sample carrier for X-ray diffraction data

collection.

A silicon chip with an area of 25 � 25 mm and 200 mm

thickness, produced by Silson Inc., was used as a carrier. The

chip had a 44 � 44 array of 100 � 100 mm windows made of a

20 nm thick Si3N4 membrane (Figs. 1a and 1b). A total of

about 30 ml of two-dimensional bR-D96N crystal suspension

was deposited onto the silicon chip and allowed to dry in air.

The resulting glucose layer served to protect the protein

sample from dehydration in the experimental chamber

vacuum.

2.2. Experimental setup and data collection

X-ray diffraction measurements were carried out at the CXI

experimental station (Liang et al., 2015) of the LCLS using the

0.1 mm focus setup. The photon energy was set to 8.5 keV

(1.5 Å). The beam size was estimated to be below 200 nm

FWHM. The pulse energy was�2 mJ and the pulse length was

�35 fs.

The chip covered with two-dimensional bR-D96N crystals

was mounted, together with other sample supports, on a

metallic frame that was fixed to the sample stages inside the

experimental chamber (Fig. 1c). Data collection was

performed in a vacuum environment, whereby all of the chips

on the frame were measured within about 6 h. The sample

stages were scanned in steps, membrane by membrane and

row by row, with X-ray pulses initiated on-demand (LCLS

burst mode) at a rate of about 1.5 per second in order to hit the

Si3N4 windows. The silicon frame was kept perpendicular to

the X-ray beam, which we call the untilted data-collection

configuration. Diffraction patterns were recorded using the

Cornell–SLAC pixel-array detector (CSPAD) with 2.3 mega-

pixels of 110 mm in size, which was placed 235 mm down-

stream of the sample in the same vacuum chamber (Blaj et al.,

2015). The final data set discussed here consisted of 968

images. These were summed, and an initial detector geometry

and an overall approximate direct-beam position were deter-

mined from the powder rings obtained.

2.3. Data analysis

We denote the reciprocal-lattice basis vectors of the

two-dimensional crystal as a* and b*, and the unit vector

perpendicular to the plane spanned by a* and b* as ẑz*. The

two-dimensional periodic arrangement in real space results in

reciprocal-space structure factors that are nonvanishing only

along the Bragg rods. These are lines labelled by two integer

indices (h, k) parametrized as qðh;kÞ þ qzẑz*; the continuous

parameter qz is the out-of-plane momentum transfer. The

in-plane momentum transfer associated with the rod is

q(h,k) = ha* + kb*, and we denote q = |q|. In a diffraction image,

the high-intensity spots, which we call Bragg peaks in analogy

to the nomenclature used in three-dimensional crystal-

lography, are observed in directions corresponding to the

intersection of the Ewald sphere, fixed by the direction and

photon energy of the incoming X-rays, with the Bragg rods

(Supplementary Fig. S1). A Bragg spot is labelled by

[h, k, qz(h, k, ’, �)], where qz depends on the tilt angle � and

the orientation angle ’ of the crystal on the sample-support

plane. In the untilted data-collection configuration, however,

qz depends only on the two rod indices (h, k), so that for

simplicity we use these two indices to label a Bragg

peak.

The entire analysis of the collected diffraction images was

carried out under the assumption of p3 symmetry of the two-

dimensional real-space lattice (plane group 13; Henderson et

al., 1990). Therefore, we have a = b, and the angle between

the two unit-cell vectors is 2�/3. The data-analysis pipeline

consists of seven subsequent steps, schematized in Fig. 2 and

explained in more detail below. Unless specified differently,

the processing was performed using scripts written in the

Python 2.7 language. The procedure delivers a list of Bragg

reflection intensities up to the highest possible resolution, as

well as quality indicators for the intensities.

2.3.1. Step 1: lattice identification. The diffraction images

were processed with Cheetah (Barty et al., 2014) to convert the

data format from XTC to HDF5, apply dark-current and gain-

calibration corrections, and produce a list of high-intensity

spot coordinates. These peaks were then arranged, if mean-

ingful, into groups compatible with diffraction patterns from

single two-dimensional crystals with lattice parameter

a = 62.45 Å, as known from previous studies (Henderson et al.,

1990), with the X-ray photon energy associated with that

measurement. We associated a preliminary lattice with each

group with at least 20 peaks, with the orientation in the sample

plane parametrized by the angle ’. This method allowed

the identification of up to five independent lattices per

image.

