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Differential sensitivity of grassland structural components to changes in 1 
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Summary 18 

1. In arid and semiarid ecosystems, there are legacies of previous-year precipitation on current-19 

year aboveground net primary production. We hypothesized that legacies of past 20 

precipitation occur through changes in tiller density, stolon density, tiller growth, axillary 21 

bud density and percent viable axillary buds. We examined the sensitivity to current- and 22 

previous-year precipitation of these grassland structural components in Bouteloua eriopoda, 23 

the dominant grass in the Northern Chihuahuan Desert. 24 

2. We conducted a rainfall manipulation experiment consisting in -80% reduced precipitation, 25 

ambient, +80% increased precipitation treatments that were subjected to one of five 26 

precipitation levels in the previous two years (-80% and -50% reduced precipitation, 27 

ambient, +50% and +80% increased precipitation). The first two years preconditioned the 28 

experimental plots for year three, in which we created wet-to-dry and dry-to-wet transitions. 29 

Measurements were done in year 3. 30 

3. We found that stolon density was the most sensitive to changes in precipitation and that 31 

percent-active buds was insensitive.  32 

4. We also found that past precipitation had a significant legacy on grassland structural 33 

components regardless of the precipitation received in the current year and that the legacy 34 

occurs mostly through changes in stolon density.   35 

5. Here, we showed that there is a differential sensitivity of structural components to current 36 

and past precipitation and supported previous findings that vegetation structure is one of the 37 

controls of productivity during precipitation transitions.  38 

 39 

 40 
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 44 

Introduction 45 

Aboveground net primary production (ANPP) of a grassland ecosystem, which is expressed in g 46 

m
-2

 yr
-1

, is the result of the growth of each individual shoot and the density of these shoots. The 47 

latter, in turn, depends on the vegetative recruitment from the population of meristems and thus 48 

the fraction of meristems that is active and not dormant. This phenomenon by which the 49 

population of meristems controls primary production is also known as meristem limitation 50 

(Geber 1990). This point of view contrasts with the ecosystem approach that suggests that 51 

grassland ANPP is most frequently controlled by water availability (Noy-Meir 1973; Sala et al. 52 

1988). These two approaches without a doubt complement each other. In other words, water 53 

availability directly affects ANPP through changes in C fixation at the leaf level and indirectly 54 

through changes in ecosystem structure, which, in grasslands, includes the density of individual 55 

plants, their identity and the density of tillers.  56 

 Water availability is the most frequent limiting factor of the functioning of arid and 57 

semiarid ecosystems (Noy-Meir 1973). Ecologists have documented strong spatial relationships 58 

between mean annual precipitation and mean ANPP across precipitation gradients for different 59 

regions around the world (Sala et al. 1988; McNaughton, Sala & Oesterheld 1993; Jobbágy, Sala 60 

& Paruelo 2002; Bai et al. 2008; Sala et al. 2012). Temporal productivity-precipitation 61 

relationships for individual sites are far weaker than spatial relationships, and account for only 62 

20 to 40% of the interannual ANPP variability (Lauenroth & Sala 1992; Briggs & Knapp 1995; 63 
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Jobbágy & Sala 2000; Hsu, Powell & Adler 2012; Sala et al. 2012). This low explanatory power 64 

of temporal precipitation patterns results from legacies of previous-year precipitation on current-65 

year ANPP, reducing current-year production when the previous year was drier than the current 66 

and enhancing it when the previous year was wetter (Sala et al. 2012; Reichmann, Sala & Peters 67 

