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ABSTRACT 

The focus of this investigation is on a first assessment of the predictive capabilities of 

nonlinear geometric reduced order models for the prediction of the large displacement and stress 

fields of panels with localized geometric defects, the case of a notch serving to exemplify the 

analysis. It is first demonstrated that the reduced order model of the notched panel does indeed 

provide a close match of the displacement and stress fields obtained from full finite element 

analyses for moderately large static and dynamic responses (peak displacement of 2 and 4 

thicknesses). As might be expected, the reduced order model of the virgin panel would also yield 

a close approximation of the displacement field but not of the stress one. These observations then 

lead to two “enrichment” techniques seeking to superpose the notch effects on the virgin panel 

stress field so that a reduced order model of the latter can be used.  A very good prediction of the 

full finite element stresses, for both static and dynamic analyses, is achieved with both 

enrichments.  

 

 

 



1. INTRODUCTION 

Interest in the prediction of the dynamic response of thin panels undergoing “large” 

deformations (i.e., exhibiting geometric nonlinearity) has motivated the construction of reduced 

order models (ROMs) from finite element models generated using commercial codes (e.g. 

Nastran, Abaqus), see [1] for a recent review. This non-intrusive formulation allows for the 

relatively straightforward consideration of complex structural problems using tools that are 

routinely used in the industrial setting. The counterpart of these advantages is the unavailability 

of certain information and the uncertainty on the formulation implemented in the finite element 

modeling and response computation. 

Notwithstanding the above difficulties, the ROM capabilities have progressed from 

applications to flat structures (see [2-9]), to moderately large motions of curved structures (see 

[10-14]). Further, the coupling of these nonlinear structural reduced order models with 

aerodynamics, either full or reduced order model has also been successfully demonstrated in [15-

17]. A similar coupling but of the structural dynamics and thermal aspects, the two in reduced 

order model format, has also been proposed and validated in [18-21]. In addition, validation 

studies with experiments have been carried out for different types of panels [3, 23-24]. The 

introduction of uncertainty in the reduced order model has finally been formulated and 

implemented [25,26]. 

The reduced order models developed in the above investigations are parametric, i.e. the form 

of the equations governing the generalized coordinates is fixed, linear in mass and damping 

operators with a stiffness operator exhibiting linear, quadratic, and cubic terms in all 

combinations of generalized coordinates as derived from finite deformation elasticity in the 

reference configuration (see review below). 



Panels represent a basic building block of wings and aircraft fuselage; however, smaller 

scales are also present. These scales may result from the structural design (e.g. fasteners) or may 

arise from damage (e.g. cracks, debonds) and are expected to have a localized effect in the stress 

field. In this light, the focus of the present investigation is on a first assessment of the predictive 

capabilities of reduced order models for panels that have a localized geometric defect, such as a 

notch which will be considered here. Two particular questions to be addressed here are: 

(1) how well do reduced order models capture the stress distribution in the notch near-field, and 

(2) how could the reduced order modeling process of the defect-free (or virgin) panel be 

employed?   

For completeness, the derivation of the reduced order modeling strategy is first briefly reviewed. 

 

2. REDUCED ORDER MODELING 

2.1. Reduced Order Model Form and Governing Equations  

The reduced order models considered here are based on a representation of the nonlinear 

geometric response in terms of a set of basis functions 
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where ( )tu  represents the vector of displacements of the finite element degrees of freedom, )(nψ  

are specified, constant basis functions, and ( )tqn  are the time dependent generalized coordinates.  

The reduced order modeling (ROM) procedure described here is achieved in the undeformed 

configuration 0Ω  for which the field equations are (summation is implied over repeated indices) 
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where S  is the second Piola-Kirchhoff stress tensor, 0ρ  is the density with respect to the 

reference configuration, and 0b  is the vector of body forces, all of which are assumed to depend 

on the position 0Ω∈X , [27,28]. Further, in Eq. (2), F  denotes the deformation gradient tensor 

of components 
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where ijδ  is the Kronecker delta and Xxu −=  is the displacement vector, x being the position 

vector in the deformed configuration. An important aspect of the present formulation is that the 

material is assumed to be linear elastic in that S  and E  (the Green strain tensor) satisfy 

              klijklij ECS =                                                      (4) 

where C  is a fourth order elasticity tensor, function in general of the undeformed coordinates X  