2.3.2. Step 2: lattice refinement. The parametrization of

each lattice was then refined further, relying on the experi-

mental intensities in the corresponding CSPAD diffraction

pattern. For all of the peaks (h, k) up to 4 Å in-plane reso-

lution, which corresponds to the detector edge, an image

sector consisting of 96 � 96 detector pixels centred at the

position predicted from the previously determined lattice

orientation was extracted. In each sector, the background area

was defined as the union of regions characterized by low

fluctuations in the intensity within the detector module to

which the predicted peak position belongs. The intensity in the

background area was fitted with a tilted plane, which was then

subtracted from the experimental intensities in the sector.

Afterwards, a connected region of high-intensity pixels was

searched, and if identified its centre-of-mass position was

defined as the experimental position of the peak. Lattices with

less than 28% of the peaks identified were discarded. The

experimental positions of the peaks served as the input for the

refinement routine. In addition to the mentioned parameters a

and ’, it turned out to be convenient to also refine the co-

ordinates of the direct-beam position on the detector. The
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routine consisted of an iterative application of either

systematic grid searches or the Powell algorithm (Powell,

1964).

Once the four parameters of a lattice had been determined,

the position of each peak in its corresponding sector was

calculated and the peak area was defined as a circle of radius

five pixels centred at the peak position. If the area belonged

entirely to one detector module, then the intensity I(h, k) of

the peak was calculated by integration of the intensities over

the pixels in the circle.

2.3.3. Step 3: indexing-ambiguity solution. Lattice indexing

in space group p3 is affected by ambiguity in the assignment of

indices. Indeed, the physical operations of reversing the face

of the crystal or rotating the crystal in plane by an angle �
around the axis perpendicular to the crystal plane do not

modify the peak positions, but modify the indices assigned to
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Figure 3
Diffraction images. Examples of the different types of collected diffraction images. (a) Single lattice. (b) Few lattices. (c) Multiple lattices. (d) Powder-
like. The intensity scale is the same in all panels. Images of types (a) and (b) are indexable. In (d) the high-intensity ring labelled by the red arrow
corresponds to the (3, 4) reflection and is at 8.9 Å in-plane resolution. The magenta cross represents the direct-beam position.



each peak. In the untilted experimental configuration, the

following operations have to be considered.

(i) T0: (h, k)! (h, k) (identity).

(ii) T1: (h, k)! (�h, �k) (in-plane � rotation).

(iii) T2: (h, k)! (�k, �h) (face reversal).

(iv) T3: (h, k)! (k, h) (in-plane � rotation followed by face

reversal).

To resolve the indexing ambiguity, the problem is to associate

with each lattice L one of the four transformations TL that acts

on the measured reflection intensities as

Ireind
L ðh; kÞ ¼ IL½TLðh; kÞ�

in such a way that the correlation of the transformed inten-

sities of equivalent peaks in different lattices is maximal. Only
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Figure 4
Lattice patterns. The four plots show examples of lattices obtained after step 2 of the data-analysis procedure, and are represented as circles that mark
the expected peak positions down to an in-plane resolution of 7 Å, superimposed on the corresponding diffraction image. Red circles indicate the more
prominent peaks that were identified and used to establish the precise lattice orientation and its unit-cell size. (a) is the single lattice image of Fig. 3(a)
(violet triangle label). (b), (c) and (d) are the same multiple lattice image of Fig. 3(b) (cyan triangle label), from which three different lattices were
identified. The dashed blue rings correspond to 50, 10 and 7.0 Å in-plane resolution. The magenta cross represents the direct-beam position.



peaks up to 7 Å in-plane resolution were considered. Two

alternative methods were used. The first, based on the

evaluation of intensity correlations from pairs of lattices, is

described in Appendix A. The second method uses the

expansion–maximization–compression (EMC) algorithm,

which was first proposed to orient weak diffraction patterns

from single molecules (Loh & Elser, 2009) and was later

applied to three-dimensional crystallography. Our imple-

mentation to two-dimensional crystallographic data is

described in Appendix B. The per-lattice transformations TL

obtained from the two methods were compared to check for

self-consistency.