2013). In the Chihuahuan desert, nearly 40% of legacy variability results from changes in 68 

previous-year tiller density (Reichmann et al. 2013), revealing that the indirect effect of past 69 

precipitation  on ANPP occurs through changes in vegetation structure. ANPP was higher when 70 

the previous year was wetter than when the previous year was drier relative to current year; and 71 

an important fraction of ANPP variation was explained by tiller density.  72 

 We propose a framework that combines ecosystem ecology with population ecology to 73 

understand ecosystem-level processes (Figure 1). Under this framework, precipitation directly 74 

and indirectly affects ANPP. Ecosystem ecologists have extensively studied the direct effect of 75 

resource availability on ecosystem functioning (Sala et al. 1988; Huxman et al. 2004). The 76 

indirect effect occurs through population and community level processes mediating the ANPP 77 

response. Tiller recruitment and sexual reproduction are the mechanisms that allow plant and 78 

population persistence in perennial grasslands. In some arid-semiarid ecosystems, successful 79 

establishment from seeds is rare, representing in some cases less than 1% of total aboveground 80 

stems (Nelson 1934; Neilson 1986; Lauenroth et al. 1994; Rogers & Hartnett 2001). Thus, 81 

population persistence of perennial grasses is shaped by meristem limitation as grasses rely upon 82 

the vegetative recruitment from the population of meristems. The bud-bank (sensu Harper 1977) 83 

is the primal source for tillers and functions like a seed bank; but unlike seeds that may outlast 84 

their parent plants, the presence of buds in a bud bank depends on living individuals. Similar to 85 

seeds, these buds have innate or induced dormancy, and the activation or breaking of dormancy 86 



Page 5 of 27 

is an obligated step in vegetative regeneration (Klimesova & Klimes 2007). The density of tillers 87 

or stolons depends on the density of buds and the fraction that is activated (Figure 1). Factors 88 

affecting meristem density have impacts on the maintenance of relative species abundance 89 

(Busso, Mueller & Richards 1989; Hendrickson & Briske 1997; Laterra, Deregibus & Maceira 90 

1997; Benson, Hartnett & Mann 2004). For example, grazing may affect grass persistence by 91 

increasing the proportion of dead axillary buds per tiller (Flemmer, Busso & Fernandez 2002) or 92 

by reducing tiller density (Becker et al. 1997; Wan & Sosebee 2002). The effect of resource 93 

availability on axillary bud density, activation, and tiller recruitment and its consequences for 94 

ecosystem functioning has received relatively small attention in the literature (but see Busso et 95 

al. 1989; Dalgleish et al. 2008; Dalgleish & Hartnett 2009).  96 

 This paper aims at answering a central question of the relationship between precipitation 97 

variability and ecosystem structure in grassland ecosystems. How do growth per tiller, tiller 98 

density, bud density and percent bud dormancy respond to current and previous-year 99 

precipitation? Grassland structural components with high sensitivity to changes in precipitation, 100 

i.e. those that exhibit the highest relative change to changes in precipitation, would be the most 101 

important for mediating the effects of precipitation on ANPP. Theory predicts that plants invest 102 

in current-year growth and produce new leaves rather than investing in organs that will sustain 103 

future growth until the marginal revenue from the increased production is equal to the marginal 104 

cost (Bloom, Chapin & Mooney 1985). Investing in organs that will sustain future growth occurs 105 

at a minimal cost but it will come last, because it results in a diversion of resources from growth. 106 

The loss in immediate production is balanced by the plants long-term persistence in a variable 107 

environment, allowing the plant to survive after disturbance or stress (Bloom et al. 1985). We 108 

tested two hypotheses linking vegetation structure dynamics to precipitation: 1) dormant, active 109 
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meristem, tiller and stolon density will have different sensitivities to precipitation; with a 110 

hierarchy of responses based on theories of resource allocation strategies for growth and storage 111 

(Bloom et al. 1985). We predict that tiller growth will show the highest precipitation sensitivity, 112 

followed by the density of tillers and stolons, the percentage of active buds per tiller, and lastly 113 

the number total axillary buds per tiller. 2) There will be a legacy of past precipitation on 114 

grassland structural components, and legacies would have a greater effect on production of buds 115 

than on investments with instantaneous-profit like tiller growth.   116 

We tested our hypotheses by decreasing or increasing rainfall for two years and a 117 

reversed treatment in year 3 where some plots under drought during years 1 and 2 were irrigated 118 

and some under wet conditions in years 1 and 2 were subjected to drought. We assessed the 119 

effects on ANPP and dormant, active meristem, tiller and stolon density in Bouteloua eriopoda 120 

