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Abstract 

Studies on urban heat island (UHI) have been more than a century after the phenomenon was 

first discovered in the early 1800s. UHI emerges as the source of many urban environmental 

problems and exacerbates the living environment in cities. Under the challenges of increasing 

urbanization and future climate changes, there is a pressing need for sustainable 

adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective 

materials. While it is introduced as one effective method to reduce temperature and energy 

consumption in cities, its impacts on multi-dimensional environmental sustainability and 

large-scale non-local effect are inadequately explored. This paper provides a synthetic overview 

of potential environmental impacts of reflective materials at a variety of scales, ranging from 

energy load on a single building to regional hydroclimate. The review shows that mitigation 

potential of reflective materials depends on a portfolio of factors, including building 

characteristics, urban environment, meteorological and geographical conditions, to name a few. 

Precaution needs to be exercised by city planners and policy makers for large-scale deployment 

of reflective materials before their environmental impacts, especially on regional hydroclimates, 

are better understood. In general, it is recommended that optimal strategy for UHI needs to be 

determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy. 
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1. Introduction 

The urban heat island (UHI) effect, higher temperatures in urban areas compared to 

surrounding rural areas, is a well-known phenomenon that has been documented in hundreds of 

cities worldwide [1,2]. UHI intensity scales with size and population density of cities, with an 

expanding city experiencing continuously degraded thermal comfort [3]. While a significant 

spatial and temporal variation is observed in the UHI intensity, many cities show a magnitude of 

5-11 oC by mid-morning [4]. Elevated environmental temperatures in urban areas lead to rise of 

energy consumption for cooling [5-8], increase of peak electricity demand [9], degradation of air 

quality [10-13], and deterioration of thermal stress on residents [14,15]. In particular, UHI 

degrades the living environment and increases the risk of heat-related morbidity and mortality in 

cities especially if exacerbated by heat waves [15-17]; thus prevention of deaths under conditions 

of extreme high temperatures has become a significant public health concern [18]. Given the 

ever-increasing urban population and the potential for more frequent and/or more severe heat 

waves in the future [19], adaptation and mitigation strategies are critical to alleviate UHIs and 

their subsequent adverse environmental effects [20].   

During the past decades, several strategies have been proposed, developed and implemented 

to mitigate UHI, including reflective materials [21,22], materials with high optical and thermal 

performances [23,24], green roofs (also known as eco-roofs) [25-29], urban vegetation and 

shading [30,31], heat sinks [32,33], to name a few. Among these techniques, reflective materials 

have been extensively studied [34-36] and are considered as a promising method that has gained 

increasing acceptance as well as application in buildings [37,38]. As available free ground area in 
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urban environment is limited, a substantial portion of research efforts on reflective materials has 

been devoted to reflective roofs [38,39], also known as white or cool roofs. In moderately 

insulated buildings, peak summer indoor temperatures may reduce by up to 2 oC, and cooling 

loads may reduce by 10% to 40% after installation of reflective roofs, depending on climatic 

conditions and building characteristics [35]. At the global scale, implementation of reflective 

roofs and pavements over urban areas would induce a negative radiative forcing, which is 

equivalent to offsetting tens of billions tons of CO2 emission according to Akbari et al. [40,41]. 

Economic analyses show that manufacturing and life cycle costs of reflective materials are lower 

than those of conventional ones [42,43]. In the U.S., reflective roofs have been adopted as a 

requirement or credit in widely used building energy-efficiency standards since 1999 including 

ASHRAR 90.1, ASHRAE 90.2, the International Energy Conservation Code and California Title 

24 [38,44]. The Department of Energy (DOE) launched a cool roof initiative in 2010 to facilitate 

reducing carbon emission and potentially slowing some possible precursors to climate change. 

Globally, reflective roofs begin to gain popularity in Europe, Asia and South America [37].   

Though mitigation potentials of reflective materials are quite extensively investigated, 

synthetic studies of existing numerical and experimental researches on these materials and their 

potential environmental impacts at multiple scales are relatively limited. Santamouris et al. [36] 

summarized the development and assessment of cool materials in four phases for buildings and 

urban structures to mitigate UHI, with the main focus on materials and techniques per se. Later, 

Santamouris [35,39] reviewed the status quo of different cool pavements as the mitigation 

strategy, and the cooling potentials of reflective roofs in comparison with green roofs. But these 
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reviews are exclusively focused on the potential of temperature reduction and energy saving by 

reflective materials, while their impacts on other critical environmental aspects are barely 

discussed. Urban areas are hot spots that drive multi-sector environmental changes, consumption 

and production of resources within urban environment have local and regional implications for 

ecosystem services, hydroclimate, health and other factors [45]. Previous studies have indicated 

that large-scale deployment of reflective roofs in urban areas can lead to environmental impacts 

such as decreased precipitation [46,47] and/or improved air quality [48,49]. It is therefore 

imperative to evaluate, compare and summarize environmental impacts, at multiple scales and 

dimensions beyond the measure of environmental temperatures.    

 The objective of this paper is to provide a synthetic overview of potential environmental 

impacts as a result of implementation of reflective materials in cities. As the relevant literature 

has expanded enormously especially in the past decade, we restrict the scope of this review in a 

number of ways to avoid being overly lengthy. First, we only cover the literature published in 

English since 1990. Second, the review will focus on major environmental impacts of reflective 

materials, including temperature, energy consumption, hydroclimate, health risk, thermal 

comfort, and air quality. Technical development and manufacturing details have been reviewed in 

a previous study [39] and thus are not included here. Third, we constrain the scope to studies that 

were exclusively conducted on reflective materials. Studies addressing the combined effects of 

multiple mitigation strategies are excluded [30,50]. 
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2. Effect of reflective materials on environmental temperatures 

2.1. Surface temperature 

The amount of solar radiation reflected from surface is determined by reflectivity of the 

materials. With higher solar reflectivity (albedo), reflective materials usually appear white in 

color and are able to absorb less radiation and maintain a lower surface temperature during 

daytime. This effect has been documented in a variety of previous studies, with most focused on 

summer time. Table 1 and 2 summarize the main characteristics and results from numerical 

simulations and field experiments, respectively. Although possible thermal benefits are readily 

available from existing studies, intercomparing the results is not a straightforward task, due to 

the variety in research methodology, performance standards, and implementation practices 

carried out by different researchers. Numerical simulations were run at a variety of scales, with 

vastly different regional characteristics and model setups, while experimental studies were 

conducted using various materials and techniques under different meteorological conditions.  

It can be seen from Tables 1 and 2 that increasing reflectivity facilitates reduction of daytime 

surface temperature. And the magnitude of the reduction increases with the increment of 

reflectivity, when other conditions remain the same. Compared to summertime, temperature 

reductions in other seasons are expected to be smaller in magnitude, as solar radiation intensity 

reduces. However, only a few studies have reported seasonal variation of the impact [51,52]. 

During nighttime, albedo of materials becomes ineffective due to the absence of solar radiation. 

However, as more radiation is reflected during the day, less heat is stored in reflective materials 

compared to conventional ones. This can lead to small reductions of nighttime surface 
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temperature, if not negligible [21,53]. In addition to meteorological conditions, temperature 

reductions also depend on geographical conditions. Reflective materials cool the surface by 

modifying the radiative energy impinged on land surfaces. Under strongly windy conditions, the 

advective effect can dominate the surface temperature variation. A field study in Athens found 

that reflective pavements could reduce surface temperature in an urban park up to 7.6 oC under 

non-shaded condition [54]; on the contrary, temperature reduction by reflective pavement is 

nearly negligible at the site close to the sea due to the advective effect of sea-land breeze. 