To proceed, assume next the displacement field iu  in the continuous structure in the form 
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where ( )X)(n
iU  are specified, constant basis functions satisfying the boundary conditions also in 

the undeformed configuration.  Equation (5) is the continuous space equivalent of the discrete, 

finite element model, representation of Eq. (1), 

By introducing Eq. (5) in Eqs. (2)-(4) and imposing the condition that the error be orthogonal 

to the basis (Galerkin approach), a set of nonlinear ordinary differential equations for the 

generalized coordinates ( )tqn  can be obtained [8], they are the reduced order model equations 
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where a linear damping term jij qD   has been added to collectively represent various dissipation 

mechanisms. Further, ijM  denotes the elements of the mass matrix, )1(
ijK , )2(

ijlK , )3(
ijlpK  are the 

linear, quadratic, and cubic stiffness coefficients and iF  are the modal forces. Integral 

expressions for all coefficients of Eq. (6) are given in [8]. They can be used for their estimation 

(see [26]) but an indirect evaluation of many of these coefficients from the finite element model 

is also possible (see [1,8,22,29]) and is adopted here. 

From the generalized coordinates, a complete solution of the problem and other quantities 

can then be evaluated. For example, any component of the second Piola-Kirchhoff stress tensor 

at any point can be expressed as 
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where the coefficients ijS , )(ˆ m
ijS , and ),(~ nm

ijS  depend only on the point X considered and can be 

obtained non-intrusively from finite element computations [8]. 

 

2.2. Basis Selection 

One of the key aspects of the reduced order modeling strategy is the selection of the basis 

functions )(nψ . A poor representation of the structural response within this basis will lead to a 

poor prediction of the response by the reduced order model. The basis is certainly expected to 

include the modes used for the corresponding linear problem (i.e. low frequency modes), but this 

is not sufficient in the nonlinear geometric regime. Indeed, the displacement fields of these linear 

modes for shell-like structures are primarily transverse/normal to the structure and thus do not 

capture accurately the in-plane/tangential displacements that take place when the deformations 

are no longer infinitesimal. For example, if the structure is completely clamped, transverse 



deformations imply a stretching (referred to as the membrane stretching, see [1,3,6] for 

discussion) of the structure. For cantilevered structures, this effect is reflected by a shortening of 

the domain occupied by the structure in the undeformed configuration. These in-plane/tangential 

displacements typically lead to a significant softening of the transverse motions through a 

nonlinear coupling effect and thus must be captured accurately to achieve a good prediction of 

the transverse displacements. This need will be demonstrated in the results section below. 

A first approach to select a basis to model the in-plane/tangential displacements would be to 

use linear modes that are dominated by such motions but they are difficult to identify in complex 

structures. Alternatively, a dedicated basis can be developed [8] that rests on the following two 

observations: 

(a) the in-plane/tangential motions to be captured exhibit high natural frequencies, much 

higher than the excitation bandwidth.  

(b) the in-plane/tangential motions are primarily driven by the transverse motions through 

their nonlinear coupling as opposed to excited directly by the excitation. 

The observation (a) implies that the in-plane/tangential motions take place quasi statically 

and thus the basis functions sought can be obtained from static analyses. From observation (b), it 

is further concluded that the loading in these analyses should excite primarily the modes from the 

linear basis which are transverse dominated. An intuitive approach (see [8] for further 

discussion) to achieve this condition is to rely on the linear situation. That is, the applied load 

vectors )(m
FEF  on the structural finite element model necessary to induce linear static responses of 

the form  
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where )(m
iα  are coefficients to be chosen with m denoting the load case number and )1(

FEK  is the 

linear finite element stiffness matrix of the structure. 

 The nonlinear geometric static response of the structure )(m
NLu to the loading of Eq. (9) is 

not exactly in the form of Eq. (8), a discrepancy vector )(mδ  is observed as 
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where )(m
iβ  are the projections of )(m

NLu  on the modes )(iψ . The discrepancies )(mδ  represent 

the information on which the additional basis functions are to be constructed. This step is 

achieved through a proper orthogonal decomposition (POD) of an ensemble of discrepancy 

vectors obtained for various linear combinations of the modes )(iψ  in Eq. (8). In fact, a detailed 

discussion of the linear combinations to be used is presented in [8] but, in all validations carried 

out, it has been sufficient to consider the cases 
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where a “dominant” mode is loosely defined as one expected to provide a large component of the 

panel response to the physical loading. The ensemble of loading cases considered is formed by 

selecting several values of )(m
iα  for each dominant mode in Eq. (11) and also for each mode 



ij ≠  in Eq. (12). Further, note that both positive and negative values of )(m
iα  are suggested and 

that their magnitudes should be such that the corresponding displacement fields )(m
NLu  range from 

near linear cases to some exhibiting a strong nonlinearity. 