(Torr.) Torr. (black grama).  121 

 122 

Materials and methods 123 

Experimental Design 124 

 The study was conducted at the Jornada Basin Long Term Ecological Research site 125 

(32.5˚N, 106.8˚W, 1188 m asl) located in the northern Chihuahuan Desert, NM. Mean annual 126 

precipitation from 1915-1995 was 245 mm and average temperature was 14.7˚C. Vegetation type 127 

is desert grassland dominated by Bouteloua eriopoda (black grama) and Prosopis glandulosa 128 

Torr. (honey mesquite). Soils are coarse-textured, well-drained, sandy loams soils (Typic 129 

Paleothids) (Soil-Survey-Staff 1999), with a layer of calcium carbonate found at depths from 64-130 

76 cm. (Herbel, Ares & Wright 1972; Gibbens et al. 1986). 131 

 The rainfall manipulation consisted of 5 levels of precipitation (P) from 2007-2009 (20%, 132 



Page 7 of 27 

50%, 100%, 150% and 180% of natural ambient). During year 3 the treatments were reversed so 133 

plots that had previously received drought (20 and 50 %) in year 3 either stay the same or 134 

received irrigation. Similarly, plots that in years 1 and 2 received irrigation, in year 3 either stay 135 

the same or received drought. We used 2.5 X 2.5 m plots with an N = 6 and doubled number of 136 

replicates in control yielding a 66 total number of plots This experimental design generated plots 137 

that had the same precipitation treatment for three years and plots that had dry/wet and wet/dry 138 

precipitation transitions in 2009, each treatment with six replicates. Response variables were 139 

measured once at the end of 2009 growing season, with the exemption of axillary buds per tiller 140 

and percentage of active axillary buds that were also measured before the 2009 growing season 141 

started. Ambient water-year precipitation was 344 mm in 2007, 312 mm in 2008 and 118 mm in 142 

2009. 143 

 We installed individual rainout shelters in reduced-precipitation plots (Yahdjian & Sala 144 

2002).  Shelters had 2 levels of rainfall reduction of 50 and 80% achieved using different 145 

numbers of transparent acrylic “shingles” per shelter. Precipitation reduction was achieved by 146 

reducing the total amount without modifying the natural precipitation pattern. Shingles were 147 

transparent, molded from acrylic ACRYLITE
®
 FF, a material with high light transmission (> 148 

92% PAR transmitted) and less than 3% change in light transmission over a 10-year period 149 

(CYRO Industries, Parsippany, NJ). Previous tests on this type of rainout shelter showed that 150 

their effects on light and temperature were minimal (Yahdjian & Sala 2002). Rainout shelters 151 

were left in place throughout the duration of the experiment and only removed to perform 152 

measurements. 153 

 For the water addition treatments, we installed an irrigation system to water the plots with 154 

sprinklers. We watered the plots with an extra 50% or 80% of each precipitation event greater 155 
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than 2 mm using rainfall collected off-site. Due to a drier than average growing season during 156 

2009, wet treatments received 5 additional irrigation events of 20 mm each in September.   157 

 158 

Response variables  159 

Aboveground net primary production. We used non-destructive annual measurements of 160 

vegetation cover and site-specific cover-to-biomass regressions to estimate black grama ANPP. 161 

Regressions of plant cover vs. live biomass were obtained by double sampling cover and 162 

biomass (Flombaum & Sala 2007). The data set to construct the cover-biomass relationship 163 

consisted of forty 20 x 100 cm plots where we measured black grama cover and harvested the 164 

grass at peak growing season. Plant cover was evaluated with two parallel lines per plot, where 165 

we recorded green and standing dead interception per species present in the plot. We obtained a 166 

regression of black grama biomass (g m
-2

) = 264.56 * black grama percent cover, N=20, r
2
 = 167 

0.68, p < 0.001. Grass cover ranged between 0.09 and 0.80 percent. The regression was forced 168 

through zero (Flombaum & Sala 2007) because zero biomass yields zero productivity. We 169 

measured plant cover with three parallel lines in each treatment plot, each of 250 cm length and 170 

