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We calculate the leading radiative corrections to the axial current in the chiral separation effect in dense

QED in a magnetic field. Contrary to the conventional wisdom suggesting that the axial current should be

exactly fixed by the chiral anomaly relation and is described by the topological contribution on the lowest

Landau level in the free theory, we find in fact that the axial current receives nontrivial radiative

corrections. The direct calculations performed to the linear order in the external magnetic field show

that the nontrivial radiative corrections to the axial current are provided by the Fermi surface singularity in

the fermion propagator at nonzero fermion density.
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I. INTRODUCTION

Recently there was significant interest in the dynamics
of relativistic matter in a magnetic field. Assuming that
QCD topological fluctuations produce local P and CP -odd
states [1] leading to a chiral chemical potential �5, it was
suggested that there exists a nondissipative electric current
j ¼ e2B�5=ð2�2Þ in relativistic matter in a magnetic field
B [2–4]. This phenomenon is known in the literature as the
chiral magnetic effect (CME). (For a recent review see
Ref. [5].) Moreover, the charge-dependent correlations and
flow observed in heavy-ions collisions at the RHIC [6–9]
and LHC [10] appear to be in a qualitative agreement with
the predictions of the CME [11,12].

Unlike the chiral chemical potential, which is a rather
exotic quantity and not so well defined theoretically, the
chemical potential � (associated, for example, with con-
served electric or baryon charges) is common in many
physical systems. It was shown in Refs. [13–15] that a
nondissipative axial current j5 ¼ eB�=ð2�2Þ exists in the
equilibrium state of noninteracting massless fermion
matter in a magnetic field. This effect is known as the
chiral separation effect (CSE) in the literature. (For a brief
review, see Sec. 2 in Ref. [5].) In fact, as suggested in
Refs. [16,17], the CSE may lead to a chiral charge separa-
tion (i.e., effectively inducing a nonzero chiral chemical
potential �5) and, thus, trigger the CME even in the
absence of topological fluctuations in the initial state.

The approach in Refs. [14,15] was based on the use of
the operator form of the chiral anomaly relation [18]. It is
well known that the corresponding relation calculated at
one-loop order is exact and, as such, it cannot get any
higher-order radiative corrections [19]. Therefore, it was
argued in [14,15] that like the chiral anomaly, the one-loop
result for the axial current density j5 ¼ eB�=ð2�2Þ should
be exact as well.

Since the fermion propagator in a magnetic field de-
pends nonlinearly on the magnetic field, the linear depen-
dence of the axial current on B calls for a physical
explanation. Using an expansion over the Landau levels,
it was shown in Ref. [14] that the axial current j5 ¼
eB�=ð2�2Þ is topological in nature (see also Ref. [20]
for a nice exposition and some details) and is defined by
the fermion number density on the lowest Landau level
(LLL). Moreover, it was shown [14] that a similar result
holds even for massive fermions at finite temperature T,
where the axial current equals j5 ¼ eBnLðm;TÞ=ð2�Þ and
nLðm; TÞ is the effective one-dimensional (along the direc-
tion of magnetic field) fermion number density on the LLL.

At zero temperature the axial current is given by j5 ¼
eB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p
=ð2�2Þ. Of course, in the chiral limit m ! 0

this reduces to the same expression for the axial current as
derived from the chiral anomaly. Note, however, that the
connection between the induced axial current and the
anomaly relation is not obvious beyond the chiral limit.
The chiral anomaly is exact as an operator relation, but it

contains the divergence of the axial current rather than the
current itself. Consequently, to get the axial current from
the chiral anomaly one should ‘‘integrate’’ the anomaly
and calculate the ground state expectation value of the
corresponding operator. Then, the question concerning an
‘‘integration constant’’ in the induced axial current and its
dependence on interactions naturally arises. Until now, no
conclusive answer to this question was given (e.g., see the
discussion in Ref. [5]).
The first studies of the interaction effects were done in

Refs. [16,21–23] in the framework of the dense
Nambu–Jona-Lasinio (NJL) model in a magnetic field.
Using the Schwinger-Dyson equation for the fermion
propagator, it was found [16,21,22] that the four-fermion
interactions generate a chiral shift parameter �. In the
chiral limit, this parameter determines a relative shift of
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the momenta in the dispersion relations for opposite chi-
rality fermions k3 ! k3 ��, where the momentum k3 is
directed along the magnetic field. The presence of the chiral
shift parameter leads to an additional dynamical contribu-
tion in the axial current. Unlike the topological contribution
in the axial current at the LLL, the dynamical one affects
the fermions in all Landau levels, including those around
the whole Fermi surface. Further, it was explicitly checked
in Ref. [22] that although the axial current gets corrections
due to the NJL interactions, the chiral anomaly does not.

Since the NJL model is nonrenormalizable and the chiral
anomaly is intimately connected with ultraviolet divergen-
cies, in order to reach a solid conclusion about the presence
or absence of higher-order radiative corrections to the axial
current, one should consider them in a renormalizable
model. In the present paper, assuming that the magnetic
field B is weak and using the expansion in powers of B up
to linear order, the leading radiative corrections to the axial
current in QED are calculated. We find that they do not
vanish and attribute this result to the singularities in the
fermion propagator at the Fermi surface. On the technical
side, the i�signðk0Þ prescription in the fermion propagator,
which is the only thing that distinguishes a chemical
potential from the time component A0 of the photon field,
plays a crucial role in deriving this result.

This paper is organized as follows. In Sec. II we introduce
the model and set up the notation. Also, we discuss some
properties of the fermion propagator and the one-loop self-
energy in the presence of an external magnetic field and a
nonzero density. The calculation of the leading radiative
corrections to the axial current is presented in Sec. III. We
start from the formal definition of the current in terms of the
fermion propagator, use its systematic expansion in powers
of the magnetic field, and finally perform the explicit cal-
culations. Our discussion of the results and conclusions are
given in Sec. IV. A new form of the Schwinger parametri-
zation for the fermion propagator in the case of a nonzero
magnetic field and a nonzero chemical potential, utilized in
the main part of the paper, is presented in Appendix A. The
details of the calculations of the radiative corrections to the
axial current are given in Appendix B.

II. FERMION SELF-ENERGY
IN A MAGNETIC FIELD

The Lagrangian density of QED in a magnetic field is
given by

L ¼ � 1

4
F��F�� þ �c ði��D� þ��0 �mÞc

þ �2
�c ði��@� þ��0 þ eAext

� ��Þc � �m
�c c ; (1)

where � is the fermion chemical potential, the last two
terms are counterterms (we use the notation of Ref. [24],
but with the opposite sign of the electric charge, e ! �e),
and the covariant derivative isD� ¼ @� � ieA� � ieAext

� .

Without the loss of generality, we assume that the external

magnetic field B points in the þx3 direction and is
described by the vector potential in the Landau gauge,
Aext
� ¼ ð0; 0; Bx1; 0Þ. Note that the counterterms include

the chemical potential � and the external field Aext
� .

To leading order in the coupling constant � ¼ e2=ð4�Þ,
the fermion self-energy in QED is given by

�ðx; yÞ ¼ �4i����Sðx; yÞ��D��ðx� yÞ; (2)

where Sðx; yÞ is the free fermion propagator in magnetic
field and D��ðx� yÞ is the free photon propagator.

As is well known, the fermion propagator Sðx; yÞ in the
presence of an external magnetic field is not translation
invariant. It can be written, however, in a form of an overall
Schwinger phase (breaking the translation invariance) and
a translation invariant function [25], i.e.,

Sðx; yÞ ¼ exp ½i�ðx; yÞ� �Sðx� yÞ; (3)

where the Schwinger phase equals �ðx; yÞ ¼ �eBðx1 þ
y1Þðx2 � y2Þ=2 in the Landau gauge. The Fourier transform
of �Sðx� yÞ is presented in Eq. (A1) in Appendix A. The
expression in Eq. (2) implies that the self-energy �ðx; yÞ
has an analogous representation

�ðx; yÞ ¼ exp ½i�ðx; yÞ� ��ðx� yÞ; (4)

with the same Schwinger phase as in the propagator.
In this study we use the photon propagator in the

Feynman gauge. In momentum space, it reads

D��ðqÞ ¼ �i
g��

q2�

� �i

�
g��

q20 � q2 �m2
� þ i�

� g��

q20 � q2 ��2 þ i�

�
:

(5)

Here we introduced a nonzero photon mass m� which

serves as an infrared regulator at the intermediate stages
of calculations. Of course, none of the physical observables
should depend on this parameter (see Sec. IV below).
(Note that since the classical paper of Stueckelberg [26],
it is well known that, unlike non-Abelian theories, intro-
ducing a photon mass causes no problems in an Abelian
gauge theory, such as QED.) We will see in Sec. III that the
leading radiative corrections are logarithmically divergent
in the ultraviolet region. As in Ref. [19], we find that the
Feynman regularization of the photon propagator (5) with
ultraviolet regularization parameter � presents the most
convenient way of regularizing the theory.
The Fourier transform of the translation invariant

function ��ðx� yÞ is given by the following expression:

��ðpÞ ¼ �4i��
Z d4k

ð2�Þ4 �
� �SðkÞ��D��ðk� pÞ; (6)

where �SðkÞ is the Fourier transform of the translation
invariant part of the fermion propagator and D��ðqÞ is

the photon propagator (5).