The capability of reflective materials to mitigate UHIs depends on its ability to reflect more 

solar radiation, hence preventing the transfer of thermal energy into and through solid subsurface 

stratums. However, larger reflected radiation can be absorbed by surrounding surfaces and 

subsequently increases their temperatures. Levinson [55] found that increasing the ground albedo 

could heat or cool a near-ground object, depending on the object’s albedo. When the object has 

an albedo of 0.3, increasing ground albedo by 0.25 perturbs the environmental temperature by 

-1.1 to 0.3 oC for a human, -0.4 to 0.9 oC for a car, and 1.0 to 2.3 oC for a bungalow near ground. 

Reflective pavements will cool the object only if the object’s albedo exceeds a critical value. An 

experimental study by Li [56] showed that temperature of building walls would be heated up by 

reflected energy from pavement surfaces, which could be 2 to 5 oC around noon. Compared to 

asphalt pavements, concrete pavements have higher albedo and consequently lead to a higher 

wall temperature. Temperature on the lower and middle parts of the wall is higher than that on 

other parts, mainly owing to the view factor. Additionally, Brender and Lindsey [57] conducted 

experiments in Las Vegas and observed hotter interior temperature (5 oC at maximum) in the 
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conduit over a white roof as compared to dark-colored roofs. These findings imply that thermal 

interactions between pavements and nearby objects need special attentions when reflective 

materials are to be used. The interaction may not be a big risk in open areas, but it tends to be 

more serious in high-density urban centers where walls are close to pavements and thus 

subjected to more heating potentials by the reflected solar radiation from the adjacent pavements. 

It is expected that thermal interaction depends on various factors, such as pavement size, distance 

between walls and pavements, and thermal properties of walls and pavements. The lack of 

synthetic study on the building-pavement-atmosphere interactions at fine scales (building to 

neighborhood) calls for future studies along this line.  

 

2.2. Air temperature 

Unlike studies on surface temperature, research on air temperature mostly adopts numerical 

modeling approaches, with only a few employing experimental methods. Table 3 summarizes the 

existing studies that cover the impact of reflective materials on air temperature, including indoor 

air temperature in non-air-conditioned buildings and outdoor air temperature. Overall, cooling 

potentials of reflective materials on air temperature are notably smaller than those on surface 

temperature. Compared to results on surface temperature by reflective materials from numerical 

simulations and field experiments, results on outdoor air temperature are less consistent. Some 

studies reported a considerable reduction of atmospheric temperature by reflective materials to 

several degrees [21,48,58], while others concluded the reduction is small or negligible [59-62]. 

Moreover, a study by Jacobson and Ten Hoeve [63] found that increasing worldwide roof albedo 
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would lead to local cooling but global warming, though highly uncertain, resulting from the 

magnified feedbacks at high latitudes over snow and sea ice. One main reason for the diversity in 

results is the turbulent mixing of mass and thermal energy in the lower atmosphere. Though 

surface temperatures have significant influence on air temperatures, their relationship is not 

constant in the urban environment due to the mixing process. Georgakis and Santamouris [64] 

carried out field experiments in a deep canyon in Athens during summer and found that turbulent 

mixing and horizontal advection inside the canyon homogenize the air temperature such that the 

impact of surface temperature on air temperature is relatively insignificant. Another important 

reason is the drastic variability of air temperature in vertical direction. Air temperature and its 

gradient are much higher near the ground than those at 2 m, gradually decreasing as the distance 

from pavement surface increases [56]. Impact of reflective materials on air temperature is 

therefore different at various heights; consequently it is not surprising that a consensus is hard to 

reach without a “standardized” procedure of atmospheric temperature profile measurements. 

Simulations in Tokyo found that white roofs installed on medium- and high-rise buildings were 

ineffective in reducing ambient temperature at street level [65]. Reflective pavements, on the 

other hand, could reduce mean air temperature by about 0.1 K. 

With respect to indoor air temperature in non-air-conditioned buildings, existing studies 

agree well among one another in that a reduction of 1-3 oC can be achieved by the installation of 

cool roofs. Compared to outdoor air temperature, indoor air temperature is more important as the 

habitants are exposed to the latter most of the time during hot periods. Without air conditioning, 

indoor air temperature can exceed 30 oC for more than 85% of the time during heat waves [66]. 
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As global climate change increases the frequency and length of heat waves, peak temperatures 

and duration of the hot spells will be aggravated in non-air-conditioned indoor environments. 

Though air conditioning is the most effective method to cope with extreme heat [67], lower 

socioeconomic and ethnic minority groups have less access to it that they are more vulnerable to 

heat stress [16,68]. Under such circumstance, reflective roofs serve as a convenient strategy to 

reduce indoor air temperatures and consequently reduce the health risks on residents.  

 

2.3. Urban heat island intensity 

The uppermost objective of application of reflective materials is to mitigate urban heat 

islands. Though researches on UHIs have lasted for more than a century, the intensity of a UHI is 

not yet rigorously defined [69]. Instead, a number of ad-hoc definitions of UHI intensity were 

used in the literature by different researchers under different conditions; one commonly used 

definition being the spatially-averaged temperature difference between an urban and its 

surrounding rural areas [70,71]. Whereas depending on the actual environmental temperature 

used (e.g. surface vs. atmospheric temperature, or radiant vs. sheltered temperature), UHI 

intensity can be sub-categorized, such as atmospheric, surface, or subsurface ones, the latter two 

being much less investigated [72]. As nonlinearity presents in the relationship between surface 

and air temperatures, it is anticipated that the resulted UHI intensities defined by different 

measures show different trends. Table 4 summarizes the observed UHI intensities of major cities 

in the world. It is clear from the table that UHI intensity varies vastly from city to city, due to the 

combined effect of various contributors, including population, geographical condition, climate 
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condition, city geometry, etc. It is hard to directly compare the magnitude of UHI intensity of 

different cities, as in-situ measurements are carried out at different time in different seasons with 

different techniques. Generally speaking, UHI intensity tends to decrease with wind speed and 

cloud cover, and increase with city size and population. A thorough review on UHI research can 

be found in [85].  

Usually intensity derived from surface temperature is considerably larger than that from air 

temperature. Kim and Baik [70] reported that annual average maximum UHI intensity was about 

2.2 oC in Seoul from Mar 2001 to Feb 2002 based on air temperature from weather station data. 

UHI intensity was found to be stronger in nighttime than in daytime for Seoul, and tended to be 

weak in summer compared to other seasons. However, mean daytime UHI intensity in Seoul was 

found to be 8 oC in August 2001 based on surface temperature from satellite data [2]. Miao et al. 

[73] observed a UHI intensity of 0.05 oC for Beijing at 1000 LST based on air temperature, while 

analysis of remotely sensed surface temperature at 1030 LST showed an intensity of 10 oC [2]. 

The large gap was also found in modelling studies. Using a mesoscale numerical model, Hafner 

and Kidder [86] reported a UHI intensity of 1.2 oC based on surface temperature and the 

intensity was only 0.6 oC based on air temperature in Atlanta at 6 am on February 7, 1988. This 

diversity in definition of UHI intensity adds difficulty to comparing and evaluating potential and 

effectiveness of reflective materials as a UHI mitigation strategy.  

Despite the difference in definition, UHI intensity derived from both temperatures has a 

strong diurnal variation. A couple of studies have reported that UHI intensities are larger during 

night time than in day time [11, 87-89], primarily due to the energy stored by large heat capacity 
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of pavement surfaces. On the contrary, functioning with the presence of solar radiation, reflective 

materials are more effective during daytime. This phase lag raises concerns about the 

effectiveness of reflective materials in mitigating UHIs during nocturnal cycle. In addition, Ryu 

and Baik [90] identified that heat radiating from vertical surfaces has a great impact on nighttime 

UHI intensity. In order to alleviate this effect, reflective materials applied on building walls are 

preferred to that on the street level. 