2.3.4. Step 4: lattice scaling. To compensate for variations

in the crystal area exposed to the X-rays and for fluctuations in

the X-ray pulse energy, a lattice-dependent scaling of the

intensities,

Ireind;sc
L ðh; kÞ ¼ KL � I

reind
L ðh; kÞ; ð1Þ

was determined for best matching of the equivalent reflection

intensities up to 7 Å in-plane resolution in the data set, and

such that the average of all scaling factors KL is unity. The

procedure is explained in detail in Appendix C. Lattices that

could not be scaled were discarded.

2.3.5. Step 5: signal-to-noise enhancement by image sums.
Many of the diffraction peaks at higher than 7 Å in-plane

resolution turned out to be very weak and almost hidden in

the noise. The signal-to-noise ratio of the reflection intensity is

enhanced by measuring the same peak many times. Two

conceptually equivalent methods are possible. In the first,

which is the standard in protein three-dimensional crystallo-

graphy both at synchrotrons and X-ray FELs, the intensity is

measured in each image separately and the final intensity of a

reflection is obtained as the average of the intensities of

equivalent peaks. In the second, the pixel intensities of

equivalent sectors of each image are summed, and the final

intensity of the reflection is extracted from the obtained image

sum. We followed the second path because of some key

advantages: the background subtraction turned out to be

remarkably more reliable, the integration area could be

defined consistently, and in parallel small errors in the

geometry of the outer detector modules could be identified

and corrected.

The intensity in an image region around a predicted posi-

tion of a peak in the p3 reflection class {(h, k)} was first

rescaled with the lattice-specific scale factor of (1), and then

interpolated linearly on a 50 � 50 point grid centred at the

predicted position, with the x and y axes in radial and

azimuthal directions with respect to the direct-beam position,

respectively, and with a pitch corresponding to one detector

pixel. The intensity pattern Ifðh;kÞgðx; yÞ associated with the

reflection {(h, k)} was then obtained as the per-pixel average

over the N{(h,k)} equivalent observations, followed by a back-

ground-subtraction procedure analogous to that described

previously in x2.3.2. Because of the assumed p3 symmetry, each

lattice can provide up to three equivalent observations of a

reflection.

2.3.6. Step 6: reflection-area determination. The intensity

array Ifðh;kÞgðx; yÞ in each reflection-image sum was fitted with

a two-dimensional Gaussian function

Gðx; yÞ ¼ A exp �
ðx� xpkÞ

2

2�2
rad

�
ðy� ypkÞ

2

2�2
azi

" #
; ð2Þ
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Figure 5
Unit-cell sizes. Histogram of the distribution of the lattice constant a
refined for 586 lattices.

Figure 6
Scale factors. Histogram of the distribution of the lattice-dependent
multiplicative scale factors KL calculated for 521 lattices and imposing an
average value of unity.



with adjustable parameters A, xpk, ypk, �rad and �azi.

In a first attempt, the behaviour of the radial and azimuthal

widths �rad and �azi as a function of the in-plane momentum

transfer q exhibited a step-like feature at 7–6 Å resolution

(Supplementary Fig. S2). Since the detector geometry was first

set based on the powder rings, the intensity of which drops

markedly at this resolution, we suspected that the origin of the

hump relied on small errors in the geometry of the outer

modules. We therefore optimized the detector geometry using

the procedure described in Appendix D.

After determination of the outer module geometry

corrections, the image-summing procedure and the subse-

quent peak-shape fitting were repeated. The step-like feature

in the widths �rad and �azi disappeared, and their behaviour

could be modelled with the polynomial function

�iðqÞ ¼ aþ biq
2 þ ciq

4 ði ¼ rad; aziÞ; ð3Þ

which describes the spot shape as a function of the in-plane

momentum transfer. The reflection area was then defined as

an elliptical region Efðh;kÞg centred at the predicted peak

position with semi-axes 2.5�rad(qh,k) and 2.5�azi(qh,k).