GORBAR et al. PHYSICAL REVIEW D 88, 025025 (2013)

025025-2



To linear order in B, the translation invariant part of the
free fermion propagator in the momentum representation
has the following structure:

�SðkÞ ¼ �Sð0ÞðkÞ þ �Sð1ÞðkÞ þ � � � ; (7)

where �Sð0Þ is the free fermion propagator in the absence of

magnetic field and �Sð1Þ is the linear in the magnetic field
part. Both of them are derived in Appendix A by making
use of a generalized Schwinger parametrization when the

chemical potential is nonzero. The final expressions for �Sð0Þ

and �Sð1Þ can be also rendered in the following equivalent
form:

�Sð0ÞðkÞ ¼ i
ðk0 þ�Þ�0 � k � �þm

ðk0 þ�þ i�signðk0ÞÞ2 � k2 �m2
(8)

and

�Sð1ÞðkÞ¼��1�2eB
ðk0þ�Þ�0�k3�

3þm

½ðk0þ�þ i�signðk0ÞÞ2�k2�m2�2 :

(9)

The self-energy at zero magnetic field

��ð0ÞðpÞ ¼ �4i��
Z d4k

ð2�Þ4 �
� �Sð0ÞðkÞ��D��ðp� kÞ (10)

determines the counterterms �2 and �m in Eq. (1). To
calculate the self-energy (10), we will use the generalized
Schwinger parametrization of the fermion propagator
�Sð0ÞðkÞ, see Eq. (A9) in Appendix A. Such a representation
allows a natural separation of the propagator (as well as the
resulting self-energy) into the ‘‘vacuum’’ and ‘‘matter’’
parts. The former is very similar to the usual vacuum
self-energy in QED in the one-loop approximation. The
only difference will be the appearance of p0 þ� instead of
p0. The matter part is an additional contribution that comes
from the �-function contribution in Eq. (A11). Unlike the
vacuum part, the matter one has no ultraviolet divergences
and vanishes when j�j<m.
The explicit expression for the vacuum part reads

��ð0Þ
vacðpÞ ¼ �

2�

Z 1

0
dxf2m� x½ðp0 þ�Þ�0 � p � ��g ln x�2

ð1� xÞm2 þ xm2
� � xð1� xÞ½ðp0 þ�Þ2 � p2� : (11)

Note that, while the integral over x can be easily calculated, we keep the result in this more compact form. We see that the
self-energy (11) becomes identical with the well-known vacuum self-energy in QED in the Feynman gauge after
performing the substitution p0 þ� ! p0 [24]. Further, using Eq. (11), we find that the counterterms in (1) are defined
as follows [24]:

�2 ¼ d ��ð0Þ
vacðpÞ
d 6P

�������� 6P¼m
¼ � �

2�

�
1

2
ln
�2

m2
þ ln

m2
�

m2
þ 9

4

�
; (12)

�m ¼ m�m0 ¼ ��ð0Þ
vacðpÞj6P¼m ¼ 3�

4�
m

�
ln
�2

m2
þ 1

2

�
; (13)

where P ¼ ðp0 þ�;pÞ. Note that the fermion wave function renormalization constant is defined as follows: Z2 ¼ 1þ �2.
For completeness, let us calculate the additional matter part of the self-energy due to the filled fermion states given by

��
ð0Þ
matðpÞ ¼ � i�

�2

Z 0

��
dk0

Z
d3k

ðk0 þ�Þ�0 � k � �� 2m

ðk0 � p0Þ2 � ðk� pÞ2 �½ðk0 þ�Þ2 � k2 �m2�: (14)

After performing the integration over the energy and spatial angular coordinates, we find

��ð0Þ
matðpÞ ¼ ��

�

Z ffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p

0

kdk

jpj
�
1

2

�
�0 � 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

�
ln
ðp0 þ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
Þ2 � ðk� jpjÞ2

ðp0 þ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
Þ2 � ðkþ jpjÞ2

� kðp � �Þ
jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
�
1þ k2 þ p2 � ðp0 þ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
Þ2

4kjpj ln
ðp0 þ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
Þ2 � ðk� jpjÞ2

ðp0 þ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
Þ2 � ðkþ jpjÞ2

��
: (15)

While the remaining integral over the absolute value of the momentum k can be also performed, the result will take a rather
complicated form that will not add any clarity.

The linear in the magnetic field correction to the translation invariant part of the fermion self-energy in a magnetic field
reads
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��ð1ÞðpÞ ¼ �4i��
Z d4k

ð2�Þ4 �
� �Sð1ÞðkÞ��D��ðp� kÞ: (16)

This correction, which in particular contains a chiral shift
parameter term, has been recently analyzed in Ref. [27].
We use this expression for ��ð1ÞðpÞ in the derivation of the
leading corrections in the axial current in Sec. III below.

III. THE LEADING RADIATIVE CORRECTIONS
TO THE AXIAL CURRENT

The renormalization group invariant axial current
density, which is a quantity of the principal interest in the
present paper, is given by

hj35i ¼ �Z2 tr½�3�5Gðx; xÞ�; (17)

where Gðx; yÞ is the full fermion propagator and Z2 ¼ 1þ
�2 is the wave function renormalization constant of the
fermion propagator, cf. Eq. (1).

To the first order in the coupling constant � ¼ e2=ð4�Þ,
the propagator reads

Gðx; yÞ ¼ Sðx; yÞ þ i
Z

d4ud4vSðx; uÞ�ðu; vÞSðv; yÞ

þ i
Z

d4ud4vSðx; uÞ�ctðu; vÞSðv; yÞ; (18)

where Sðx; yÞ is the free fermion propagator in the magnetic
field, �ðu; vÞ is the one-loop fermion self-energy, and
�ctðu; vÞ is the counterterm contribution to the self-energy.
The structure of the counterterm contribution is determined
by the last two terms in the Lagrangian density (1).

In this paper, we make use of the weak magnetic field
expansion in the calculation of the axial current density.
Such an expansion is straightforward to obtain from the
general expression in Eq. (17) and the representation (18)
for the fermion propagator. For the fermion propagator to
linear in B order, we have

Sðx; yÞ ¼ �Sð0Þðx� yÞ
þ ie

Z
d4z �Sð0Þðx� zÞ�� �Sð0Þðz� yÞAext

� ðzÞ: (19)

Further, by making use of Eq. (19), the weak field expan-
sion of the self-energy follows from the definition in
Eq. (2). (Note that the photon propagator is independent
of the magnetic field to this order.) Combining all pieces
together, we can find the complete expression for the
leading radiative corrections to the axial current (17) in

the approximation linear in the magnetic field. In this
framework, the diagrammatical representation for the lead-
ing radiative corrections to the axial current is shown in
Fig. 1 (for simplicity, we do not display the contributions
due to counterterms) [28].
Instead of using the expansion for the free propagator in

Eq. (19), we find it much more convenient to utilize the
Schwinger form of the fermion propagator (3), which
consists of a simple phase, that breaks the translation
invariance, and a translation invariant function. Taking
into account that the Schwinger phase �ðx; yÞ is linear in
magnetic field, we arrive at the following alternative form
of the weak field expansion of the fermion propagator in
the linear in B approximation:

Sðx; yÞ ¼ �Sð0Þðx� yÞ þ i�ðx; yÞ �Sð0Þðx� yÞ þ �Sð1Þðx� yÞ;
(20)

where �Sð0Þðx� yÞ and �Sð1Þðx� yÞ are the zeroth- and first-
order terms in powers of B in the translation invariant part
of the propagator. [For the explicit forms of their Fourier
transforms see Eqs. (8) and (9) above.] Of course, the
representations in Eqs. (19) and (20) are equivalent. One
can check this explicitly, for example, by making use of the
Landau gauge for the external field Aext

� .
Furthermore, Eq. (2) implies that a similar expansion

takes place also for the fermion self-energy

�ðu; vÞ ¼ ��ð0Þðu� vÞ
þ i�ðu; vÞ ��ð0Þðu� vÞ þ ��ð1Þðu� vÞ: (21)