It is also noteworthy that an important physical process is largely neglected in existing 

studies. If applied at a large scale, reflective pavements stabilize local air and modify regional air 

flow patterns when they reduce urban surface temperature. This modification of atmospheric 

boundary layer dynamics over a built terrain imposes temperature changes on surrounding rural 

areas, which is not adequately investigated hitherto. Millstein and Menon [91] found that by 

increasing roof albedo of 0.25 and pavement albedo of 0.15 in urban areas over the continental 

U.S., summertime afternoon temperature could be decreased by up to 0.53 oC in urban locations. 

For rural areas, some locations experience a temperature reduction while others has an increment 

of up to 0.27 oC. This apparent increase in surrounding rural temperatures is an unintended 

consequence, which needs to be carefully examined in determining the actual mitigation 

potential of reflective materials. 

 

3. Impact of reflective materials on building energy consumption 

 During the past century, global population has become increasingly urbanized and turned 

cities into large energy consumers. One substantial adverse consequence of UHIs is the increase 
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of building energy consumption. In the U.S., buildings consume 39% of energy and 68% of its 

electricity, of which 97% is consumed on operation [92]. Building energy consumption in cities 

is closely related to environmental temperatures, where increased UHI intensity and heat wave 

events due to land use land cover modification and changes in global and regional climatic 

patterns inevitably lead to increase in energy demand. Akbari et al. [93] reported that for U.S. 

cities with population larger than 100000, peak electricity load will increase by 1.5-2% for every 

1 oF increase in ambient temperature. In Hong Kong, it was found that electricity consumption 

would increase by 9.2%, 3.0% and 2.4% in domestic, commercial and industrial sectors, 

respectively, for 1 oC increase in ambient temperature [5]. UHI in the central Athens reduce 

heating load by up to 30-55% in winter [94]. However, cooling load in summers is almost 

doubled, significantly outweighing the reduction in winter. With its influence on temperature, 

reflective materials are capable to reduce cooling loads of buildings during hot periods, 

especially early afternoons during the summer. On the other hand, reflective materials can 

increase heating loads during cold periods, known as the “heating penalty” of high albedo 

[95-97].  

Numerous studies have addressed the impact of reflective materials on energy consumption 

in urban areas. Results are summarized in Table 5. Most of the studies have been focused on the 

impact of reflective roofs, while only a few have accessed the effect of reflective pavements. 

Both cooling savings and heating penalties are reported, with their relative magnitude varying 

with building types, geographical and meteorological conditions. At the annual scale, most of 

existing studies that have evaluated the net impact favor a reduction in energy consumption by 
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reflective roofs. Using the DOE-2 building energy simulation program, Akbari et al. [95] 

investigated impacts of reflective roofs in eleven U.S. metropolitan statistical areas. Largest 

savings in individual buildings were found in cities under the hottest and sunniest climate. 

Savings decreased as the climate got cooler, but net savings were still positive for most building 

types in cities as far north as Chicago. Akbari and Konopacki [96] accessed the influences of 

cool roofs on three building types with various characteristics over 240 locations across the U.S.. 

It was found that only in electric heating residential buildings under climates with less than 1000 

cooling-degree-days, increasing roof albedo from 0.2 to 0.5 would lead to larger heating penalty 

than cooling saving. Levinson and Akbari [97] combined building energy simulations, local 

energy prices, local electricity emission factors, and local estimates of building densities to 

characterize local per-CRA (conditioned roof area) and per-LA (land area) annual rates of energy 

cost savings in 236 cities across the U.S. after installation of a cool roof. Using the DOE-2.1E 

building energy model with a roof assembly heat transfer module, they predicted that a cool roof 

almost always reduced the annual cooling load more than it increased the annual heating load 

per-CRA, with the greatest saving in Hawaii and the least in Alaska. With TRNSYS thermal 

simulation software, Synnefa et al. [98] found that application of cool roofs lead to a larger 

cooling load reduction (9 to 48 kWh/m2/year) than heating penalty (0.2 to 17 kWh/m2/year) for 

27 cities (latitude from 19.19 o to 43.4o) around the world. Daily peak electricity demands were 

also found to decrease substantially in these studies. Against energy savings, a later simulation 

by Oleson et al. [99] showed that reflective roofs increased winter interior heating more than 

they decreased summer air conditioning with respect to the global annual average. 
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 While reflective roofs reduce cooling loads by reducing the transfer of heat into buildings 

from roofs, the same is not necessarily true with regards to pavements at the ground level. Heat 

transport of road pavements is often influenced by the adjacent thermal environment through 

surface-atmosphere interactions in, e.g. a street canyon. Yaghoobian et al. [100] applied a 

three-dimensional heat transfer model (TUF3D) and found a substantial reduction in short-wave 

radiative transfer from ground to building by using low albedo ground surfaces, rather than 

reflective pavements. This reduction leads to a consequent savings in the daily design cooling 

load of nearby buildings by 17%. Later Yaghoobian and Kleissl [60] adopted a three-dimensional 

building-to-canopy model (TUF-IOBES) to investigate the effects of reflective pavements on 

building energy usage. Focusing on thermal interactions between buildings and surrounding 

microclimate in the urban canyon, the study found that increasing ground solar reflectivity from 

0.1 to 0.5 near a four-story office building (1820 m2 floor area, 47% window-to-wall ratio) in 

Phoenix would increase annual cooling loads up to 11% (33.1 kWh/m2). Annual heating load 

was not sensitive to ground surface albedo modification. These results illustrate the potential of 

increased cooling loads in adjacent buildings by reflected solar radiation from high albedo 

reflective pavements. 

 With respect to studies on energy consumptions, two issues are worth mentioning. First, 

among the existing experimental studies, energy consumption data is mostly available in 

summers. Building energy simulation models are calibrated for this period and then used to 

estimate energy consumption at the annual scale. Such treatment may lead to bias in predicting 

heating loads in winter and consequently errors in estimating overall energy consumption. To 
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accurately evaluate the net energy savings by reflective materials, collection of data during entire 

annual cycles is recommended. Second, the impact of urban environment at larger scales is often 

neglected. Existing studies mostly estimate energy consumptions of cities based on 

building-scale models or temperature-dependent functions, where geometric and geographical 

complexities at city scales, e.g. spatial heterogeneity, orographic effect, variability in building 

geometry and density, etc. are not properly represented. For example, Yaghoobian and Kleissl 

[60] adopted a 3D model and reported that annual thermal loads of buildings decreased with 

canopy height-to-width ratio. Other variables such as canyon orientation can also have 

implications for urban energy consumption as it affects radiation budget and wind speed.  

Incorporation of environmental complexity of built terrains into calculation of energy 

consumption is therefore important for future numerical simulations in order to provide guidance 

to building energy efficiency design and city planning. To do this, one group of models having 

particularly promising potential is the urban land surface modeling schemes, the so-called urban 

canopy models (UCMs) developed in the widely-used Weather Research and Forecasting (WRF) 

platform [101,102] by the National Center for Atmospheric Research (NCAR). The most 

common urban land surface models in WRF are the single layer [103-107] and the multi-layer 

UCMs [108-111]. WRF-UCM system integrates the physics of energy and mass transport in the 

urban canopy layers and the mesoscale atmospheric dynamics, thus provides a versatile 

modeling framework for multi-scale numerical simulations ranging from building to regional 

scales. Detailed physically-based building energy model has been implemented in the multi-layer 

UCM [110, 111, 8] and outperforms the commonly used EnergyPlusTM model [112, 113]. A 
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detailed report on synthetic analysis of UCM schemes can be found in Grimmond et al. [114, 

115].  