2.3.7. Step 7: reflection-intensity determination. The final

reflection intensities were obtained by integration over the

ellipse area,

Ifðh;kÞg ¼
P

ðx;yÞ2Efðh;kÞg

I fðh;kÞgðx; yÞ; ð4Þ

and correspond to the number of photons scattered on

average by a two-dimensional crystal into the Bragg peak

{(h, k)}.

2.3.8. Data-quality evaluation. As an initial data-quality

indicator, we considered the signal-to-noise ratio S/N, which

for each reflection is given by

S=Nfðh;kÞg ¼
Ifðh;kÞg

�½Ifðh;kÞg�
: ð5Þ

The noise was calculated according to the formula
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Figure 7
Merged peak intensities. Histograms of the peak intensities of the p3 reflections {(1, 1)} (a, b) and {(3, 4)} (c, d) obtained in step 2 of the data-analysis
procedure before rescaling (left column) and after rescaling (right column). The red vertical line represents the average number of photons, and the two
dotted red vertical lines delimit the interval within the standard deviation. The in-plane resolution, number of observations, intensity average and
intensity standard deviation are reported.



�ðIÞ ¼
1

N1=2
� Iþ ðrþ 1Þnell�

2
bg

h i1=2

: ð6Þ

The first term in the square root accounts for the intrinsic

Poisson noise, while the second accounts for noise effects in

the integration and in the determination of the background

level. The parameter r is the ratio between the elliptical

integration area and the area used to establish the back-

ground, nell is the number of detector pixels in the elliptical

integration area and �2
bg is the variance of the intensity in the

background areas of single image sectors, averaged over all

sectors used to build the image sum I . (6) was inverted to

estimate the number of observations required with the same

setup to achieve an S/N of unity,

NS=N¼1 ¼
1

I
� 1þ

1

I
nellðrþ 1Þ�2

bg

� �
: ð7Þ

As a second indicator, we used the split correlation coefficient

CC1/2. For each reflection, the peak observations were split

into two sets, within which the image sums and the reflection

intensities were calculated in the same manner as for the non-

split data. The linear correlation between reflection intensities

in resolution bins of 22 reflections were calculated. The final

per-bin CC1/2 values were then computed as the average of the

correlations obtained from ten different random splittings of

the peak observations.

3. Results

Of the 968 collected images, 410 contained indexable

diffraction patterns, either from a single lattice (Fig. 3a) or

from a few lattices (Fig. 3b). The other images contained many

patterns, were powder-like (Figs. 3c and 3d), contained no

signal arising from two-dimensional crystals or were blanks

(no X-ray pulse hit the sample).

In the indexable images, 711 lattices were identified and

indexed, based on the peak list from Cheetah (step 1 in Fig. 2),

and then refined after a search for the most prominent

diffraction spots in the diffraction images (step 2 in Fig. 2),

which are marked in red in the example diffraction image of

Fig. 4. This number was reduced to 586 lattices by applying a

28% threshold to the fraction of detected spots in the reso-

lution range down to 4 Å. Fig. 5 reports the distribution of the

refined lattice constant, which shows a very small spread of

less than 0.5%.

The distribution of the number of lattices per image at this

point of the analysis was as follows: 21.3% of the images

delivered a single lattice (see the example in Fig. 4a), 12.3%

delivered two lattices, 4.3% delivered three lattices (see the

examples in Figs. 4b, 4c and 4d) and 0.4% delivered four

lattices.

The transformations to solve the indexing ambiguity (step 3

in Fig. 2) were successfully determined for all lattices except

one (585/586). There was full agreement between the outcome

of the two methods. 48.4% of the lattices were subjected to the

face-reversing transformations T2 and T3, which is compatible

with the expectation that the two-dimensional crystals are

deposited on the support with an equal probability of face

orientation. The scaling procedure (step 4 in Fig. 2) was

successful for 521 lattices out of 585 (88.9%). The distribution

of the scaling factors is shown in Fig. 6. Fig. 7 shows the

distribution of the measured peak intensities before and after

rescaling for two reflection classes, while Fig. 8 demonstrates

that the width of the distributions is clearly reduced by the

rescaling for reflections down to a resolution of 7 Å.

For further evaluation, the 521 lattices and the corre-

sponding images were considered, which correspond to an

effective hit rate of 0.54 lattices per image (521/968). Fig. 9

exemplifies the results of the image-sum procedure (step 5

in Fig. 2) for the four reflections {(�2, �11)}, {(11, 2)},

{(�11, �2)} and {(2, 11)} at 4.46 Å in-plane resolution.