The Fourier transforms of the self-energies ��ð0Þðx� yÞ and
��ð1Þðx� yÞ are given by Eqs. (10) and (16), respectively.
Omitting the noninteresting zeroth order in B contribu-

tion in Eq. (18), we arrive at the following linear in B
contribution to the propagator:

Gð1Þðx; xÞ ¼ �Sð1Þðx; xÞ þ i
Z

d4ud4v½ �Sð1Þðx� uÞ ��ð0Þðu� vÞ �Sð0Þðv� xÞ

þ �Sð0Þðx� uÞ ��ð0Þðu� vÞ �Sð1Þðv� xÞ� þ i
Z

d4ud4v½ �Sð0Þðx� uÞ ��ð1Þðu� vÞ �Sð0Þðv� xÞ�

�
Z

d4ud4v½�ðx; uÞ þ�ðu; vÞ þ�ðv; xÞ� �Sð0Þðx� uÞ ��ð0Þðu� vÞ �Sð0Þðv� xÞ: (22)

+ +

FIG. 1. The leading radiative corrections to the axial current in
the linear in magnetic field approximation. Solid and wavy lines
correspond to the fermion and photon propagators, respectively.
Double solid lines describe the axial current insertions and the
external wavy lines attached to the fermion loops indicate the
insertions of the external gauge field.
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Noting that �ðx; uÞ þ�ðu; vÞ þ�ðv; xÞ ¼ � eB
2 ½ðx1 � u1Þðv2 � x2Þ � ðv1 � x1Þðx2 � u2Þ� is a translation invariant

function, it is convenient to switch to the momentum space on the right-hand side of Eq. (22). The result reads

Gð1Þðx; xÞ ¼
Z d4p

ð2�Þ4
�Sð1ÞðpÞ þ i

Z d4p

ð2�Þ4 ½
�Sð1ÞðpÞ ��ð0ÞðpÞ �Sð0ÞðpÞ þ �Sð0ÞðpÞ ��ð0ÞðpÞ �Sð1ÞðpÞ þ �Sð0ÞðpÞ ��ð1ÞðpÞ �Sð0ÞðpÞ�

� eB

2

Z d4p

ð2�Þ4
�
@ �Sð0ÞðpÞ
@p1

��ð0ÞðpÞ@
�Sð0ÞðpÞ
@p2

� @ �Sð0ÞðpÞ
@p2

��ð0ÞðpÞ @
�Sð0ÞðpÞ
@p1

�
: (23)

By substituting this into the definition in Eq. (17), we obtain the following expression for the axial current density:

hj35i ¼ hj35i0 þ hj35i�; (24)

where

hj35i0 ¼ �
Z d4p

ð2�Þ4 tr½�3�5 �Sð1ÞðpÞ� (25)

is the contribution to the axial current in the free theory and

hj35i� ¼ eB

2

Z d4p

ð2�Þ4 tr

�
�3�5 @

�Sð0ÞðpÞ
@p1

��ð0ÞðpÞ@
�Sð0ÞðpÞ
@p2

� �3�5 @
�Sð0ÞðpÞ
@p2

��ð0ÞðpÞ@
�Sð0ÞðpÞ
@p1

�

� i
Z d4p

ð2�Þ4 tr½�3�5 �Sð1ÞðpÞ ��ð0ÞðpÞ �Sð0ÞðpÞ þ �3�5 �Sð0ÞðpÞ ��ð0ÞðpÞ �Sð1ÞðpÞ þ �3�5 �Sð0ÞðpÞ ��ð1ÞðpÞ �Sð0ÞðpÞ� þ hj35ict
(26)

defines the leading radiative corrections to the axial cur-
rent. The counterterm contribution hj35ict in Eq. (26) con-
tains all the contributions with �2 and �m. Its explicit form
will be given in Sec. III B below.

It is instructive to start from investigating the structure of
Eq. (24) in the free theory (i.e., to the zeroth order in�). By

making use of the explicit form of �Sð1ÞðkÞ in Eq. (9), we
straightforwardly derive the following contribution to the
axial current density:

hj35i0 ¼ � eBsignð�Þ
4�3

Z
d3k�ð�2 � k2 �m2Þ

¼ � eBsignð�Þ
2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

q
; (27)

which coincides, of course, with the very well-known topo-
logical contribution [14]. Note that in contrast to the ap-
proach using the expansion over the Landau levels, where the
contribution to hj35i0 comes only from the filled LLL states,

the origin of the same topological contribution in the formal-
ism of weak magnetic fields is quite different. As Eq. (27)
implies, it comes from the Fermi surface and, therefore,
provides a dual description of the topological contribution
in this formalism. (Interestingly, the origin of the topological
contribution in the weak field analysis above may have some
similarities with the Wigner function formalism [29].)
By substituting the propagators (8) and (9) into Eq. (26),

we find the following leading radiative corrections to the
axial current:

hj35i� ¼ 32��eB
Z d4pd4k

ð2�Þ8
1

ðP� KÞ2�

�ðk0 þ�Þ½ðp0 þ�Þ2 þ p2
? � p2

3 �m2� � 2ðp0 þ�Þðp1k1 þ p2k2Þ
ðP2 �m2Þ3ðK2 �m2Þ

� 2
ðp0 þ�Þðp1k1 þ p2k2 þ 2k3p3 þ 4m2Þ � ðk0 þ�Þ½ðp0 þ�Þ2 þ p2

3 þm2�
ðP2 �m2Þ3ðK2 �m2Þ

� ðk0 þ�Þ½ðp0 þ�Þ2 � p2
? þ p2

3 þm2� � 2ðp0 þ�Þp3k3
ðP2 �m2Þ2ðK2 �m2Þ2

�
þ hj35ict

¼ 32��eB
Z d4pd4k

ð2�Þ8
1

ðP� KÞ2�

�ðk0 þ�Þ½3ðp0 þ�Þ2 þ p2 þm2� � 4ðp0 þ�Þðp � kþ 2m2Þ
ðP2 �m2Þ3ðK2 �m2Þ

� ðk0 þ�Þ½3ðp0 þ�Þ2 � p2 þ 3m2� � 2ðp0 þ�Þðp � kÞ
3ðP2 �m2Þ2ðK2 �m2Þ2

�
þ hj35ict: (28)
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Here we use the shorthand notation K2 ¼ ½k0 þ�þ
i�signðk0Þ�2 � k2 and P2 ¼ ½p0 þ�þ i�signðp0Þ�2 �
p2. As for the definition of ðP� KÞ2�, it follows Eq. (5).
Furthermore, the following replacements have been
made in the integrand: p2

? ! 2
3p

2, p2
3 ! 1

3p
2, and p3k3 !

1
3 ðp � kÞ. These replacements are allowed by the rotational
symmetry of the other parts of the integrand.

A. Integration by parts

It is convenient to represent Eq. (28) as follows:

hj35i� ¼ 32��eB
Z d4pd4k

ð2�Þ8
1

ðP�KÞ2�
�

�
4ðp0 þ�Þ½ðk0 þ�Þðp0 þ�Þ � p �k� 2m2�

ðP2 �m2Þ3ðK2 �m2Þ
� ðk0 þ�Þ

ðP2 �m2Þ2ðK2 �m2Þ
� ðk0 þ�Þ½3ðp0 þ�Þ2 � p2 þ 3m2 � 2ðp �kÞ�

3ðP2 �m2Þ2ðK2 �m2Þ2
�

þ hj35ict: (29)

Since the denominators of the integrand in this expression
contain the factors ðP2 �m2Þn and ðK2 �m2Þn, with
n ¼ 2, 3, which vanish on the Fermi surface, the integrand
in (29) is singular there. Therefore, one should carefully
treat the singularities in the calculation of the axial current.
For this, we find it very convenient to use the following
identity valid for all integers n � 1:

1

½½k0þ�þ i�signðk0Þ�2�k2�m2�n

¼ 1

½ðk0þ�Þ2�k2�m2þ i��nþ
2�ið�1Þn�1

ðn�1Þ! �ðj�j

�jk0jÞ�ð�k0�Þ�ðn�1Þ½ðk0þ�Þ2�k2�m2�; (30)

which can be obtained from Eq. (A5) in Appendix A by
differentiating it n� 1 times with respect to m2. Since the
first term on the right-hand side has the pole prescription as in
the theory without the filled fermion states, we call it the
‘‘vacuum’’ part. The second term in this expression takes care
of the filled fermion states, and we call it the ‘‘matter’’ part.

One can also obtain another useful relation by differ-
entiating Eq. (30) with respect to energy k0,

@

@k0

�
1

½½k0þ�þ i�signðk0Þ�2�m2�k2�n
�

¼� 2nðk0þ�Þ
½½k0þ�þ i�signðk0Þ�2�m2�k2�nþ1

þ2�ið�1Þnsignð�Þ
ðn�1Þ!