The basis functions resulting from this process are the “dual modes” [8] to be appended to 

the linear modes to form the basis. The appropriateness of these modes can be assessed as in [29] 

by comparing the displacements induced by the loads of Eqs (11) and (12) and by physical (static 

or dynamic) loads in sections of the N dimensional space, where N denotes the number of 

degrees of freedom of the structure. This comparison will be successfully carried out in the 

reduced order model construction section. 

 

2.3. Overall Modeling Process 

The overall modeling process is summarized in the flow chart of Fig. 1. The finite element 

model is first used to produce the linear modes (step 1) through an eigensolution. Combinations 

of these modes (step 2) are constructed according to Eqs (11) and (12) to produce the load cases 

necessary to generate the dual modes. These load cases are applied (step 3) to the finite element 

model of which the static nonlinear deflections are determined (step 4). These deflections are 

projected on the linear modes and the corresponding discrepancies )(mδ  generated (step 5), see 

Eq. (10), and processed in a proper orthogonal decomposition (step 6) to generate the dual 

modes. These modes are finally added to the linear modes (step 7) to form the final basis. The 

process is completed (step 8) by the evaluation of the stiffness coefficients according to one of 

the methodologies described in [1,8,22,29]. The imposed displacement method of [22] as 

modified in [4,5,8] was selected here. 



In the present effort, the notation ROM mTnD will be used to refer to a reduced order model 

constructed as in Fig. 1 using m linear modes (mostly transverse, thus “T”) and n dual modes 

(“D”). 

 

3. MODELS FOR VALIDATION: NOTCHED AND VIRGIN PANEL MODELS 

A beam-like panel with the properties given in Table 1 was considered here with and without 

notch. The panel was assumed to have clamped-clamped boundary conditions and to be 

subjected to a uniform pressure of varying magnitude.  

The notched beam exhibited a rounded notch of length equal to one-fourth of the beam 

thickness placed at 30% of the length of the beam and along its entire width as shown in Figs. 2 

and 3. Clearly, plane stress conditions cannot be assumed to exist on the x-z plane since it is not a 

thin membrane. On the other hand, plane strain conditions do not exist since this is not a long 

body problem. Therefore, the structure was discretized throughout its entire domain with 8-node 

brick elements (CHEXA in NX/Nastran), and 14 such elements were used along the width of the 

beam. Along the length, the notched beam was divided in different parts, as shown in Fig. 3, to 

capture the local effects of the notch without excessive meshing away from that zone. Away 

from the notch (parts (a) and (c) in Fig 2), 4 elements were used through the thickness of the 

beam and a uniform division along the length was performed with 20 elements for part (a) and 

47 elements for part (c). The finer meshing around the notch (part (b) in Fig. 2) is shown in Fig. 

3(a). Note further from this figure that the notch is rounded to avoid any plasticity in its vicinity, 

which is not considered in this first effort. The purpose of this work being on the validation of 

the reduced order modeling strategy in comparison with the corresponding finite element 

predictions, a very fine mesh was not necessary and thus was avoided to accelerate the 



computations. 

A virgin beam model was also considered and, for ease of comparison, its meshing was 

selected to be identical to the one of the notched beam but with the notch filled with CHEXA 

elements, see Fig. 3(b), and with the same material properties, see Table 1. Reduced order 

models of the two beams were constructed as discussed in Section 2 and Fig. 1. 

 

4. REDUCED ORDER BASIS: NOTCHED AND VIRGIN PANELS 

It was first of interest to determine and compare the basis functions of the reduced order 

models, i.e., the transverse and duals modes, of the virgin and notched beams to assess the 

effects, local and/or global, of the notch. 

The transverse linear modes were first investigated and were obtained, for the two beams, 

from a normal modes solution in NX/Nastran (SOL 103). The natural frequencies of the first 4 

symmetric modes of the two beams are shown in Table 2. As expected, given the small size of 

the notch, its effect on the first few natural frequencies is very small.  

The transverse and in-plane (along the length of the beam) components of the first mode 

shape along one of the top edges of the beams (y=0, z=h) are shown in Figs. 4-5. The first 

observation to be drawn is that the notch does not affect noticeably the transverse displacements, 

but appears to induce a sharp peak in its in-plane counterpart. However, this peak is an artifact of 

the geometry, i.e., the notched beam data presented includes the displacement at the nodes along 

the flat edge of the beam but also those along the faces of the notch. Since these points are much 

closer to the neutral axis of the beam, their in-plane displacements are expected to be smaller as 

seen in Fig. 6. Plotting the same nodal displacements for the virgin beam, see Figs. 7-8, confirms 

this explanation of the peak.    