 

4. Environmental impact at large: city and regional hydroclimates 

By increasing albedo, reflective materials reduce available energy at the surface and weaken 

turbulent heat fluxes. Simulation by Scherba et al. [116] showed that peak sensible heat flux 

could reduce by about 70% after replacing a black roof with a white roof during the summer, and 

total daily sensible heat flux was decreased by approximately 80%. Turbulent fluxes arising from 

the Earth’s surface are responsible for changes in the atmospheric state variables. With that, 

significant reduction in sensible fluxes indicates a possible strong impact of reflective materials 

on local and regional hydroclimate. This implication has not raised concerns of the public until 

recently that adverse effects are reported in several simulation studies. 

Millstein and Menon [78] were the first to bring up this issue. They employed the WRF 

model to investigate the impact of large-scale cool roof deployment. Assuming a 0.25 and 0.15 

increase in albedo of roofs and pavements in urban areas with adoption of reflective materials 

across the U.S., results showed that summertime afternoon temperature could be increased by up 

to 0.27 oC in some rural locations. These locations were associated with fewer or thinner cloud 

cover, lower soil moisture and less precipitation. Later, Bala and Nag [117] adopted the NCAR 

Community Atmospheric Model (CAM) version 3.1 with a slab ocean/thermodynamic sea ice 

model to access the potential for mitigation of climate change by enhancing the albedo over land. 

Instead of modifying the surface albedo, they increased the planetary albedo of clouds over land 
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by 1.9% as an idealized case. It was shown that albedo enhancement caused a large residual 

sinking motion over land, leading to a significant decrease of 13.3% and 22.3% in global 

land-mean precipitation and runoff, respectively. Note that the numbers are not realistic due to 

the use of an idealized case, however, their results suggest the likelihood of large adverse 

regional impacts on the hydroclimate. More recently, Georgescu et al. [46] applied WRF to 

investigate the alleviation potential of highly reflective roofs on UHI-induced warming in Sun 

Corridor. Results showed that under maximum urban expansion scenario, implementation of 

reflective roofs reduced evapotranspiration throughout the calendar year, especially in summer. 

Total accumulated precipitation was decreased by 4%, further worsening water resources 

conditions in the semi-arid area. On the continental scale, Georgescu et al. [47] found that 

reflective roof deployment over expanded urban areas reduced summertime precipitation by 2-4 

mm/day along a corridor extending from Florida to the northeastern United States, and reduced 

monsoon precipitation considerably in southwestern United States. Reduction during other 

seasons was smaller compared to summer. 

These studies show qualitative agreement that large-scale albedo enhancement over land 

leads to reduced precipitation. Reduced precipitation is expected to have consequences on the 

already stressed water demand for households, agriculture, power generation, and aquatic 

ecosystem, especially in the arid and semi-arid regions. Given the rising global water stress due 

to climate change and population growth [118], measures for such consequences are essential 

before large scale implementation of reflective materials. With regard to numerical simulations, 

the use of integrated multi-scale models such as WRF to quantify the large scale environmental 
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impact of reflective materials is still at its infancy, and its future employment by modelers is 

strongly encouraged.  

 

5. Thermal comfort and health risk consideration 

In cities, people experience intense thermal discomfort during hot days in outdoor or 

non-air-conditioned indoor environments. With its ability to reduce surface and air temperature, 

reflective materials undoubtedly modify the thermal comfort in a built environment. Human 

thermal comfort is a rather subjective measure that is related to relevant environmental, 

physiological and other aspects that affect the comfort level of human bodies. Environmental 

factors that contribute to human thermal comfort include environmental temperature (though 

quite vaguely defined), humidity, wind speed, radiative exposure, ambient evaporative and 

sensible fluxes, etc.; a latest survey on this topic can be found in [15]. The use of reflective 

materials mainly modifies the environmental temperature and radiative exposure, which in turn 

lead to the change of thermal comfort level. In non-air-conditioned indoor environment, 

reflective roofs reduce indoor temperature by reflecting solar radiation and preventing the 

transfer of heat into the buildings. Synnefa et al. [98] evaluated the effect of reflective roofs in 27 

cities around the world with TRNSYS thermal simulation software. They assessed the impact on 

indoor thermal comfort by using threshold temperature from the ASHRAE standard 55 [119]. 

Results showed that increasing roof albedo by 0.4 could reduce hours of discomfort by as much 

as 75% during the summer for a threshold value of 27 oC. For a threshold temperature of 29 oC, 

reductions in hours of discomfort are 5%-97% and 9%-100% when albedo is increased by 0.4 
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and 0.65, respectively. Using the same software, study of a cool roof application on a 700 m2 

roof in Sicily found that hours with temperature exceeding 27 oC could reduce by up to more 

than 40% in studied rooms under non-insulated conditions [54]. After accounting for building 

insulations, the reduction was about 20%. Enhanced indoor thermal comfort by reflective roofs is 

also reported in Barcelona, Palermo, and Cairo [120]. 

In outdoor environments, quantifying thermal comfort is much more complicated due to the 

variety of surrounding environment. To access the comfort condition, a large number of indices 

have been developed, such as Human Thermal Comfort Index (HTCI) [68], Cooling Power (CP) 

comfort index [121], Discomfort Index (DI) [14], Index of Thermal Stress (ITS) [122], and 

Physiological Equivalent Temperature (PET) [123]. These indices account for different 

environmental factors with different weight in their definitions, thus the outcomes can be vastly 

different. For example, using the CP comfort index, a function of mean ambient temperature and 

wind speed, Santamouris et al. [54] found that applying reflective pavements over an urban park 

of 4500 m2 in the greater Athens area could significantly improve the comfort condition, from 

almost “extremely hot” to close to “quite hot” (note the subjective description). While using the 

Effective Surface Temperature index, a measure accounting for air temperature, aerodynamic 

resistance, radiation and shape factor, Lynn et al. [124] suggested that reflective pavements were 

an ineffective method for improving thermal comfort of pedestrians in New York. The reason was 

that reflective pavements increased reflected solar radiation more than they decreased the heat 

flux emitted from the ground. This finding is supported by later studies with various indices 

where reduced surface temperature was found not enough to offset increased radiation loads 
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from reflective pavements [56,125,126]. As a result, if reflected radiation is considered, the net 

effect of increasing the pavement albedo can lead to an increase in the thermal stress to which 

pedestrians are exposed, rather than the expected improvement in thermal comfort.  

When reflected radiation increases the thermal discomfort, it also poses additional health 

risks on pedestrians unsheltered. Solar radiation is the radiant energy within a broad region of the 

electromagnetic spectrum that includes ultraviolet (UV), visible (light) and infrared radiation 

(IR). When unspecified, albedo usually refers to average among the visible range. Studies have 

shown that light-colored materials can have similar or lower UV albedo compared to dark 

materials [127,128]. Furthermore, some reflective materials such as white clay can evidently 

increase the intensity of reflected UV radiation [129]. UV radiation is harmful to living cells and 

can result in sunburn, increased rate of aging of the skin, and skin cancer, with its damage 

accumulating over years [130]. Proper selection of reflective materials is therefore necessary to 

avoid the health risk [131]. Moreover, increasing the albedo of urban surfaces can potentially 

cause glare [132], which may disturb occupants of taller neighboring buildings when applied to 

roofs, and make pedestrians on nearby sidewalks suffer when applied to walls. Light-colored 

pavement on roads provides less lane demarcation due to the poor visibility of white lines, 

potentially increasing driving risks [133]. These effects have raised extensive concerns and 

efforts to develop reflective materials that absorb in visible part of spectrum but exhibit high 

reflection in the near infrared part [36]. Light pollution is another potential adverse effect of 

reflective materials. In natural environments, stray and obtrusive lights at night, regardless of 

their purpose, are generally referred to as light pollution. A recent study by the International 
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Dark-Sky Association at the Brecon Beacons National Park found asphalt surfaces can reduce 

the upward light reflected by half when compared to concrete surfaces, regardless of luminaire 

light distribution [134]. Reflective pavements are expected to increase the upward reflected light, 

which is likely to result in less visibility of the night sky and stronger light pollution.  