��ðn�1Þ½ðk0þ�Þ2�k2�m2�½�ðk0Þ��ðk0þ�Þ�;
(31)

where we made use of Eq. (30) the second time, albeit
with n ! nþ 1, in order to render the result on the
right-hand side in the form of the (nþ 1)th order
pole with the conventional i� prescription at nonzero
�. In addition, we used the following easy to derive
result:

@

@k0
½�ðj�j � jk0jÞ�ð�k0�Þ�
¼ signð�Þ½�ðk0 þ�Þ � �ðk0Þ�: (32)

We note that �ðk0 þ�Þ in the last term on the right-
hand side of Eq. (31) never contributes. Indeed, this
� function is nonvanishing only when k0 þ� ¼ 0. It
multiplies, however, another � function, which is non-
vanishing only when ðk0 þ�Þ2 � k2 �m2 ¼ 0. Since
the two conditions cannot be simultaneously satisfied,
the corresponding contribution is trivial. After taking
this into account, we finally obtain

@

@k0

�
1

½½k0 þ�þ i�signðk0Þ�2 �m2 � k2�n
�

¼ � 2nðk0 þ�Þ
½½k0 þ�þ i�signðk0Þ�2 �m2 � k2�nþ1

þ 2�ið�1Þnsignð�Þ
ðn� 1Þ! �ðn�1Þð�2 � k2 �m2Þ�ðk0Þ:

(33)

Now, by making use of the above identities, we can
proceed to the calculation of hj35i� in Eq. (29). We start

by simplifying the corresponding expression using
integrations by parts. Note that the �-regulated repre-
sentation has nice convergence properties in the ultra-
violet and, therefore, all integrations by parts in the
analysis that follows will be perfectly justified.
The first term in hj35i� in Eq. (29) is proportional

to p0 þ� and contains ðP2 �m2Þ3 in the denominator.
Therefore, we use identity (33) with n ¼ 2 and
k ! p, i.e.,

4ðp0 þ�Þ
ðP2 �m2Þ3 ¼ � @

@p0

�
1

ðP2 �m2Þ2
�

þ 2i��0½�2 �m2 � p2��ðp0Þ: (34)

Using it, we rewrite the first term in the integrand of
Eq. (29) as follows:
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1st ¼ f1 þ 32�eB
Z d4pd4k

ð2�Þ8
ðk0 þ�Þðp0 þ�Þ � p � k� 2m2

ðP� KÞ2�ðK2 �m2Þ
@

@p0

� �1

ðP2 �m2Þ2
�

¼ f1 þ 32�eB
Z d4pd4k

ð2�Þ8
1

ðP2 �m2Þ2
@

@p0

�ðk0 þ�Þðp0 þ�Þ � p � k� 2m2

ðP� KÞ2�ðK2 �m2Þ
�

¼ f1 þ 32�eB
Z d4pd4k

ð2�Þ8
1

ðP2 �m2Þ2
� ðk0 þ�Þ
ðP� KÞ2�ðK2 �m2Þ þ

ðk0 þ�Þðp0 þ�Þ � p � k� 2m2

ðK2 �m2Þ
@

@p0

1

ðP� KÞ2�

�
;

(35)

where the singular ‘‘matter’’ term containing the derivative of a � function at the Fermi surface was separated into a new
function,

f1 ¼ 64i�2�eB
Z d4pd4k

ð2�Þ8
ðk0 þ�Þðp0 þ�Þ � p � k� 2m2

ðP� KÞ2�ðK2 �m2Þ �0½�2 �m2 � p2��ðp0Þ: (36)

We note that the first term in the parentheses in Eq. (35) cancels with the second term in the integrand of Eq. (29). Then
using

@

@p0

1

ðP� KÞ2�
¼ � @

@k0

1

ðP� KÞ2�
(37)

and integrating by parts, we find that the sum of the first and second terms in the integrand of Eq. (29) is equal to

ð1stþ2ndÞ¼f1þ32�eB
Z d4pd4k

ð2�Þ8
1

ðP�KÞ2�ðP2�m2Þ2
�

p0þ�

ðK2�m2Þþ½ðk0þ�Þðp0þ�Þ�p �k�2m2� @

@k0

1

ðK2�m2Þ
�

¼f1þf2þ32�eB
Z d4pd4k

ð2�Þ8
1

ðP�KÞ2�

� ðp0þ�Þ
ðP2�m2Þ2ðK2�m2Þ�2ðk0þ�Þðk0þ�Þðp0þ�Þ�p �k�2m2

ðP2�m2Þ2ðK2�m2Þ2
�
:

(38)

Note that here we used the identity

@

@k0

�
1

K2 �m2

�
¼ �2ðk0 þ�Þ

ðK2 �m2Þ2 � 2i��ð�2 �m2 � k2Þ�ðk0Þ; (39)

which follows from Eq. (33) with n ¼ 1, and introduced another function, which contains the leftover contribution with the
� function,

f2 ¼ �64i�2�eB
Z d4pd4k

ð2�Þ8
ðk0 þ�Þðp0 þ�Þ � p � k� 2m2

ðP� KÞ2�ðP2 �m2Þ2 �ð�2 �m2 � k2Þ�ðk0Þ: (40)

It is convenient to make the change of variables p ! k and k ! p in the first term in Eq. (38). Then, the two terms in the
integrand can be combined, resulting in

ð1stþ 2ndÞ ¼ f1 þ f2 þ 32�eB
Z d4pd4k

ð2�Þ8
ðk0 þ�Þ½�ðp0 þ�Þ2 � p2 þ 2p � kþ 3m2�

ðP� KÞ2�ðP2 �m2Þ2ðK2 �m2Þ2 : (41)

Finally, by combining the result in Eq. (41) with the last term in the integrand of Eq. (29), we obtain

hj35i� ¼ f1 þ f2 � 64

3
��eB

Z d4pd4k

ð2�Þ8
ðk0 þ�Þ
ðP� KÞ2�

3ðP2 �m2Þ þ 4p � ðp� kÞ
ðP2 �m2Þ2ðK2 �m2Þ2 þ hj35ict: (42)

Using the identity in Eq. (39) once again, we rewrite the last expression as follows:

hj35i� ¼ f1 þ f2 þ f3 þ hj35ict þ
64

3
��eB

Z d4pd4k

ð2�Þ8
ðk0 � p0Þ
ðP� KÞ4�

�
3

ðP2 �m2ÞðK2 �m2Þ þ
4p � ðp� kÞ

ðP2 �m2Þ2ðK2 �m2Þ
�
; (43)

where
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f3 ¼ 64i�2�eB

3

Z d4pd4k

ð2�Þ8
3ðP2 �m2Þ þ 4p � ðp� kÞ

ðP� KÞ2�ðP2 �m2Þ2 �ð�2 �m2 � k2Þ�ðk0Þ: (44)

Since the first term of the integrand in Eq. (43) is odd under the exchange p $ k, its contribution vanishes, and we obtain

hj35i� ¼ f1 þ f2 þ f3 þ hj35ict þ
64

3
��eB

Z d4pd4k

ð2�Þ8
ðk0 � p0Þ
ðP� KÞ4�

4p � ðp� kÞ
ðP2 �m2Þ2ðK2 �m2Þ : (45)

Finally, by making use of the identity

p � ðp� kÞ
ðP� KÞ4�

¼ 1

2
p � rk

�1

ðP� KÞ2�
(46)

and integrating by parts, we derive

hj35i� ¼ f1 þ f2 þ f3 þ hj35ict þ
64

3
��eB

Z d4pd4k

ð2�Þ8
2ðk0 � p0Þ

ðP2 �m2Þ2ðK2 �m2Þp � rk

�1

ðP� KÞ2�
¼ f1 þ f2 þ f3 þ hj35ict þ

64

3
��eB

Z d4pd4k

ð2�Þ8
2ðk0 � p0Þ

ðP� KÞ2�ðP2 �m2Þ2 p � rk

1

ðK2 �m2Þ

¼ f1 þ f2 þ f3 þ hj35ict þ
64

3
��eB

Z d4pd4k

ð2�Þ8
4ðk0 � p0Þp � k

ðP� KÞ2�ðP2 �m2Þ2ðK2 �m2Þ2 ¼ f1 þ f2 þ f3 þ hj35ict; (47)

where the last integral term in the last line of Eq. (47) vanishes because it is odd under the exchange p $ k. Collecting
together all contributions, i.e., f1 in Eq. (36), f2 in Eq. (40), and f3 in Eq. (44), we have the following leading radiative
corrections to the axial current:

hj35i� ¼ 64i�2�eB
Z d4pd4k

ð2�Þ8
�ðk0 þ�Þðp0 þ�Þ � p � k� 2m2

ðP� KÞ2�ðK2 �m2Þ �0½�2 �m2 � p2��ðp0Þ

þ 3ðp0 þ�Þ2 � 3ðk0 þ�Þðp0 þ�Þ þ p2 � p � kþ 3m2

3ðP� KÞ2�ðP2 �m2Þ2 �ð�2 �m2 � k2Þ�ðk0Þ
�
þ hj35ict; (48)

where the first term in the integrand comes from f1, while
the second term comes from the sum f2 þ f3. The result in
Eq. (48) is quite remarkable for several reasons. From a
technical viewpoint, it reveals that the integration by parts
allowed us to reduce the original two-loop expression in
Eq. (29) down to a much simpler one-loop form. Indeed,
after the integration over one of the momenta in Eq. (48) is
performed using the � functions in the integrand, the
expression will have an explicit one-loop form. Such a
simplification will turn out to be extremely valuable, al-
lowing us to obtain an analytic result for the leading
radiative corrections to the axial current.