Fig. 9(a) shows the same diffraction image as Figs. 3(a) and

4(a), with the predicted peak positions of the lattice marked

down to 4 Å in-plane resolution. Figs. 9(b)–9(e) are magnifi-

cations at four predicted peak positions, each belonging to one

of the four reflection classes. Figs. 9( f)–9(i) show the corre-

sponding image sums, each resulting from approximately 1300

observations. The enhancement of the signal to noise is nicely

visualized, in particular for the reflections {(�2, �11)} and

{(11, 2)}, for which the peaks are barely visible in the

diffraction images.

From the per-reflection image sums, we determined the

azimuthal and radial widths �rad and �azi of the reflections

(step 6 in Fig. 2) by fitting the image sums with a Gaussian

peak function (2) (see Fig. 10). The widths are plotted in

Fig. 11. The step-like artifact at about 7–6 Å in-plane resolu-

tion observed after a first iteration (Supplementary Fig. S2)

disappeared after correcting the geometry of the outer

modules, which allowed the widths to be modelled as a func-

tion of the in-plane resolution with the polynomial (3),

represented by the magenta curve in the figure.

The final reflection intensities were obtained by integration

on elliptical areas (step 7 in Fig. 2), shown by magenta
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Figure 8
Lattice-scaling effect. Ratio between the peak intensity distribution
widths �(Iresc)/hIresci and �(I)/hIi after and before scaling, respectively.
The ratios are shown as a function of the in-plane momentum transfer of
the reflection. Circles in magenta represent the average over resolution
bins.
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Figure 9
High-resolution data. (a) Extension to high resolution of the diffraction image in Figs. 3(a) and 4(a), in which a single lattice was identified. The circles
mark the predicted peak positions to 4 Å in-plane resolution. Red circles are valid positions on the detector, while blue circles are invalid positions owing
to module gaps or masked pixels. The dashed blue circle corresponds to 7 Å in-plane resolution. The magenta cross represents the direct-beam position.
(b)–(e) Magnifications at the peak positions labelled in (a) by an arrow of the corresponding colour. The four reflections are labelled by the indices of the
corresponding p3 reflection {(h, k)} and have the same in-plane resolution of 4.46 Å. ( f )–(i) Image-sector sums of the four reflections. The number of
observations N is indicated.



contours in the example in Fig. 10(a). Fig. 12 presents the

intensities of each reflection as a function of the reflection in-

plane resolution, as tabulated in Supplementary Table S1. We

observe that the typical reflection intensities range from about

ten photons per peak at 40 Å resolution to one photon per

peak at 4 Å resolution.

The per-reflection S/N values were calculated following (6)

and are shown in Fig. 13(a). The S/N decreases from 100 to the

order of 10 from low to 4 Å in-plane resolution. The factor of

ten decrease, which is larger than the expected 101/2 from

Poisson noise, reflects the contributions from the image-sum

background that become more relevant at higher resolution.

We checked that the S/N scales as expected as 1/N1/2 by

evaluating reduced data sets with ten and 100 lattices

(Supplementary Fig. S3). Fig. 13(b) reports the number of

observations N that are necessary to achieve an S/N equal to

unity at a given resolution, calculated for each reflection

according to (7). The magenta dashed line in the figure

represents the overall trend modelled as an exponential. At

4 Å resolution the required number of observation is close to

200.

Fig. 14 shows the split correlation coefficient CC1/2 in

resolution bins as a function of resolution, calculated for the

full data set of 521 lattices, as well as for reduced data sets

consisting of 100 and ten randomly chosen lattices. With

increasing number of lattices, the correlation coefficient

approaches 1 in all resolution bins.

4. Discussion

To analyze the two-dimensional crystal diffraction patterns,

we mostly implemented concepts from serial single-shot

three-dimensional protein crystallography, such as lattice
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Figure 10
Reflection-peak intensity fit. (a) Enlargement of the reflection-image sum
{(2, 11)} of Fig. 9(i). The dashed white lines are contour levels of the fitted
Gaussian peak function. The magenta ellipse is the integration area, with
the semi-axes defined after modelling the width behaviour. (b, c)
Horizontal and vertical sections through the red dotted lines in (a). The
blue points and cyan lines are the experimental data and the Gaussian fit.