 

6. Impact of reflective materials on air quality 

Air pollution has been a critical concern for urban environments for decades. As large 

energy consumers, cities are associated with large power plants and combustion of fossil fuels, 

which emerge as the main source of air pollutants [135]. UHI tend to degrade the air quality as 

heat accelerates the chemical reactions in the atmosphere [136]. Rosenfeld et al. [22] reported 

that probability of urban smog increased by 6% per oC when maximum daily temperature 

exceeds 22 oC. By modulating environmental temperatures over built terrains, reflective 

materials have direct and indirect effects on urban air quality.  

In terms of direct effects, reduced air temperature can slow the photochemical production of 

pollutants. Among the air pollutants, studies in urban areas have been focused on ozone, due to 

its strong oxidant property and potential damage to humans once the concentration is increased 

[137]. Using data from 23 experimental stations, Stathopoulou et al. [12] concluded that ambient 

air temperature is the predominant parameter in affecting the ozone concentration. Among the 

researchers, Taha is the one that has pioneered most of the studies in this field. In 1997, he 

employed the Colorado State University Mesoscale model (CSUMM) with the Urban Airshed 

Model (UAM) to assess the impacts of large-scale deployment of high-albedo materials on air 
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quality in the South Coast Air Basin (SoCAB) in California during a late-August period [138]. 

When surface albedo was increased by 0.3 over the urban areas, peak concentration of ozone was 

decreased by up to 7% at 3pm and total ozone mass in the mixed layer reduced by up to 4.7%. 

Later in 2008, he applied a urbanized mesoscale model uMM5 with the Comprehensive Air 

Quality Model with Extensions (CAMx) to evaluate the impacts of UHI mitigation strategies on 

air quality in southern and central California [48,139]. It was found that increasing pavement 

albedo in urban areas improved the air quality significantly. Daily 1-hour peak, daily maximum 

8-hour average and daily average urban ozone concentration in southern California were 

decreased by 5, 3 and 2 ppb, respectively [139]. In Sacramento, increasing albedos of roof, wall 

and ground by 0.1, 0.25 and 0.08 would reduce ozone concentration by up to 16-26 ppb during 

the summer [48]. Daily maximum 8-hour average can be decreased by 4-13% across simulation 

days and monitor locations. Note that negative impacts on ozone concentration by increasing 

albedo were also observed in these studies; but the net effect over an entire urban area almost 

always leads to a reduction. In Sacramento, ozone concentration was increased by up to 9-11 ppb 

upwind of urban areas during certain hours [48]. The reason this occurs lies in the relative 

magnitudes of emission and chemistry (E+C) versus those of vertical mixing and advection 

(M+A). Cooling of urban surfaces increases magnitudes of the former but reduces magnitudes of 

the latter. Effect of reflective materials therefore depends on balance of these two magnitudes, 

which varies from location to location. Taha [140] showed that there was a threshold beyond 

which further increase of albedo tended to produce smaller net improvement, due to the 
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significant reduction of M+A. These findings are presented and discussed in a recent publication 

[49]. 

With respect to indirect effects, lower air temperature reduces energy consumption, which in 

turn reduces emissions of greenhouse gases and air pollutants from power generation. Rosenfeld 

et al. [141] estimated that reduced air temperature by reflective pavements in Los Angeles was 

equivalent to emission of NOx 175 tons/day. Levinson and Akbari [97] used the DOE-2.1E 

building energy model to assess the potential benefits of cool roofs on commercial buildings in 

236 cities across the U.S. In their study greenhouse gas and pollutant emission were determined 

by electrical and gas energy consumptions. Results showed that increasing roof albedo from 0.2 

to 0.55 could offer CO2 reduction of 1.07-4.97 kg/m2, NOx reduction of 1.70-11.7 g/m2, SO2 

reduction of 1.79-26.1 g/m2, and Hg reduction of 1.08-105 µg/m2 annually in study cites. At the 

global scale, implementation of reflective materials in urban areas can decrease atmospheric 

temperature and offset warming effect from greenhouse gases. Lifetime benefit of the reflective 

materials is equivalent to emission reduction of tens to hundreds of billion tons of CO2 [40,41].  

Another important environmental impact is the depression of planetary boundary layer (PBL) 

height caused by reduced vertical mixing from reflective materials. Sailor [142] found 

deployment of reflective pavements lead to a depression of about 50m in PBL height at the early 

afternoon (roughly 10%) in Los Angeles, Riverside and Burbank. Lower height can increase the 

concentration of pollutants in the PBL and potentially affect the air quality in urban canopies. 

Due to the scarcity of multi-scale numerical modeling of urban areas, similar to the concern of 

albedo effect at large scale hydroclimate, the modification of PBL dynamics and 
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thermodynamics over built terrains caused by reflective materials requires extensive future 

research effort.  

 

7. Discussion 

Environmental impacts of reflective materials at a variety of scales are reviewed in this 

report. Subject to different environmental conditions (climate, geography, morphology, and scale 

of study), these impacts reveal widely variable or even opposite trends, as reported in the 

literature. This lack of consistency is mainly due to the absence of standardized procedure for 

both experimental measurements and numerical models to accurately quantify the environmental 

impacts of reflective materials, which in turn imposes difficulty in prioritizing or even justifying 

their usage under certain conditions. Moreover, the complexity of built environments is largely 

underestimated in most existing studies of high albedo pavement materials. In particular, 

interactions between building physics and atmospheric dynamics at large scales are often 

neglected, e.g. “are there size effect associated with large scale implementation of reflective 

pavements and feedback mechanism between it and regional hydroclimate?” remains an open 

question. For sustainable development of future cities in adopting reflective pavements, 

extensive research effort is still imperatively needed. Some of the major players that needs to be 

addressed in future studies are discussed as follows.   

(a) Scale effect. Effects of reflective material can change with the scale of its deployment. 

An illustration of the scale effect is shown in Figure 1. Intuitively, reflective materials applied on 

a single building will not exhibit same hydrothermal behavior as those on the entire city, and vice 
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versa. Consider the limiting case: does perfect knowledge of the thermal characteristics of 

reflective materials on a single building (Figure 1c) necessarily allow us to quantify the effect of 

changing albedo of all roofs in a city (Figure 1a), by simply “summing up” numerical modeling 

results representing street canyons (Figure 1b)? For example, a study by Botham et al. [143] 

found that placement of a single white roof could enhance local vertical mixing, increased 

surface temperature on building walls by bringing warm air from other roofs to the street level. 

When white roofs were deployed on all buildings, this phenomenon disappeared that 

temperatures on all urban facets were decreased. In terms of hydroclimate, large-scale 

deployment of reflective roofs reduces vertical mixing significantly, leading to reduction in 

regional precipitation and cloud formation [46,47]. When reflective roofs are applied over a 

single building, this impact will not happen as the reduction of mixing is not strong enough to 

affect overall turbulent fluxes arising from the city. This apparent size effect necessitates the use 

of different experimental and numerical tools for characterizing and simulating reflective 

materials at different scales. Moreover, among the existing large-scale studies (i.e., city, 

continental, and global scale), it is usually assumed that reflective materials are installed over the 

entire urban areas, neglecting the spatial distribution inside the city. More practical scenarios 

need to be considered for future numerical modeling to overcome errors associated with this 

simplification. 