In addition, the result in Eq. (48) reveals important
physics details about the origin of the radiative corrections
to the axial current. It shows that all nonzero corrections
come from the regions of the phase space, where either p
or k momentum is restricted to the Fermi surface. This
resembles the origin of the topological contribution in
Eq. (27). In both cases, the presence of the singular ‘‘mat-
ter’’ terms in identities like (34) and (39) was crucial for
obtaining a nonzero result. Moreover, by tracing back the
derivation of the result in Eq. (48), we see that all non-
singular terms are gone after the integration by parts. This
makes us conclude that the nonzero radiative corrections to

the axial current are intimately connected with the precise
form of the singularities in the fermion propagator at the
Fermi surface that separates the filled fermion states with
energies less than � and empty states with larger energies.

B. Counterterm contribution

The calculation of the axial current in Eq. (48) is still
technically quite involved. However, it is relatively
straightforward to show [see also the derivation of
Eq. (B7) in Appendix B] that the right-hand side in (48)
without the counterterm has a logarithmically divergent
contribution when � ! 1, i.e.,

�eBð2�2 þm2Þ
4�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p ln
�

m
: (49)

To cancel this divergence, we should add the contribution
due the counterterms in Lagrangian (1). The Fourier trans-
form of the translational invariant part of the counterterm
contribution to the self-energy reads

��ð0Þ
ct ðpÞ ¼ �2½ðp0 þ�Þ�0 � p � �� � �m; (50)

where �2 was defined in Eq. (12), while �m ¼ Z2m0 �
m ’ m�2 � �m and �m was defined in Eq. (13).
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We find the following leading order contributions to the axial current density due to counterterms:

hj35ict ¼ ��2hj35i0 � 4ieB
Z d4p

ð2�Þ4
�2ðp0 þ�Þ
ðP2 �m2Þ2 � 8ieB

Z d4p

ð2�Þ4
ðp0 þ�Þ½�2ððp0 þ�Þ2 � p2 þm2Þ � 2m�m�

ðP2 �m2Þ3

¼ �8ieB
Z d4p

ð2�Þ4
ðp0 þ�Þ½�2ðP2 �m2Þ þ 2mðm�2 � �mÞ�

ðP2 �m2Þ3

¼ �8ieB�2

Z d4p

ð2�Þ4
p0 þ�

ðP2 �m2Þ2 � 8imðm�2 � �mÞeB @

@ðm2Þ
Z d4p

ð2�Þ4
p0 þ�

ðP2 �m2Þ2

¼ � eB

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

q
�2 þ eBmðm�2 � �mÞ

2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p : (51)

Here we used the same result of integration as in the topological term, see Eq. (27).
By making use of the explicit form of the counterterms (12) and (13), we obtain

hj35ict ¼ ��eB

2�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

q �
1

2
ln
�2

m2
þ ln

m2
�

m2
þ 9

4

�
� 3�eBm2

4�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
�
1

2
ln
�2

m2
þ 1

4

�
: (52)

For m � j�j, it reduces to

hj35ict ’ ��eB�

2�3

�
1

2
ln
�2

m2
þ ln

m2
�

m2
þ 9

4

�
� �eBm2

2�3�

�
1

2
ln
�2

m2
�

� 3

4

�
: (53)

C. The final result

The complete expression for the leading radiative cor-
rections to the axial current is given by Eq. (47). It consists
of the counterterm contribution calculated in the previous
subsection, and the additional matter contribution
f1 þ f2 þ f3. The latter is calculated in Appendix B. For
m � j�j, it reads

f1 þ f2 þ f3 ¼ �eB�

2�3

�
ln

�

2�
þ 11

12

�

þ �eBm2

2�3�

�
ln

�

23=2�
þ 1

6

�
: (54)

Note that this expression has the right ultraviolet logarith-
mic divergencies (when � ! 1) that will cancel exactly
with those in the counterterm (53). Combining the two
results, we finally obtain the following leading radiative
corrections to the axial current in the case m � j�j:

hj35i� ¼ ��eB�

2�3

�
ln
2�

m
þ ln

m2
�

m2
þ 4

3

�

� �eBm2

2�3�

�
ln
23=2�

m�

� 11

12

�
: (55)

As expected, this result is independent of the ultraviolet
regulator �. It does contain, however, the dependence on
the fictitious photon mass m�. This is the only infrared

regulator left in our result. Its origin can be easily traced
back to the infrared singularity of the wave function renor-
malization Z2 in the Feynman gauge used. As we discuss in
the next section, this singularity is typical for a class of
QED observables obtained by perturbative methods. As we
will explain below, in the complete physical expression for

the axial current obtained by going beyond the simplest
double expansion in the coupling constant and magnetic
field, the regulatorm2

� will likely be replaced by a physical

scale, e.g., such as jeBj or ��2.

IV. DISCUSSIONS AND CONCLUSIONS

Our study of the chiral separation effect in dense QED in
the limit of a weak magnetic field suggests a conceptually
new way to interpret and calculate the axial current density
even in noninteracting theory. In contrast to the original
formulation, which suggests that the topological contribution
comes exclusively from the LLL filled states [14], we show
that the origin of the same contribution in the formalism of
weak magnetic fields (27) is quite different: it comes from
the whole Fermi surface. Such a dual description of the
topological contribution is of interest on its own. It is sensible
to suggest that the underlying origin for such a dual descrip-
tion must be connected with the topological nature of the
effect. It remains to be sorted out how this happens in detail.
Our result for the axial current density obtained pertur-

batively in the coupling constant and in linear order in the
external magnetic field shows that the chiral separation
effect in QED has nonvanishing radiative corrections. To
leading order, these corrections are shown to be directly
connected with the Fermi surface singularities in the fer-
mion propagator at nonzero density. This interpretation is
strongly supported by another observation: had we ignored
the corresponding singular terms in the fermion propaga-
tor, the calculation of the two-loop radiative corrections
would give a vanishing result.
The final result for the leading radiative corrections to

the axial current density is presented in Eq. (55). This is
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obtained by a direct calculation of all relevant contribu-
tions to linear order in � and to linear order in the external
magnetic field (strictly speaking, linear in eB because the
field always couples with the charge). The result in Eq. (55)
is presented in terms of renormalized (physical) parame-
ters. As expected, it is independent of the ultraviolet regu-
lator� used at intermediate stages of calculations. This is a
nontrivial statement since the original two-loop expression
for the leading radiative corrections contains ultraviolet
divergencies. In fact, the divergencies are unavoidable
because the corresponding diagrams contain the insertions
of the one-loop self-energy and vertex diagrams, which are
known to have logarithmic divergencies. However, at the
end of the day, all such divergencies are canceled exactly
with the contributions due to the counterterms.

Our analysis shows that the matter contribution, f1 þ
f2 þ f3, to the axial current density (calculated in the
Feynman gauge) has no additional singularities. While
functions f1 and f2 þ f3 separately do have additional
infrared singularities, the physically relevant result for
the sum f1 þ f2 þ f3 is finite, see Appendix B for details.
As we see from Eq. (55), however, the final result depends
on the photon mass m�, which was introduced as the

conventional infrared regulator. This feature deserves
some additional discussion.