Figure 11
Reflection-peak widths. Widths in (a) the radial direction (�rad) and (b)
the azimuthal direction (�azi) of the reflections, shown as a function of the
in-plane momentum transfer q. Only the widths of the reflections with an
intensity larger than one photon are plotted. The magenta lines represent
the biquadratic models indicated in the two panels.

Figure 12
Final reflection intensities. The intensities I of the reflections from
integration of the image sums, shown as a function of the in-plane
momentum transfer q. The large cyan circles are resolution-bin averages.



identification, lattice-parameter refinement and indexing-

ambiguity solution. We relied on previous knowledge of the

two-dimensional space group; however, the protocol can easily

be extended by establishing the crystal symmetry using low-

resolution spots.

To fully exploit the available data to the highest possible

resolution, we implemented the non-conventional image-sum

method that enhances the signal-to-noise ratio of the

measured reflection intensities. This approach was crucial, in

particular for refining the detector geometry a posteriori. Our

quality indicators show that with the full data set the resolu-

tion corresponding to the 4 Å limit given by the detector area

could be achieved. Similarly, our evaluations provide a

method to predict the number of reflection observations

necessary to achieve a certain resolution. For example, for

4 Å in-plane resolution (3.95 Å three-dimensional resolution)

the requirement is for about 200 observations. This number

increases to about 500 at 3.5 Å in-plane resolution, as

obtained by extrapolating from the experimental data.

The data discussed in this article were recorded at zero tilt

angle. In this configuration, for each Bragg rod (h, k) the value

of the diffraction intensity can only be measured at two

opposite reciprocal-space coordinates�qz(h, k) along the rod,

whereby the point with negative qz value is the Friedel mate of

a point of another rod with positive qz value. Because of the

curvature of the Ewald sphere, qz(h, k) is not vanishing,

therefore not even the reconstruction of a two-dimensional

density projection is possible. If the orientation of the two-

dimensional crystals on the sample support is random, then

recording data with a tilted sample chip allows the continuous

sampling of qz in a range along each rod, yielding a genuine

three-dimensional data set, which is however affected by a

missing data wedge, as in electron-microscopy and diffraction

approaches (Unwin & Henderson, 1975b). Most of the key

algorithms developed for the present analysis, such as lattice

identification, peak search, lattice-parameter refinement,

indexing-ambiguity solution and lattice scaling, are imple-

mented to treat tilted data. The procedure to reconstruct

intensities along Bragg lines in reciprocal space will be

detailed in a separate article, in which we analyze and merge a

few data sets collected at various tilt angles but with lower

redundancy and lower detector-edge resolution than the data

set in the present paper, and we address the key point of

showing that the three-dimensional intensity data set is

meaningful.

The single-layer assembly implies less steric hindrance in

general compared with three-dimensional crystals and opens

up the possibility of observing large-scale dynamics in a

pump–probe experiment, in which an optical pump triggers a

structural change that is probed, after a suitable time delay, by

a femtosecond X-ray pulse. In this respect, it becomes essen-

tial to optimize the methods for sample preservation in the

vacuum of the experimental chamber. A viable alternative to

sugar-embedding may be to ‘sandwich’ the sample within two

research papers

114 Cecilia M. Casadei et al. � SFX of two-dimensional membrane-protein crystals IUCrJ (2018). 5, 103–117

Figure 13
Signal to noise. (a) Signal-to-noise ratio S/N of the reflection intensity. (b)
Estimated number of observations of each reflection to achieve a signal-
to-noise value of unity (NS/N = 1), with the dashed magenta line
representing the best exponential fit. In both panels the values are shown
as a function of the in-plane momentum transfer of the reflection. The
large cyan dots are resolution-bin averages.