(b) Geographical and meteorological conditions. Both positive and negative impacts of 

reflective materials depend on geographical and meteorological conditions, either at a building 

scale or at a city scale. Compared to areas near coasts, reflective roofs bring a much higher 
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reduction in surface temperature to areas at inland [54]. Annual energy savings by reflective 

roofs are more significant in low-latitude cities than in high-latitude cities, under hot climates 

than under cool climates, and with clear skies than with cloudy skies [97,120]. Reduction of 

precipitation by reflective roofs is significant at east coast of the United States, but found to be 

negligible at west coast [47]. These results of pioneering studies indicate that magnitudes of 

actual environmental impacts of reflective pavements (either measurements or simulations) are 

usually site-dependent. There is unlikely a set of universally applicable results, measurements or 

simulations, that can be easily ported to provide guidance for urban design and planning in cities 

located in different geographic and climatic zones. Instead, detailed measurements and/or 

modeling of urban environment are not only necessary but essential in quantifying and 

prioritizing UHI mitigation strategies, for each city has its unique characteristics.  

 (c) Uncertainty and variability of models. Up to date, a large part of research findings and 

our knowledge on reflective materials is derived based simulation studies. It is important to bear 

in mind that significant variability exists in models’ setup and assumptions, which implies that 

different models could yield quantitatively different results. Take thermal comfort for an 

example, without consideration of radiation effect, model predicts an improvement in outdoor 

thermal comfort of pedestrians by installation of reflective materials. After accounting for 

reflected radiation, model suggests a negative net impact on thermal comfort in outdoor urban 

environment. In addition, the driver of built environment simulations, viz. forcing from climate 

models also subjects to considerable uncertainties, to the extent that different global models can 

disagree on the future trend of climate changes expected in particular regions [144,145]. As part 
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of the IPCC Fourth Assessment (IPCC AR4) experiment, the ability of 22 models to predict 

South Asian summer monsoon precipitation has been examined. While 19 out of 22 models are 

able to capture the maximum precipitation, predicted total rainfall varies from 500 mm to 900 

mm [146].  

Besides, the variability among modeling schemes, uncertainty within any individual model 

itself cannot be ignored. As field observation at global scale is currently unavailable, climate 

models are usually driven by reanalysis data, where marked variability has been reported 

[147,148]. Widely-used reanalysis datasets for climate monitoring and research include 

NCEP/NCAR Reanalysis I [149], NCEP-DOE Reanalysis II [150], NCEP Climate Forecast 

System Reanalysis [151], ERA 40 year Reanalysis [152], 20th Century Reanalysis [153], NASA 

Modern Era Reanalysis for Research and Application [154], etc. Realistic and reliable modeling 

of reflective materials and their environmental impacts, therefore require substantial efforts 

devoted for quantifying and reducing numerical errors associated with uncertainties through, e.g. 

ensemble simulations [145,155,156].  

(d) Alternative strategies for UHI mitigation. It is debatable that what the best UHI 

mitigation strategy is; the list of strong candidates include reflective pavements, green roofs, 

phase changing materials, permeable pavements, to name a few. Shahidan et al. [62] investigated 

the optimum cooling effect of UHI mitigation strategy in tropical climate. Results from 

ENVI-met simulations showed that tree quantities and their canopy density were paramount 

parameters for temperature reduction and energy savings. Increasing ground albedo to 0.8 had an 

insignificant impact under conditions with high density trees. Another study with GIS-based 
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model CITYgreen also reported that reflective roofs appeared to be a less effective strategy in 

achieving energy savings on buildings more than one story in height in Newark and Camden 

compared to urban trees [157]. Compared to reflective roofs, green roofs have better 

performances in cold climates and in non-insulated buildings [158,159]. Under certain conditions, 

green roofs are more effective in reducing surface temperature [52], indoor air temperature [160], 

and annual building energy loads [161]. Even in terms of pavements, albedo is not the only 

determinant parameter that affects the thermal performances. Simpson and Mcpherson [162] 

found that with a lower emissivity and a higher albedo, temperature of silver roof was similar to 

that of brown roof. Emissivity determines the dissipation of energy stored in pavements that it 

plays a vital role in nocturnal temperatures [53]. Permeable pavements, pavements with high 

thermal capacity and conductivity have also been studied as strategies for UHI mitigation [39]. 

For a specific city, potential benefits of various solutions should be compared to come up with 

the optimum strategy for mitigating UHI. 

 

8. Conclusion 

While reflective material is becoming an increasingly popular option in our urban planning 

today for mitigating the UHI effect, its environmental impacts, especially those involving large 

scale urban-atmosphere interactions, are not clearly understood. In this review we compare and 

summarize recent research advances in the literature to provide a comprehensive overview of 

potential environmental impacts caused by implementing reflective materials to mitigate UHI. 

Though studies on this topic have expanded enormously, conclusions are mostly drawn from 
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numerical simulations that we recognize the need of further research efforts for field 

measurements, especially in seasons other than summer. 

With high albedo, reflective materials redirect more radiation and reduce surface 

temperatures, which in turn lead to lower air temperatures. However, reflected solar radiation can 

increase the temperature of the surrounding built environment and consequently increase its 

cooling load, such that overall benefits of reflective pavements and roofs can be less than 

expected. Reflected UV radiation, glare, and thermal discomfort are concomitant with the 

reflected radiation that attention is required to their impact on human health. In terms of energy 

consumption, reflective materials results in cooling savings and heating penalties, whose relative 

magnitude depending on complex interactions of many urban environmental factors, including 

building characteristics, urban morphology, geographical locations, local climate, etc. Reflective 

materials on different urban spatial locations can lead to opposite effects with regards to energy 

consumption. When applied at a large scale, reflective materials have positive impact on urban 

air quality directly and indirectly. However, resulted significant reduction in precipitation, runoff, 

and soil water content requires special attentions, especially in arid and semi-arid regions. 

In summary, outcomes of existing experimental and modeling studies with high-albedo 

materials indicate thermal benefits of temperature reduction and energy savings. However, 

development of future generations of cities essentially embraces multiple dimensions of 

sustainability principles that multi-scale environmental, multi-sector socioeconomic elements, 

and regional impacts need to be accounted for [163]. Looking beyond the mitigation potentials 

for UHIs, city planners and policy makers should not only be aware of but set up standards in 
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quantifying potential environmental impacts of reflective materials. With plenty alternatives and 

emerging new technologies, “the” optimal strategy for UHI mitigation and sustainable urban 

development in general, is likely to invoke a portfolio of different options varying from city to 

city, rather than relying on a “one-solution-fits-all” strategy. Neither high albedo materials nor 

any other individual technology, seem to be a silver bullet for mitigating UHI.  
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Figure1: Schematic of multiscale involved in numerical modeling: (a) city scale (characteristic 

length of ~103-104 m), (b) neighborhood scale (~102-103 m), and (c) building scale (~10-102 m) 
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Table 1. Summary of impacts on surface temperature by reflective materials from simulation studies 
Reference Methodology Albedo increase Temperature change 
[48] uMM5 and CAMx 0.1, 0.25 and 0.08 on roof, wall and paved 

surfaces in urban areas  
Reduction of up to 10 oC during the summer in Sacramento, California 