evenly spaced from the east border. We recorded green interception per species for all plants 171 

present in the plot, and used the regressions to obtain an estimate of biomass by species. Annual 172 

aboveground net primary production of black grama was equated to green biomass at peak 173 

biomass (Sala & Austin 2000; Flombaum & Sala 2007) in 2009.  174 

 Tiller and stolon density. We counted the number of physiologically active tillers and stolons 175 

of black grama at peak biomass in 2009. Tillers were counted within permanent 40-cm diameter 176 

rings, and scaled up to a square-meter area. Rings were located in a black grama patch 177 

representative of the plot. Stolons were counted if they belonged to tillers within the ring. 178 
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Physiologically active tillers and stolons were those with at least one green leaf present at the 179 

moment of sampling. 180 

Production per tiller, or tiller growth, was calculated as the ratio between black grama ANPP 181 

for 2009 and tiller density in 2009.  182 

Total axillary buds and percent active axillary buds per tiller. We harvest 2 or 3 black grama 183 

crowns per plot in the fall of 2009 (mid-October, end of growing season). We also collected 184 

crown samples in the spring of 2009 to detect any possible difference in the response of viable 185 

buds to phenology (Ott & Hartnett 2011). We examined bud viability and total axillary buds per 186 

tiller under a dissecting microscope within two weeks from harvest. Samples were washed free 187 

of soil and ten to fifteen tillers were picked haphazardly, totaling 900 to 1400 tillers per sampling 188 

date. We incubated the base of tillers in darkness at 30ºC for 15h in 0.6 % (m/v) 2.3.5-Triphenyl 189 

Tetrazolium Chloride (TTC) solution, as described in Busso et al. (1989). Enzymatic activity 190 

reduces TTC to an insoluble red formazan, showing red, metabolically active buds under the 191 

dissecting scope. We calculated the percent of active axillary buds from the total bud population 192 

and the number of axillary buds per tiller.  193 

 194 

Statistical Analyses 195 

We used mixed linear models to test the effects of precipitation and previous-year 196 

precipitation on each response variable (proc mixed procedure, SAS® 9.2, SAS Institute Inc.). 197 

First, we fitted least square linear regressions to examine how each response variable responded 198 

to changes in precipitation. This analysis only included results from plots that always had the 199 

same precipitation treatment throughout the experiment. Block effect was included in all the 200 

analyses as a random effect and the REML method (Restricted or Residual Maximum 201 
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Likelihood) was used to calculate the variance component, which produces smaller estimates for 202 

the random effects. For the purpose of this study, we defined annual precipitation as the water-203 

year precipitation received between October 1st and September 30th. We calculated water-year 204 

precipitation input per precipitation treatment by either adding the irrigated amount, or by 205 

subtracting the percentage intercepted by rainout shelters to the ambient precipitation. The 206 

second part of the analyses consisted of determining the sensitivity of different response 207 

variables to current- and previous-year precipitation. Sensitivity analysis was performed by 208 

comparing standardized slopes of each response variable to changes in precipitation. 209 

Standardization consisted of calculating a new response variable, the natural logarithm of the 210 

response ratio, ln(Ri) = ln(Xij/�̣�ic), where Xij is the observed quantity for variable i in the 211 

experimental plot j, and 𝑋ic is the mean response of i variable in ambient precipitation plots. The 212 

ratio R is a unit-less measure of the experimental effect, as it quantifies the relative change of 213 

each variable that results from the manipulation. We used the natural logarithm of R because its 214 

sampling distribution is more normal than that of R (Hedges, Gurevitch & Curtis 1999). Next, we 215 

used a mixed model to describe the relationship among the response ratio ln(R), the i 216 

classification variables, the covariate precipitation, and the experimental units. Given that all 217 

response variables were measured in the same experimental units, we added a plot within block 218 

repeated statement to account for the covariance structure of the data (Littell et al. 2006). 219 

Differences in precipitation sensitivity were tested with the equal slope hypothesis and pairwise 220 

comparisons among slopes. Sensitivity to precipitation legacies was studied with a similar mixed 221 

model that included two covariates, Pt and Pt-1, and we tested whether previous year precipitation 222 

had a significant effect on the response once that the effect of current-year precipitation was 223 
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accounted for. Precipitation was treated as a continuous variable. We report whole model R
2
, and 224 