Figure 14
Split correlation coefficient CC1/2 obtained using the full data set of 586
lattices (blue), 100 lattices (magenta) and ten lattices (cyan). The values
are shown as a function of the in-plane momentum transfer q in the centre
of the resolution bin. Each resolution bin includes 22 reflections and each
point is the average over ten different random splittings of the data set.



thin membranes, for example of silicon nitride, as we tested

preliminarily during the November 2013 beamtime, or

of graphene, as originally developed for use in electron

diffraction (Gyobu et al., 2004) and then modified for two-

dimensional SFX (Frank et al., 2014). Owing to loose crystal

packing and femtosecond time resolution, two-dimensional

SFX is complementary to three-dimensional SFX and to

electron-based methods, respectively, and has the potential to

provide information on dynamics in systems that allow crys-

tallization in two dimensions.

5. Conclusions

The results of the experiments demonstrate that the measured

two-dimensional bacteriorhodopsin crystals diffract to at least

4 Å resolution and that the diffraction signal can be reliably

measured at this resolution from less than 100 images obtained

using the setup at the CXI beamline of the LCLS X-ray free-

electron laser. The very low signal intensities required the

implementation of analysis methods relying on image sums.

The resolution limit comes only from the experiment

geometry.

Ultimately, the overall outcome brings us towards near-

atomic resolution two-dimensional crystallography and to

pump–probe studies of the structural dynamics of membrane

proteins in a loose-packing environment, where large-scale

movements are allowed.

APPENDIX A
Indexing-ambiguity solution by linear correlation

We formulated the linear correlation method for solving the

indexing ambiguity in general terms in view of also processing

data with nonzero tilt angle. Linear correlations have already

been used in the three-dimensional SFX detwinning approach

to cluster patterns with the same indexing mode (Brehm &

Diederichs, 2014), as implemented in CrystFEL (White et al.,

2016). The method implemented here does not involve pattern

clustering, but rather a direct comparison of patterns in the

different indexing scenarios. The details are given below.

A1. Determination of the indices transformation

The transformation of indices TS�L that is required to make

a lattice L in the data set compatible in indexing with a

randomly extracted reference lattice or ‘seed’ S was deter-

mined as follows. A linear correlation coefficient between

intensities from the seed and those from lattice L was calcu-

lated as described in xA2 in the assumption of each of the

possible transformations Ti:

(i) T0(h, k, qz) = (h, k, qz),

(ii) T1(h, k, qz)) = (�h, �k, qz),

(iii) T2(h, k, qz) = (k, h, �qz) 	 (�k, �h, qz),

(iv) T3(h, k, qz) = (�k, �h, -qz) 	 (k, h, qz).

The largest of these coefficients is that related to the most

likely transformation. The reliability of the determination of

TS�L was assessed by randomly extracting a large number (e.g.

100) of lattices L0, for each of which the expression

TS�L � TL�L0 � TL0�S

was evaluated. When the three transformations involved are

correctly determined, this expression equals identity. We

considered the identification of TS–L to be reliable if the

expression above was equal to identity for at least 70% of the

lattices L0.

The procedure was repeated extracting different seeds Sj

and the consistency of the results was checked. The transfor-

mation TSk�Sj
required to make the indexing of different seeds

compatible was determined and the transformation of all

lattices (for which a value of TSj�L had been reliably

determined) with respect to the same seed was calculated:

TSk�L = TSj�L � TSk�Sj
.

A2. Calculation of the linear correlation coefficients

The linear correlation coefficient relating the intensities

from two lattices L1 and L2 was calculated as follows, with the

assumption of each of the transformations Ti defined in xA1.

For each indexed spot (h, k, qz) in L1, a search was carried out

through L2 looking for spots with indices Ti(h, k, qz). While

the four transformations formulated above leave the value of

qz unaltered, it was necessary to relax the condition qz(L1) =

qz(L2) in the search across L2, setting a nonzero upper limit

for the tolerated difference, since the method was written in a

general way to also treat data from tilted-stage measurements.

Both p3 lattice symmetry and Friedel symmetry were

considered in the search described above. This is important in

the case of nonzero tilt, where the number of pairs entering

the correlation calculation is relatively small. In practice, for

each transformation Ti, (h, k, qz) in L1 was matched to six

equivalent spots in L2 (when measured),

ðh; k; ~qqzÞTi
�

1 0 0

0 1 0

0 0 1

0
B@

1
CA

ðh; k; ~qqzÞTi
�

�1 1 0

�1 0 0

0 0 1

0
B@

1
CA

ðh; k; ~qqzÞTi
�

0 �1 0

1 �1 0

0 0 1

0
B@

1
CA

and their Friedel mates. Here ðh; k; ~qqzÞTi
indicates the trans-

formed indices Tiðh; k; ~qqzÞ and ~qqz ’ qz.