[54] CFD simulation and 
TRNSYS 

0.12 in an urban park of 4500 m2 in the 
greater Athens area 

Reduction of up to 12 oC during a typical summer day 

[60] TUF-IOBES 0.4 on ground Reduction of up to 15.8 oC at 2 PM in canopy with aspect ratio of 0.37 
[91] WRF v3.2.1 0.25 and 0.15 for roofs and pavements in 

urban areas over the continental U.S. 
Summer afternoon temperature in urban locations reduces by 0.11-0.53 oC, 
some rural locations show temperature increases of up to 0.27 oC 

[100] TUF3D Albedo is 0.08, 0.18 and 0.35 on artificial 
turf (AT), asphalt and concrete   

Daily maximum surface temperature is the lowest on concrete and the 
highest on AT surface 

[164] One-dimensional 
Mathematic model 

Up to 0.4 Average maximum temperature reduces by up to 18 oC, average minimum 
temperature reduces by up to 3 oC 

[165] CLSM 0.1 over global urban areas Reduction of about 0.008 and 0.03 oC in average land surface temperature 
worldwide and over continental U.S. during boreal summer  

[166] TRNSYS 0.69 on a 410 m2 school roof in Athens Reduction of up to 25 oC during summer 
[167] Energy Balance Model 0.15 on roof Reduction of up to about 15 oF in July, 2003 
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Table 2. Summary of impacts on surface temperature by reflective materials from experiments 
Reference Methodology Albedo measurement Temperature change 
[34] Compare 93 commonly used pavement 

materials (40cm × 40cm)  
Not available Lowest daily surface temperature on white marble, highest 

temperature on asphalt surface during summer 
[51] Monitor roof surface units in Japan during 

2004 
0.36 on gray paint and 0.74 on white 
paint 

Daytime temperature of gray paint is almost 10 oC higher than that 
of white paint in August. Difference is smaller in November 

[52] Monitor white and black roofs in New 
York during 2009  

0.05 and 0.6 on black and white roofs Reduction of about 10 oC in winter and about 30 oC in summer 

[53] Compare 14 types of reflective coatings 
on white concrete pavement tiles (40cm × 
40cm)  

Not available, coating colors include 
white, silver, silver gray and black 

Maximum reductions in mean daily surface temperature and mean 
maximum daily surface temperature are 5 oC and 7.5 oC from 
August to October 2004, both found on white coatings 

[54] Apply reflective pavements in an urban 
park in the greater Athens  

0.48 and 0.6 before and after 
deployment  

Maximum reduction under non-shaded condition is 5.4 and 7.6 oC 
for the first and second monitoring day  

[56] Measure nine sections (4m × 4m) of 
different pavement types 

0.18-0.29 on concrete and paver, 0.08 
to 0.09 on asphalt 

Reduction of 10-25 oC in peak surface temperature by concrete and 
paver pavement during hot summer in Davis, California 

[58] Compare thin layer asphalt samples (33cm 
× 33cm) of different colors to 
conventional black asphalt 

0.04, 0.27, 0.40, 0.45 and 0.55 on 
black, red and green, yellow, beige and 
off-white colors 

Reduction of up to 7.7 and 11.9 oC in mean diurnal surface 
temperature and mean maximum diurnal surface temperature by 
off-white asphalt compared to black conventional asphalt 

[61] Install a cool roof in Sicily 0.86 after installation Reduction of up to 20 oC from April to September, 2009 
[160] Monitor white and black roofs in Austin Not available Reduction of 26 oC by white roof in midafternoon on a warm day 
[162] Monitor three ¼-scale model houses under 

clear hot day condition 
0.75, 0.3, 0.5 and 0.1 on white, gray, 
silver and brown roofs 

White roof is up to 20 oC cooler than gray or silver roof, and is up 
to 30 oC cooler than brown roof 

[168] Monitor various materials in California 
during 1991 

0.72 and 0.08 on white and black 
coatings 

Reduction of 45 oC in early afternoon on clear and warm days in 
July 

[169] Monitor different pavements in September 
in Berkeley 

0.05, 0.15 and 0.50 on concrete, 
asphalt and white coating asphalt 

White coating asphalt reduces temperature by about 25 and 33 oF 
compared to asphalt and concrete pavements 

[170] Apply reflective roofs on two small 
non-residential buildings  

0.26 and 0.72 before and after the 
installation 

Average reduction of about 10 oC in daytime during the summer of 
2000 

[171] Monitor cool roofs in six California Increase ranges from 0.33 to 0.62 Daily peak surface temperature reduces by 33-42 oC 
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buildings at three different sites 
[172] Apply reflective roofs on a residential 

building in Australia 
About 0.2 after application Reduction of about 20 oC during the September of 2005 

[173] Apply reflective roofs on the east half of a 
roof in Phoenix 

0.3 and 0.72 before and after the 
installation 

Reduction of 8-14 oC in daytime during August 20-22, 2008 
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Table 3. Summary of impacts on air temperature by reflective materials from existing studies 
Reference Methodology Albedo increase Temperature change 
[21] MM5 v3.6.1 and MRF 0.45 and 0.67 on roof over Athens for 

moderate and extreme cases 
Reduction of up to 1.5 and 2.2 oC at 2m height in moderate and extreme 
cases on 15 August, 2005 

[22] CSUMM 0.35, 0.5 and 0.25 on sloped roof, flat 
roof and road in Los Angeles Basin 

Reduction of up to 3 oC in summertime 

[46] WRF v3.2.1 Increased to 0.88 under maximum 
expansion scenario in Sun Corridor 

Regional average 2 m air temperature reduces by 0.83, 0.77 and 0.7 oC in 
spring, summer and fall, respectively 

[47] WRF v3.2.1 Cool roofs in urban areas over the U.S. 
under urban expansion scenario 

Average 2 m air temperature reduces in all investigated urban areas, up to 
2 oC in Mid-Atlantic and California 

[48] uMM5 and CAMx 0.1, 0.25 and 0.08 on roof, wall and 
paved surfaces in urban areas 

Reduction of up to 3 oC in daytime during the summer in Sacramento, 
California 

[54] CFD and TRNSYS 0.12 in an urban park in Athens Reduction of up to 1.9 oC during a typical summer day 
[58] CFD simulation 0.51 on pavement surface Reduction of 6 and 1 oC in maximum and minimum air temperature at 

1.5 m height during the summer 
[59] WRF Urban albedo is doubled and tripled in 

Atlanta  
Negligible reduction when albedo doubled, reduction of about 2.5 oC in 
2m air temperature at 2 PM 

[60] TUF-IOBES 0.4 on ground  Reduction of 0.4 oC at 2 PM in canopy with aspect ratio of 0.37, 
reduction decreases with aspect ratio 

[61] Install a cool roof on a 700 m2 
roof in Sicily 

0.86 after installation Average indoor air temperature reduces by 2.9 and 3.1 oC in two studied 
rooms. Change of outdoor air temperature is insignificant 

[62] ENVI-Met 0.5 on ground in Malaysia Reduction of up to 0.2 oC at 3 m height under high density trees 
condition on February 28, 2009  

[63] GATOR-GCMOM  0.53 on roof worldwide Population-weighted air temperature reduces by about 0.02 oC, global air 
temperature is increased by about 0.07 oC 

[65] CSCRC and CFD Not available Reduction of about 0.1 oC by reflective pavement in Tokyo 
[98] TRNSYS 0.65 on roof over 27 cities around the 

world 
Maximum indoor air temperature in non-air-conditioned residential 
buildings reduces by 1.2-3.3 oC 

[99] CLMU, CLM3.5, and 0.58 on roof  Average urban daily maximum and minimum air temperature reduce by 
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CAM3.5 0.6 and 0.3 oC, respectively 
[100] TUF3D Albedo is 0.08, 0.18 and 0.35 on AT, 

asphalt and concrete   
Daily maximum air temperature is the lowest on concrete and the highest 
on AT surface 