P values for individual effect tests.  225 

 226 

Results 227 

ANPP and components of ecosystem structure responses to changes in precipitation 228 

 There was a significant, positive linear relationship between black grama ANPP and 229 

water-year precipitation (Figure 2 a) that explained 89% of the variation in ANPP for 2009 230 

(ANPP2009 g dry biomass m
-2

 yr
-1

 = 7.69 + 0.33 P (mm), p < 0.0001, n=18). Production per tiller 231 

also increased with increasing precipitation in year 2009 (Figure 2 b). Precipitation explained 232 

53% of the variation in 2009 production per tiller (production/tiller2009 g dry biomass tiller
-1 

 = 233 

0.0224+0.00026 P, p = 0.0075, n=18).  234 

Black grama tiller and stolon density measured at the end of the growing season 235 

increased linearly with precipitation received during 2009 (Figures 2 c and d). Mean tiller 236 

density in irrigated plots was almost three-fold greater than in drought plots (Tillers m
-2

 2009= 237 

428.50 + 3.25 P09, p < 0.001. R
2
 = 0.50, n=18). Stolon densities increased by 500% in irrigated 238 

compared to drought treatments during 2009 (Stolons m
-2

 2009= 64.61 + 2.11 P, p = 0.0015, R
2
 = 239 

0.48, n=18). Our result of tiller density in the natural ambient precipitation treatment of 1600 240 

tillers m
-2

 was comparable to stem densities found by Dalgleish and Hartnett (2006; Littell et al. 241 

2006) in an experimental site in Northern New Mexico.  242 

The percentage of active axillary buds did not respond to incoming precipitation (Figure 243 

2 e, p=0.7). About 20% of axillary buds were active in the fall of 2009. In the spring, before the 244 

onset of the growing season, 40% of buds were active on average, and this was not related to 245 

precipitation either (results not shown). The number of total axillary buds per tiller found in the 246 
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fall increased with precipitation (Axillary buds tiller
-1 

fall2009=1.12+0.022 P, p = 0.05, R
2
 = 0.21, 247 

n=18) and the magnitude of the change (~35%) was similar to the increase in axillary buds with 248 

precipitation in the spring (Axillary buds tiller
-1

sp2009 =1.54 +0.002 P, p = 0.003, R
2
 = 0.25, n=32) 249 

(Figure 2 f). The proportion of viable buds, and axillary buds numbers of 1 to 3 per tiller found 250 

in Bouteloua eriopoda were comparable with previous studies on B. curtipendula (Hendrickson 251 

& Briske 1997) and Stipa spp. (Flemmer et al. 2002).  252 

 253 

Sensitivity of the components of ecosystem structure to current and previous-year precipitation 254 

All response variables except percentage of active buds were affected by changes in 255 

current-year precipitation, but some were more sensitive than others (Figure 3). There are two 256 

important results from this analysis. First, sensitivity to precipitation was, in all cases, positive, 257 

because all response variables increased with increasing precipitation. Second, stolon density 258 

was the most sensitive to changes in current-year precipitation, followed by production per tiller, 259 

tiller density and total buds per tiller.  260 

Previous-year precipitation had a significant effect on tiller density, stolon density, and 261 

axillary buds per tiller (Figure 4). Stolon density was the most sensitive to previous-year 262 

precipitation, followed by tiller density and total buds per tiller. Production per tiller and % of 263 

active buds were not sensitive to previous-year precipitation. Regardless of current precipitation, 264 

plots with previous dry conditions had fewer tillers, stolons and axillary buds than plots with a 265 

wet history. Different components of population structure had a similar hierarchy of response to 266 

legacies of previous-year precipitation than to current-year precipitation (Figures 3 and 4).  267 