It is straightforward to trace the origin of the m� depen-

dence in Eq. (55) to the calculation of the well-known
result for the wave function renormalization constant �2

presented in Eq. (12). In fact, this infrared problem
is common for dynamics in external fields in QED (for a
thorough discussion, see Sec. 14 in [30]). The most famous
example is provided by the calculation of the Lamb shift,
when an electron is in a Coulomb field. The point is that
even for a light nucleus with Z� � 1, one cannot consider
the Coulomb field as a weak perturbation in deep infrared.
The reason is that this field essentially changes the disper-
sion relation for the electron at low energy and momenta.
As a result, its four-momenta are not on the electron mass
shell, where the infrared divergence is generated in the
renormalization constant Z2. Because of that, this infrared
divergence is fictitious. The correct approach is to consider
the Coulomb interaction perturbatively only at high ener-
gies, while to treat it nonperturbatively at low energies. The
crucial point is matching those two regions that leads to
replacing the fictitious parameterm� by a physical infrared

scale. This is the main subtlety that makes the calculation
of the Lamb shift quite involved [30].

In the case of the Lamb shift, the infrared scale is related to
the atomic binding energy, or equivalently the inverse Bohr
radius. For smaller energies and momenta, the electron wave
functions cannot possibly be approximated with plane
waves, which is the tacit assumption of the weak field
approximation. Almost exactly the same line of arguments
applies in the present problem of QED in an external mag-
netic field. In particular, the fermion momenta perpendicular

to the magnetic field cannot be defined with a precision

better than
ffiffiffiffiffiffiffiffiffijeBjp

, or equivalently the inverse magnetic
length. This implies that the contribution to the axial
current, which comes from the low-energy photon ex-
change between the fermion states near the Fermi surface,
should be treated nonperturbatively. Just like in the Lamb
shift problem [30], we can anticipate that a proper non-
perturbative treatment will result in a term proportional to
ln ðjeBj=m2

�Þ, with a coefficient such as to cancel the m�

dependence in Eq. (55).
The additional complication in the problem at hand,

which is absent in the study of the Lamb shift, is a nonzero
density of matter. While doing the expansion in � and
keeping only the leading order corrections, we ignored
all screening effects, which formally appear to be of higher
order. It is understood, however, that such effects can be
very important at nonzero density. In particular, they could
replace the unphysical infrared regulator m2

� with a physi-

cal screening mass, i.e., the Debye mass
ffiffiffiffi
�

p
�.

In contrast to the physics underlying the Lamb shift,
where the nonperturbative result can be obtained with the
logarithmic accuracy by simply replacingm� with the only

physically relevant infrared scale in the problem, the same
is not possible in the problem of the axial current at hand.
The major complication here comes from the existence of
two different physical regulators that can replace the un-

physical infrared scale m�. One of them is
ffiffiffiffiffiffiffiffiffijeBjp

and the

other is
ffiffiffiffi
�

p
�. Because of the use of a double perturbative

expansion in the analysis controlled by the small parame-
ters jeBj=�2 and �, it is not possible to unambiguously
resolve (without performing a direct nonperturbative cal-
culation) which one of the two scales (or their combina-
tion) will cure the singularity in Eq. (55).
Another natural question to address is the chiral limit,

m ! 0. As one can see from Eq. (55), the current hj35i� is

singular in this limit. This point reflects the well-known
fact that massless QED possesses new types of infrared
singularities: besides the well-known divergences con-
nected with soft photons, there are also divergences con-
nected with the emission and absorption of collinear
fermion-antifermion pairs [31,32]. In addition, because of
a Gaussian infrared fixed point in massless QED, the
renormalized electric charge of massless fermions is com-
pletely shielded. One can show that this property is also
intimately related to the collinear infrared divergences
[33]. The complete screening of the renormalized electric
charge makes this theory very different from massive
QED. It remains to be examined whether there is a sensible
way to describe the interactions with external electromag-
netic fields in massless QED [34].
In addition to the quantitative study of the nonperturba-

tive low-energy contributions and the effect of screening,
there remain several other interesting problems to inves-
tigate in the future. Here we will mention only the follow-
ing three. (i) It is of special interest to clarify the
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connection of the nontrivial radiative corrections to the
axial current density calculated in this paper with the
generation of the chiral shift parameter in dense QED.
The analysis in the recent Ref. [27] shows that there is
indeed such a connection but it is more complicated than
that in the NJL model [16,21,22]. (ii) In order to make a
contact with the physics of heavy-ion collisions, it would
be interesting to generalize our study to the case of a
nonzero temperature. The corresponding study in the
NJL model [16] suggests that the temperature dependence
of the axial current density should be weak. (iii) The
analysis made in the NJL model shows a lot of similarities
between the structure of the axial current in the CSE effect
[16,21,22] with that of the electromagnetic current in the
CME one [23]. On the other hand, the arguments of
Ref. [36] may suggest that the dynamical part of the result
for the electromagnetic current should vanish, while the
topological contribution (which needs to be added as part
of the modified conserved axial current) will have no
radiative corrections. It remains to be seen if these expec-
tations will be supported by direct calculations of the
induced electromagnetic current in the CME effect in
QED with a chiral chemical potential �5.
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APPENDIX A: SCHWINGER PARAMETRIZATION
FOR THE FERMION PROPAGATOR

AT B � 0AND � � 0

The proper-time representation for the fermion propa-
gator in a constant external magnetic field was obtained
long time ago by Schwinger [25]. A naive generalization of
the corresponding representation to the case of a nonzero
chemical potential (or density) does not work however.
This is due to the complications in the definition of the
causal Feynman propagator in the complex energy plane
when � � 0. The correct analytical properties of such a
propagator describing particles above Fermi surface prop-
agating forward in time and holes below Fermi surface
propagating backward in time are implemented by intro-
ducing an appropriate i� prescription. In particular, one

replaces k0 þ� with k0 þ�þ i�signðk0Þ, where � is a
vanishingly small positive parameter. For example, in the
Landau level representation, the Fourier transform of the
translation invariant part of the fermion propagator is
defined as follows:

�SðkÞ ¼ ie�k2?‘
2

� X1
n¼0

ð�1ÞnDnðkÞ
½k0 þ�þ i�signðk0Þ�2 �m2 � k23 � 2njeBj ;

(A1)

where the residue at each individual Landau level is
determined by

DnðkÞ ¼ 2½ðk0 þ�Þ�0 þm� k3�3�½P�Lnð2k2?‘2Þ
� PþLn�1ð2k2?‘2Þ� þ 4ðk? � �?ÞL1

n�1ð2k2?‘2Þ;
(A2)

where L�
n ðxÞ are associated Laguerre polynominals.

Let us start by reminding the usual Schwinger’s proper-
time representation at zero fermion density, i.e.,

1

½k0 þ i�signðk0Þ�2 �M2
n

� 1

k20 �M2
n þ i�

¼ �i
Z 1

0
dseisðk20�M2

nþi�Þ; (A3)

where M2
n ¼ m2 þ k23 þ 2njeBj. It is important to

emphasize that the convergence of the integral and, thus,
the validity of the representation are ensured by having
the positive parameter � in the exponent. Unfortunately,
such a representation fails at finite fermion density. Indeed,
by taking into account that

1

½k0 þ�þ i�signðk0Þ�2 �M2
n

� 1

ðk0 þ�Þ2 �M2
n þ i�signðk0Þsignðk0 þ�Þ ; (A4)

we see that the sign of the i� term in the denominator is not
fixed any more. The corresponding sign is determined by
the product of signðk0Þ and signðk0 þ�Þ and can change,
depending on the values of k0 and�. For example, while it
is positive for jk0j> j�j, it turns negative when jk0j< j�j
and k0�< 0. This seemingly innocuous property causes a
serious problem for the integral representation utilized in
Eq. (A3). The sign changing i� term in the exponent
invalidates the representation at least for a range of quasi-
particle energies.
In order to derive a modified proper-time representation

for the fermion propagator, we will make use of the follow-
ing identity:
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1

½k0 þ�þ i�signðk0Þ�2 �M2
n

¼ �ðjk0j � j�jÞ
ðk0 þ�Þ2 �M2

n þ i�
þ �ðj�j � jk0jÞ

�
�ðk0�Þ

ðk0 þ�Þ2 �M2
n þ i�

þ �ð�k0�Þ
ðk0 þ�Þ2 �M2

n � i�

�

¼ 1

ðk0 þ�Þ2 �M2
n þ i�

� �ðj�j � jk0jÞ�ð�k0�Þ
�

1

ðk0 þ�Þ2 �M2
n þ i�

� 1

ðk0 þ�Þ2 �M2
n � i�

�

¼ 1

ðk0 þ�Þ2 �M2
n þ i�

þ 2i��ðj�j � jk0jÞ�ð�k0�Þ�½ðk0 þ�Þ2 �M2
n�: (A5)

The first term on the right-hand side of Eq. (A5) has a vacuumlike i� prescription and, thus, allows a usual proper-time
representation. The second term is singular and represents the additional ‘‘matter’’ piece, which would be lost in the naive
proper-time representation. After making use of this identity, we derive the following modified proper-time representation
for the propagator:

�SðkÞ ¼ e�k2?‘
2 X1
n¼0

ð�1ÞnDnðkÞ
Z 1

0
dseis½ðk0þ�Þ2�m2�k2

3
�2njeBjþi�� � �ðj�j � jk0jÞ�ð�k0�Þe�k2?‘

2 X1
n¼0

ð�1ÞnDnðkÞ

�
�Z 1

0
dseis½ðk0þ�Þ2�m2�k2

3
�2njeBjþi�� þ

Z 1

0
dse�is½ðk0þ�Þ2�m2�k2

3
�2njeBj�i��

�
: (A6)

In order to perform the sum over the Landau levels, we use the following result for the infinite sum of the Laguerre
polynominals:

X1
n¼0

znL�
n ðxÞ ¼ 1

ð1� zÞ1þ�
exp

�
xz

z� 1

�
: (A7)

Then we obtain

�SðkÞ ¼
Z 1

0
dseis½ðk0þ�Þ2�m2�k23þi���ik2?‘

2 tan ðsjeBjÞ½ðk0 þ�Þ�0 þm� k � �
� ðk1�2 � k2�1Þ tan ðseBÞ�½1þ �1�2 tan ðseBÞ� � �ðj�j � jk0jÞ�ð�k0�Þ
�

�Z 1

0
dseis½ðk0þ�Þ2�m2�k2

3
þi���ik2?‘

2 tan ðsjeBjÞ½ðk0 þ�Þ�0 þm� k � �

� ðk1�2 � k2�
1Þ tan ðseBÞ�½1þ �1�2 tan ðseBÞ� þ

Z 1

0
dse�is½ðk0þ�Þ2�m2�k2

3
�i��þik2?‘

2 tan ðsjeBjÞ½ðk0 þ�Þ�0

þm� k � �þ ðk1�2 � k2�
1Þ tan ðseBÞ�½1� �1�2 tan ðseBÞ�

�
: (A8)

This is a very convenient alternative representation for the fermion propagator in a constant external magnetic when
� � 0. It allows, in particular, a straightforward derivation of the expansion in powers of the magnetic field. To zeroth
order in magnetic field, we obtain

�Sð0ÞðkÞ ¼ �Sð0ÞvacðkÞ þ �Sð0ÞmatðkÞ; (A9)

where

�Sð0ÞvacðkÞ ¼
Z 1

0
dseis½ðk0þ�Þ2�m2�k2þi��½ðk0 þ�Þ�0 þm� k � �� (A10)

and

�Sð0ÞmatðkÞ ¼ �2��ðj�j � jk0jÞ�ð�k0�Þ½ðk0 þ�Þ�0 þm� k � ���½ðk0 þ�Þ2 �m2 � k2� (A11)

are the vacuum and matter parts, respectively. After integration of the proper time and making use of the identity in
Eq. (A5), we find that this is identical to the usual free fermion propagator (8) in the absence of the field.

Expanding the expression in Eq. (A8) to linear order in magnetic field, we also easily obtain the following linear in B
correction to the fermion propagator:
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�Sð1ÞðkÞ ¼ �1�2eB

�Z 1

0
sdseis½ðk0þ�Þ2�m2�k2þi�� þ 2i��ðj�j � jk0jÞ�ð�k0�Þ�0½ðk0 þ�Þ2 �m2 � k2�

�

� ½ðk0 þ�Þ�0 þm� k3�3�: (A12)

After integration over the proper time and making use of an identity obtained from Eq. (A5) by differentiating with respect
to M2

n, we obtain Eq. (9).

APPENDIX B: CALCULATION OF THE f1, f2, AND f3 TERMS

In this appendix, we give the details of the calculation of the radiative corrections to axial current due to the f1, f2,
and f3 terms. We start from the general form of the result in Eq. (47) and calculate separately the two contributions, f1 and
f2 þ f3. At the end we combine all contributions and calculate the final result for the f1 þ f2 þ f3 contribution.

1. Calculation of f1

Starting from the definition in Eq. (36), we find it convenient to rewrite the expression for f1 in the following equivalent
form:

f1 � f1ðm�Þ � f1ð�Þ; (B1)

where we took into account that the photon propagator is defined by Eq. (5), with � playing the role of the ultraviolet
regulator. As follows from the definition,

f1ðm�Þ ¼ �64i�2�eB
@

@ðmcÞ2
Z d4pd4k

ð2�Þ8
�ðp0 þ�Þ � p � k� 2m2

½ðP� KÞ2 �m2
��ðP2 �m2Þ�½�

2 �m2
c � k2��ðk0Þ

¼ 16i��eB

kF

@

@kF

�
kF

Z p2dpdp0d	

ð2�Þ5
�ðp0 þ�Þ � pkF	� 2m2

ðp2
0 � p2 � k2F þ 2pkF	�m2

�Þ½ðp0 þ�Þ2 � p2 �m2�
�
; (B2)

where we integrated over the energy k0, the absolute value of the spacial momentum k, and all angular coordinates
except for the angle �kp between k and p. We also introduced the following short-hand notations: kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
c

p
and

	 ¼ cos �kp. Note that the auxiliary quantitiesmc and kF should be replaced by the physical fermion massm and the Fermi
momentum pF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
p

, respectively, at the end of the calculation.
The integral over the energy p0 can be calculated using the following general result for the energy integration:

i
Z ½Xðp0 þ�Þ�þ Y�dp0

ðp2
0 � b2Þ½ðp0 þ�Þ2 � a2� ¼

�

b

�
�ð�� aÞ½Xðbþ�Þ�þ Y�

½ðbþ�Þ2 � a2� � �ða��Þ½Xa�2 þ ðaþ bÞY�
a½ðaþ bÞ2 ��2�

�
; (B3)

where a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2F � 2pkF	þm2

�

q
. Then we obtain

f1ðm�Þ ¼ �eB

2�3kF

@

@kF

Z kFp
2dpd	

b

�
�ðpF � pÞ½�ðbþ�Þ � pkF	� 2m2�

ðbþ�Þ2 � a2

� �ðp� pFÞ½a�2 � ðaþ bÞðpkF	þ 2m2Þ�
a½ðaþ bÞ2 ��2�

�
: (B4)

The integral over the angular coordinate 	 can be easily performed, leading to the following result:

f1ð0Þ¼ �eB

4�3kF

@

@kF

Z
pdp

�
�ðpF�pÞ

�
pþkF�jp�kFjþ�2�3m2�k2F

2a
ln
ð�þjp�kFjþaÞð�þpþkF�aÞ
ð�þpþkFþaÞð�þjp�kFj�aÞ

�

þ�ðp�pFÞ
�
pþkF�jp�kFj�2kFp

a
þ�2�3m2�k2F

2a
ln
ðaþjp�kFjÞ2��2

ðaþpþkFÞ2��2

��
: (B5)

Here, without loss of generality, we presented the result only for the case of the vanishing photon mass. This is justified
because, as we will see below, the limit m� ! 0 does not produce any infrared singularities in the final result for f1. If

needed, an analogous expression for the case of a nonzero photon mass m� can be readily written down as well. It can be

obtained from the above result by making the following three replacements: (i) jp� kFj !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� kFÞ2 þm2

�

q
,
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(ii) pþ kF !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ kFÞ2 þm2

�

q
, and (iii) �2 � 3m2 � k2F ! �2 � 3m2 � k2F �m2

� at two places in front of the

logarithms.
After calculating the derivative with respect to kF in Eq. (B5) and then substituting kF ! pF, we obtain

f1ð0Þ ¼ �eB

4�3pF

Z
pdp

�
�ðpF � pÞ

�
2m2p

ðpF þ�Þðp2
F � p2Þ �

pF

a
ln
ð�þ pFÞ2 � ðp� aÞ2
ð�þ pFÞ2 � ðpþ aÞ2

�

þ �ðp� pFÞ
�
2� 2p

a
� pF

a
ln
p� pF

pþ pF

� 2m2p2
F

aðaþ pÞðp2 � p2
FÞ

þ 2m2p

aðp2 � p2
FÞ
��

: (B6)

It is easy to check that the above expression has a logarithmic ultraviolet divergency, i.e.,

fUV1 ð0Þ ’ �eB
2�2 þm2

4�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p Z dp

p
: (B7)

This confirms that an ultraviolet regularization is required in the calculation. As mentioned earlier, we utilize the Feynman
regularization (B1), which is equivalent to using the photon propagator in Eq. (5). This is the same regularization, which is
commonly used in the calculation of vacuum diagrams in QED, when the regularized expression is obtained from the
divergent one by subtracting the contribution with a large photon mass �. In the case at hand, therefore, we need the
explicit expression for the function f1ð�Þ. The corresponding calculation is tedious but straightforward. The result reads

f1ð�Þ ¼ �eB

4�3pF

Z
pdp

2
4�ðpF � pÞ

0
@ pþ pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2
p þ p� pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p