[120] EnergyPlusTM 0.55 on roof Reduction of up to about 2 oC in non-insulated house in July 
[138] CSUMM and UAM 0.15 and 0.30 in moderate and extreme 

cases  
Reduction of 2 and 4.5 oC in moderate and extreme cases in central 
California’s South Coast Air Basin 

[139] uMM5 and CAMx 0.2 to 0.4 on various urban surfaces  2 m air temperature reduces by up to 2 oC, 1.5 oC and 1.0 oC in Los 
Angeles, San Jose, and Sacramento 

[141] CSUMM 0.35 and 0.25 on roofs and pavements in 
Los Angeles 

Population-averaged temperature reduces by up to 1.5 oC at about 2 PM 

[142] CSUMM 0.15 over downtown Los Angeles Reduction of up to 1.5 oC in summertime 
[160] Monitor white and black roofs 

in Austin 
Not available Reduction of 5 oC in indoor air temperature on a moderately warm day 

[166] TRNSYS 0.69 on a 410 m2 school roof in Athens Indoor air temperature reduces by 1.5-2 oC during summer and by 0.5 oC 
during winter 

[174] MM5 0.1 in Philadelphia Average reduction of 0.3 to 0.5 oC in daytime  
[175] MM5 and SEBM Reflective roofs and pavements over the 

entire New York City 
Average near-surface air temperature reduces by 1.3 oF, average 
reduction at 3 PM is 2.2 oF during the summer of 2002 
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Table 4. Summary of observed UHI intensities of major cities in the world 
Reference City Time Type Intensity (oC) 
[2] Beijing 1030 LST, Aug, 2001 Surface temperature 10 
[73] Beijing 1000 LST, Aug, 2005 Air temperature 0.05 
[74] Houston 0200 - 0530 LST, 1985 - 1987 Surface temperature 2.35 
 Houston 0200 - 0530 LST, 1999 - 2001 Surface temperature 3.10 
[75] London Aug, 2000 Mean air temperature 1.0  
[2] Manila 1030 am, Nov, 2001 Surface temperature 7 
[76] Melbourne 0600 LST, 1972 - 1991 Air temperature 1.13 
[77] Mexico city 1100 - 1500 LST, Aug - Sep, 1994 Air temperature 3 - 5 
[78] New York 1900 - 2000 Mean air temperature 2 - 3 
[79] New York Summer, 1997 - 1998 Mean air temperature 4 
[80] Paris 01 - 12 Jun, 2006 Mean air temperature 2.56 
[81] Phoenix 03 - 12 Apr, 2002 Mean air temperature 9.4 - 12.9 
[82] Phoenix Jun, 1990 - 2004 Mean minimum air temperature 2 - 4 
[2] Seoul 1030 LST, Aug, 2001 Surface temperature 8 
[70] Seoul 1500 LST, Mar 2001 - Feb 2002 Air temperature 0.6 
[2] Shanghai 1030 LST, Aug, 2001 Surface temperature 7 
[2] Shanghai 1030 LST, Jan, 2002 Surface temperature 3 
[83] Singapore 2100 LST, Mar 2003 - Mar 2004 Air temperature 3.8 
[84] Tokyo 0300 - 0500 LST, 14 Mar, 1992 Air temperature 8.0 
[2] Tokyo 1030 LST, Aug, 2001 Surface temperature 12 
[2] Tokyo 1030 LST, Jan, 2002 Surface temperature 4 
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Table 5. Summary of impacts on energy consumption by reflective materials from existing studies 
Reference Methodology Albedo increase Energy consumption 
[22] Monitor white roofs on houses in 

Sacramento and Florida during the 
summers of 1991 and 1992 

0.55 40% reduction in seasonal cooling energy in Sacramento. 40-50% 
and 35% reduction in energy consumption and peak power demand 
for school bungalows 

[47] WRF v3.2.1 Cool roofs over the U.S. under 
urban expansion scenario 

Winter heating penalty can reduce, roll back or even exceed cooling 
energy savings in summers  

[60] TUF-IOBES 0.4 on ground Annual cooling load is increased by up to 11% in nonresidential 
office buildings (47% window to wall ratio) in Phoenix 

[95] DOE2 model 0.3 and 0.45 for residential and 
commercial building roofs  

Total annual electricity savings for 11 metropolitan areas about 2.6 
TWh, peak electricity demand savings about 1.7 GW  

[96] DOE2.1-E model  0.3 on roof for three building 
types with various characteristics  

Annual electricity savings 40-1000 kWh/1000 ft2 in climate with 
more than 1000 cooling-degree-days over 240 locations in the U.S. 

[97] DOE2.1-E model 0.35 on roof over four types of 
commercial buildings  

Annual cooling energy saving 3.30-7.69 kWh/m2, heating penalty 
0.003-0.065 therm/m2 in 236 cities across the U.S. 

[98] TRNSYS 0.65 on roof over 27 cities around 
the world 

Cooling loads reduce by 18-93% and peak cooling demands in 
air-conditioning building reduce by 11-27%.  

[99] CLMU, CLM3.5, and CAM3.5 0.58 on roof With respect to the global annual average, heating fluxes increase 
more than air conditioning fluxes decrease  

[100] TUF3D Albedo is 0.08, 0.18 and 0.35 on 
AT, asphalt and concrete   

Radiative energy from ground to wall increases with albedo of the 
ground materials 

[120] EnergyPlusTM 0.55 on roof Annual energy savings vary from -13.7% to 41.7% 
[161] ESP-r 0.4 on roof  0.4% saving in annual building need for heating and cooling 
[166] TRNSYS 0.69 on a 410 m2 school roof in 

Athens 
Annual cool loading reduces by 40% and heating penalty is 
increased by about 10% 

[170] Monitor white roofs on two small 
buildings in Nevada  

0.46 Monitored electricity saving about 0.5 kWh/d during summer, 
estimated annual saving about 100-125 kWh/yr in 2000 

[171] Monitor cool roofs in six California 
buildings at three different sites 

0.33 to 0.62 Energy savings 42-81 Wh/m2/d during summer, average peak 
demand savings 2.6-6.6 Wh/m2 for hours from noon to 5pm, annual 
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during the summer of 2002 energy savings 3-15 kWh/m2/yr  
[173] EnergyPlusTM 0.42 on a commercial building 

roof in Phoenix 
Total monthly electricity consumption reduces by 1.3-1.9% and 
2.6-3.8% for 50% and 100% cool roof replacement in August 

[176] Monitor cool roofs on one house and 
two school bungalows in Sacramento 
during summers of 1991 and 1992 

0.55 2.2 kWh/d saving in electricity for the house. 80% and 35% 
reduction in seasonal cooling energy for house and bungalows, 
respectively. 0.6 kW reduction in peak cooling power 

[177] Monitor reflective roofs on 9 
residential buildings from 1991 to 
1994 in Florida 

0.3 to 0.53 2-3% reduction in air conditioning energy among the buildings, 7.4 
kWh/d (19%) average drop in space cooling energy. Peak electricity 
demand reduces by 201-988 W (12-38%) 

[178] DOE2.1-E model 0.3 and 0.4 for residential and 
commercial building roofs 

Annual electricity savings about 30 GWh, peak power avoidance 
about 50 MW 

[179] STAR 0.15 on roof Annual cool loading reduces by 37.5% and heating penalty is 
increased by about 8.09% in Climate Zone 12 (Sacramento) 

[180] Apply cool roof on five non-air- 
conditioned buildings across Europe 

Not available Energy savings range from 10 to 40% 

 