 268 

Discussion 269 
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Our study supported the hypothesis that different components of the ecosystem structure 270 

had different sensitivities to precipitation (Figure 3). Stolon density, production per tiller and 271 

tiller density were the most affected by precipitation. The number of stolons was the most 272 

sensitive structural component to changes in precipitation; and stolon growth has been proposed 273 

to be the principal regeneration process in black grama (Nelson 1934). Why does stolon 274 

population change more than tiller population in response to more precipitation?  Stoloniferous 275 

expansion is a reproductive strategy that allows the daughter plant to establish further away from 276 

the parent plant than by tillering, and to establish in an open patch with less competitive pressure. 277 

In arid ecosystems such as the Chihuahuan Desert grassland, there are large patches of bare soil 278 

in between grass tussocks. Therefore, we speculate that horizontal expansion of grass tussocks is 279 

much more advantageous from the standpoint of acquiring resources than growing new tillers 280 

adjacent to the mother plant. Expansion predominantly through stolons may hold for arid 281 

grasslands where competition for belowground resources is dominant but probably will not hold 282 

for mesic grasslands driven by light competition.   283 

Contrary to our prediction, total percent of active buds was not sensitive to precipitation. 284 

Plants have anticipating mechanisms that are controlled by external stimuli, like changes in the 285 

photoperiod or temperature (Casal, Sanchez & Deregibus 1986). Plants that respond to 286 

environmental cues before the onset of water or temperature stress may have a competitive 287 

advantage relative to those that respond directly to stress (Casal et al. 1986; Shimizu-Sato & 288 

Mori 2001). Regulated by plant hormones like auxin and cytokinin, a low-maintenance axillary 289 

bud bank reserve might break dormancy as a response mechanism to biomass loss resulting from 290 

either herbivory, fire or drought (Lehtilä 2000; Shimizu-Sato & Mori 2001). Therefore, it is 291 

likely that bud dormancy is controlled by cues other than precipitation.  292 
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The axillary bud density was sensitive to precipitation in contrast to what has been 293 

reported for other grass species (Flemmer et al. 2002), with consequences on the population of 294 

active buds. Previous evidence suggested that the number of axillary buds produced in each tiller 295 

was an inflexible trait (Hendrickson & Briske 1997). Our results were different from those of 296 

Flemmer et al. (2002) who found that the number of total axillary buds per tiller was insensitive 297 

to precipitation in perennial tussock grasses from South America. We speculate that the 298 

difference between our results and those reported previously is associated with the strength of the 299 

experimental manipulation. In our case, the experimental precipitation change was ± 80%. In 300 

Flemmer’s case  +70% and -10% in year 1, and ± 10% in year 2. In synthesis, the number of 301 

axillary buds may be sensitive to changes in water availability but this effect becomes evident 302 

only under severe alterations of water availability. At the tiller level, the number of active buds 303 

depends both on the percentage of active buds (~20 %, Figure 2 e) and the total number of 304 

buds/tiller that increased with increasing precipitation (Figure 2 f). Thus, changes in precipitation 305 

indirectly affect the population of active axillary buds by unit area by changing the density of 306 

total axillary buds in tillers and tiller density.  307 

Our study suggests that changes in black grama ANPP in response to changes in 308 

precipitation occur mostly through changes in stolon and tiller number and the amount they 309 

grow. Although stolons and tillers have a similar structure (Langer 1972), they have different 310 

functions in the plant. Tillers were three times more abundant than stolons and account for most 311 

of the photosynthetic biomass. We hypothesize that increased water availability first stimulates 312 

production per tiller (highest marginal profit) until it reaches a maximum. At this point, changes 313 

in ANPP only occur through changes in tiller density.  314 
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Sensitivity to previous-year precipitation was lower than sensitivity to current 315 

precipitation but was still significant. We hypothesize that the effect of precipitation on the 316 

different structural components decreases as the window of observation becomes larger. In other 317 

words, sensitivity of structural components to current-year precipitation is higher than sensitivity 318 

to previous-year that is higher (we speculate) than sensitivity to precipitation of the previous two 319 

years. The precipitation effect gets diluted through time.  320 

One implication of this study on the understanding of ecosystem functioning is the notion 321 