APPENDIX B
Indexing-ambiguity solution by the expansion–
maximization–compression algorithm

An alternative method for resolving the indexing ambiguity is

the use of the expansion–maximization–compression (EMC)

algorithm (Loh & Elser, 2009), which was originally devised
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for determining the orientation of single-particle diffraction

patterns. Less well known is that the same technique can be

modified and adapted for solving the ambiguity in the

indexing of serial crystallography (SX) data. The sparse

images are replaced with reflection intensities, the search

space of angles become the set of possible reindexing opera-

tors (defined in x2.3.2 in the case of plane group p3) and the

three-dimensional compressed model becomes the final set of

merged intensities. The Poisson probability operator can be

retained for use with very weak patterns consisting of single

photon counts (Philipp et al., 2012; Ayyer et al., 2015), while

for stronger patterns of varying intensity this can be replaced

with a cross-correlation metric, thereby obviating the need to

determine the relative scaling of each pattern. The modified

EMC algorithm becomes the following.

(i) Create an initial model for reflection intensities based on

either random start or on the average value of observations

merged according to the original (ambiguous) indexing.

(ii) Compute the cross-correlation of each individual

pattern with the model for each operation that leaves

diffraction positions unaltered (reindexing operation). This

includes the point-group symmetry of the lattice and, for two-

dimensional crystals in p3, the possibility of an in-plane �
rotation, the face reversal of the crystal and their combination.

(iii) Assign the pattern-reindexing transformation to that

with the highest cross-correlation with the current model.

(iv) Merge all patterns in their newly assigned indexing,

update the current model and repeat from step (ii).

The known point-group symmetry of the crystal can be

applied at this stage, if it is known, to merge symmetry-

equivalent reflections. In practice, we found that assignments

were stable and nonchanging after less than ten iterations of

the loop. Observations are merged based on the final re-

indexing assignment obtaining the set of reflection intensities

used for structure determination. The same procedure works

very well for solving the indexing ambiguity in three-

dimensional SX data in addition to the two-dimensional SFX

case studied here.

APPENDIX C
Lattice-intensity rescaling

The multiplicative factor KL�S required to scale the intensities

from a lattice L to those from a randomly extracted seed S was

calculated by linear least-squares fitting,

ISðh; k; qzÞ ¼ KL�S � ILðh; k; ~qqzÞ
0;

where ~qqz ’ qz and ðh; k; ~qqzÞ
0 are the p3-transformed ðh; k; ~qqzÞ

and their Friedel mates.

To verify the reliability of this estimate of KL�S we adopted

a method analogous to that described in xA1. A large number

(e.g. 100) of lattices L0 was extracted, for each of which the

expression

KL�S � KS�L0 � KL0�L

was evaluated. We considered the value of KL�S to be

acceptable if a value close to 1 (between 0.75 and 1.25) in the

expression above was obtained with at least 70% of the lattices

L0. The procedure was repeated extracting different seeds and

the consistency of the results was checked. The average value

of scaled, equivalent reflections was used as a preliminary

indication of intensity.

APPENDIX D
Determination of translational corrections to detector-
module positions

Translational corrections tm
x and t m

y to the position of each

detector module m were determined as follows. For each

reflection class {(h, k)} with sufficient intensity, a partial sum

was calculated by summing image sectors belonging to module

m. The partial sum was fitted using a two-dimensional Gaus-

sian function and the distance between the refined centre

coordinates of the fitting function and the predicted spot

position was considered to be an estimate tm
x,{(h,k)} and tm

y,{(h,k)}

of the translational error. Consistent results were found

repeating the procedure for all orbits {(h, k)} with spots on a

given module, and sufficient intensity to obtain a meaningful

fit. The translations for a module m were calculated as the

average on all reflection classes {(h, k)} of t m
x,{(h,k)} and t m

y,{(h,k)}.

The pseudo-code describing this procedure is reported in the

Supporting Information.
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