þ ðpF � pÞð2m2 þ�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2
p ð2p2

F � 2pFpþ�2 þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p Þ

� ðpF þ pÞð2m2 þ�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2
p ð2p2

F þ 2pFpþ�2 þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p Þ

þ pF

a
ln
ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p þ aÞð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2
p � aÞ

ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2
p þ aÞð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p � aÞ

1
A

þ �ðp� pFÞ
0
@ pþ pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2
p þ p� pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p � 2p

a

þ ð2m2 þ�2Þðp� pFÞðaþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2
p Þ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p ð2p2 � 2ppF þ�2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p Þ

þ ð2m2 þ�2Þðpþ pFÞðaþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2
p Þ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p ð2p2 þ 2ppF þ�2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p Þ

þ pF

a
ln
2p2 þ 2ppF þ�2 þ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2
p

2p2 � 2ppF þ�2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p
1
A
3
5: (B8)

Finally, as follows from the definition in Eq. (B1), the regularized expression of f1 reads

f1 ¼ �eB

4�3kF

Z pF

0
pdp

�
m2

ðpF � pÞðpF þ�Þ �
m2

ðpþ pFÞðpF þ�Þ þ
pF

a
ln
ð�þ pF þ pþ aÞð�þ pF � p� aÞ
ð�þ pF � pþ aÞð�þ pF þ p� aÞ

�

þ �eB

4�3kF

Z 1

pF

pdp

�
2� pþ pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p � p� pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2
p þ m2ðaþ p� pFÞ

aðp� pFÞðaþ pÞ
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� ð2m2 þ�2Þðp� pFÞðaþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2
p Þ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p ð2p2 � 2ppF þ�2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p Þ
þ m2ðaþ pþ pFÞ

aðpþ pFÞðaþ pÞ

� ð2m2 þ�2Þðpþ pFÞðaþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2
p Þ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p ð2p2 þ 2ppF þ�2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2

p Þ

þ pF

a
ln
pþ pF

p� pF

� pF

a
ln
2p2 þ 2ppF þ�2 þ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ pFÞ2 þ�2
p

2p2 � 2ppF þ�2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� pFÞ2 þ�2

p
����������	�

: (B9)

Note that, in the first integral below the Fermi surface
(p 
 pF), we took the limit � ! 1 because it does not
cause any problem. It is essential, however, to keep� finite
in the second integral above the Fermi surface (p � pF).

A careful analysis of the regularized expression for f1 in
Eq. (B9) reveals a potentially serious problem: both inte-
grals below and above the Fermi surface have infrared
logarithmic divergencies coming from the regions near
pF. These divergencies cannot be avoided even when the
photon mass is introduced as a regulator. (The divergencies
do happen to vanish in the theory with massless fermions,
m ¼ 0, but this is of no importance as we discuss below.)
Fortunately, as we will see below, the corresponding

divergencies exactly cancel similar infrared divergencies

in the expression for f2 þ f3. Therefore, we come to the

conclusion that the appearance of infrared divergencies in

f1, as well as in f2 þ f3, is purely accidental and has no

implications on physical observables. They can be viewed

as a consequence of an ambiguous split of the finite ex-

pression f1 þ f2 þ f3 into two separate contributions.
In order to carefully sort out the cancellation of the

above-mentioned (unphysical) infrared divergencies, it is

useful to explicitly separate the divergent terms from regu-

lar ones in the corresponding expression for f1 ¼ fðIR;divÞ1 þ
f
ðIR;regÞ
1 . The divergent part of the expression reads

fðIR;divÞ1 ¼ �eBm2

4�3kF

�Z kF��1

0
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Z 1
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; (B10)

where we introduced infrared regulators �1 and �2 (with �1, �2 ! 0) that allow us to deal with the problem in a rigorous
way. Notice that, in the second integral we added a simple regular term, whose only purpose is to ensure the ultraviolet
convergence of the whole expression. The remaining regular part of the expression for f1 reads

fðIR;regÞ1 ¼ �eB

4�3kF

Z kF

0
pdp

�
� m2
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Calculating the integrals in the case m � j�j, we arrive at the following results:

fðIR;divÞ1 ’ �eBm2

8�3�
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þ ln
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� 1

�
; (B12)

f
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: (B13)
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2. Calculation of f2 þ f3

In this subsection, we calculate the expression for the sum f2 þ f3 starting from the definition in Eqs. (40) and (44). As
we see below, the corresponding expression has no ultraviolet divergencies. Therefore, we could take the limit � ! 1 in
the expression for f2 þ f3, i.e.,

f2 þ f3 ¼ 64i�2�eB

3

@

@ðmaÞ2
Z d4pd4k

ð2�Þ8
3ðp0 þ�Þ2 � 3�ðp0 þ�Þ þ p2 � pkF	þ 3m2

½ðP� KÞ2 �m2
��ðP2 �m2

aÞ
�ð�2 �m2 � k2Þ�ðk0Þ

¼ 32i��eBkF
3

@

@ðmaÞ2
Z p2dpdp0d	

ð2�Þ5
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a þ 3m2 � 3�ðp0 þ�Þ
ðp2

0 � p2 � k2F þ 2pkF	�m2
�Þ½ðp0 þ�Þ2 � p2 �m2

a�
; (B14)

where we integrated over the energy k0, the absolute value of the spacial momentum k, and all angular coordinates except
for the angle �kp between k and p. We also introduced an auxiliary quantityma, which should be replaced by the physical
fermion mass m at the end of the calculation. It should be also noted that some terms independent of ma were dropped in
the integrand of the last expression. This is justified because they vanish anyway after the derivative with respect to m2

a is
calculated.

In order to calculate the integral over the energy p0, we use again the result in Eq. (B3). Then, we arrive at

f2 þ f3 ¼ ��eB

6�3

@

@pF

Z p2dpd	

b
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�
; (B15)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2F � 2pkF	þm2

�

q
and a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2 � p2

F

q
. Note that, in this subsection, we distinguish the quantity

pF � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

a

p
from the physical Fermi momentum kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
p

. After the partial derivative with respect to pF is
performed, the value of pF will be replaced by kF. Similarly, the auxiliary quantity a, which is a function of pF, will be

replaced by its physical counterpart
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

The integral over the angular coordinate 	 can be easily performed, leading to the following result:

f2 þ f3 ¼ � �eB
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; (B16)

where, without loss of generality, we again took the limit of vanishing photon mass.
It is straightforward to show that the integral in Eq. (B16) has infrared logarithmic divergencies, similar to those in

function f1. Therefore, we follow the same kind of analysis as in the case of f1 and extract explicitly the following infrared
divergent terms:

fðIR;divÞ2 þ fðIR;divÞ3 ¼ � �eB
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: (B17)

Then, the leftover regular part reads
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(B18)

After calculating the derivative with respect to pF in the regular piece (note that a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2 � p2

F

q
, i.e., a is a function

of pF) and substituting pF ! kF afterwards, we obtain
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As is easy to check, the integrand is / 1=p3 when p ! 1. It is clear, therefore, that the expression is convergent and no
additional ultraviolet regularization is needed. Integrating over the momentum, we finally obtain

fðIR;regÞ2 þ fðIR;regÞ3 ¼ ��eBkF
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For m � j�j, the final expressions for the infrared divergent and regular contributions simplify as follows:

fðIR;divÞ2 þ fðIR;divÞ2 ’ �eBm2
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; (B21)

f
ðIR;regÞ
2 þ f
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: (B22)

3. Collecting all contributions

As seen from Eq. (47), the final expression for the axial current is given in terms of the sum f1 þ f2 þ f3. The
corresponding function is obtained by collecting all the divergent and regular terms calculated in the previous two
subsections of this appendix. In the case m � j�j, in particular, the result reads

f1 þ f2 þ f3 ¼ fðIR;divÞ1 þ fðIR;divÞ2 þ fðIR;divÞ2 þ fðIR;regÞ1 þ fðIR;regÞ2 þ fðIR;regÞ3

’ �eB�

2�3
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ln
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þ 11

12

�
þ �eBm2

2�3�

�
ln

�

23=2�
þ 1

6

�
: (B23)

Notice that all infrared regulators (�1 and �2), which were introduced in the divergent parts of f1 and f2 þ f3 canceled out.
The only regulator in the last expression is the ultraviolet one �. In the final expression for the axial current (55), this
dependence on the ultraviolet regulator cancels out exactly with a similar dependence coming from the counterterm
contribution in Eq. (52).
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