that precipitation imposes legacies on the vegetation structure. Lauenroth and Sala (1992) 322 

hypothesized that the temporal controls of productivity respond to slow changes in vegetation 323 

structure. Here, we showed that past precipitation affects current-year tiller populations, and 324 

supported previous findings that vegetation structure provides feedbacks on productivity to 325 

precipitation transitions (Reichmann et al. 2013).  326 

Results from our work highlight the importance of meristem dynamics and vegetation 327 

structure in controlling ecosystem functioning. Interactions between population and ecosystem 328 

phenomena are growing in recognition from the studies of biodiversity on ecosystem functioning 329 

of the last decade to the recently recognized importance of meristem abundance from tillers to 330 

seeds, in fostering conservation efforts (Kettle et al. 2011).  331 
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Figures  455 

Figure 1. Conceptual diagram of the effects of precipitation on the different components of 456 

vegetation structure and their interactions (modified from Ott & Hartnett 2012). Precipitation 457 

affects aboveground net primary production (ANPP) both directly and indirectly by affecting the 458 

bud bank size, active buds, tiller and stolon recruitment, growth and death. Precipitation that 459 

occurred in the previous-year affects ANPP indirectly through tiller retention and resource 460 

storage into buds, with possible downstream effects.  461 

 462 

Figure 2. Effect of water-year precipitation on aboveground net primary production (a), 463 

production per tiller (b), tiller density (c), stolon density (d), percent active axillary buds (e), and 464 

total axillary buds per tiller (f) in 2009. All response variables increased with increasing 465 

precipitation(P) except for the percentage of active axillary buds that was insensitive to changes 466 

in precipitation. Gray dots represent experimental units response. Black dots represent the mean 467 

response variable per precipitation  level ± 1 SE. Lines represent significant linear relationships. 468 

ANPP2009 g dry biomass m
-2

 yr
-1

 = 7.69 + 0.33 P (mm), R
2
= 0.89, p < 0.0001, n=18;; 469 

production/tiller2009 g dry biomass tiller
-1 

 = 0.0224+0.00026 P, R
2
 =0.53, p = 0.0075, n=18. 470 

Tillers m
-2

 2009= 428.50 + 3.25 P09, p < 0.001. R
2
 = 0.50, n=18; Stolons m

-2
 2009= 64.61 + 2.11 P, 471 

p = 0.0015, R
2
 = 0.48, n=18; % active buds fall2009 = 17.31 ± 4.74, R

2
= 0.01, p = 0.7, n=18; 472 

Axillary buds tiller
-1 

fall2009=1.12+0.022 P, p = 0.05, R
2
 = 0.21, n=18. 473 

 474 

Figure 3. Sensitivity of ecosystem structure components to changes in current water-year 475 

precipitation. Stolon density was the most sensitive to changes in precipitation (P), followed by 476 

production per tiller and tiller density. The variable total axillary buds per tiller was the least 477 



Page 23 of 27 

sensitive component to changes in precipitation and % of active axillary buds did not change 478 

with precipitation. For each component of the meristem bank, sensitivity is the slope estimate 479 

(±1 ES) for the precipitation effect in a mixed model of the natural logarithm of the response 480 

ratio, with meristem bank components as fixed effect, precipitation as covariate and plot within 481 

block as repeated statement. Different letters represent significant differences among sensitivities 482 

(a-b difference p =0.005; b-c difference p = 0.08; a-c difference p = 0.003). 483 

 484 

Figure 4. Sensitivity of ecosystem structure components of previous-year precipitation.  485 

Stolon density was the most sensitive to precipitation (P) legacies, followed by tiller density and 486 

total axillary buds per tiller. For each component of the meristem bank, sensitivity is the slope 487 

estimate (±1 ES) for the effect of previous-year P (Pt-1) in a mixed model of the natural 488 

logarithm of the response ratio, with meristem bank components as fixed effect,  P and Pt-1 as 489 

covariates and plot within block as repeated statement. Different letters represent significant 490 

differences among sensitivities (a-b difference p =0.014; a-c difference p < 0.0001; b-c 491 

difference p = 0.003). 492 

493 
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