The linear modes of the structure only represent one part of the basis, modeling primarily the 

transverse displacements, while the dual modes (see Section 2.2 and [8,9,14]) capture the 

nonlinearly induced in-plane motions. In this light, it was also desired to assess the effects of the 

notch on these dual modes. The 4 dual modes corresponding to the 4 linear modes were created 

using Eqs (11)-(12) with mode 1 dominant, for both notched and virgin beams. The POD-based 

dual mode construction procedure highlighted above (see [8] for full details) was performed for 

the data obtained for mode 1 alone and each of the 3 combinations of mode 1 and another of the 

3 largest responding modes. In each of these 4 situations, 10 different loading factors )(m
iα were 

used, half positive and half negative, and leading to peak deflections ranging from 1 to 

approximately 4.4 skin panel thicknesses. The remainders of these 40 deflections, after 

projection on the 4 linear modes identified above, were analyzed by POD. 

Shown in Figs. 9-10 are the transverse and in-plane components of the first (dominant) dual. 

Note that the notch is most present in the transverse component of the dual mode, see Fig. 9, 

which is quite different for the notched and virgin beams. In particular, note for the former the 

presence of a large, broad (as measured by the width of the notch) peak at the location of the 

notch. On the contrary, the in-plane components of this dual mode are almost unaffected by the 

notch, see Fig. 10. The most noticeable difference in the in-plane displacement is a jump 

occurring at the location of the notch, as seen in Fig. 11. Similar observations were drawn for the 

other 3 dual modes. 

Before proceeding with detailed validations of the reduced order models, it is desirable to 

assess the adequacy of the dual modes to represent the in-plane displacements induced by the 

large transverse motions. To this end, it was proposed in [29] to compare the part of the three-

dimensional space occupied by three representative displacements obtained in various finite 



element computations to the similar space generated by the dual modes. In the present example, 

these three displacements were selected as the transverse displacement at the midpoint of the 

beam and the transverse and in-plane displacements at the notch tip. The data from the full finite 

element static analyses under uniform loads (see section 5 below) and snapshots of the 

corresponding dynamic response (see section 6) were used to generate these three-dimensional 

plots for both virgin and notched beam, see Fig. 12. 

Also shown on these figures are the three displacement values induced by the loadings of Eq. 

(11) for the 1-1 dual and Eq. (12) for the combination of modes 1 and 2 (i.e. the 1-2 dual) for 

various values of the coefficients )(m
iα . These cases closely occupy the same space as both static 

and dynamic physical loads and thus they can efficiently be used in the construction of the basis, 

dual modes specifically, for the representation of the full nonlinear response. Note as well that 

the displacements induced by the loading of Eq. (11) for the 2-2 dual do not occupy the same 

space as the other ones and thus is not a good candidate for the basis, i.e. its inclusion in the basis 

would not be detrimental but would not be very beneficial either. This observation is indeed 

expected as mode 2 is not a dominant mode, i.e. it does not or rarely does (in the dynamic case) 

represent the largest component of the response. This finding confirms the selection strategy of 

the modes, dominant or not, in Eq. (11) and (12) and the construction of the duals as in section 

2.2. 

 

5. STATIC VALIDATION: DISPLACEMENT AND STRESS FIELDS 

Using the 4 linear and 4 dual modes analyzed above, reduced order models were built for 

both notched and virgin beams. To assess the adequacy of these reduced order models and assess 

the effects of the notch, the beams were loaded with uniform pressure acting on the bottom 



surface. Two different pressures were chosen, 2.6kPa and 17kPa, which led to peak transverse 

displacements of approximately 2 and 4 beam thicknesses, well within the nonlinear range. The 

static responses were computed with the reduced order model as well as by a nonlinear 

NX/Nastran analysis (SOL 106). Shown in Figs. 13-16 is a comparison of the predicted 

transverse and in-plane displacements at the beam’s upper and lower edges. Clearly, the 

matching is excellent for both transverse and in-plane displacements, even in the direct vicinity 

of the notch (see Fig. 17). Also shown in Figs 13 and 14 are the predictions obtained from the 

reduced order including only the 4 linear modes (i.e. with 0 duals and curves “ROM 4T0D”). 

This model clearly gives a poor prediction of the response demonstrating the need to account for 

the in-plane displacement fields, e.g. through the dual modes discussed above.  

In Figs. 17-18, the response of the virgin beam was plotted at the same node locations as the 

response of the notched beam. Interestingly, the reduced order model of the virgin beam does an 

excellent job in capturing the in-plane displacement field in the notch region.  

    The static response of the beam to pressures equal to -2.6kPa and -17kPa, applied on the 

bottom surface of the beam, and leading to peak transverse displacements of -2 and -4 beam 

thicknesses was also investigated [30] but is not shown here for brevity. The matching of the 

reduced order model and Nastran predictions was found excellent for both cases, similar to the 

one shown on Figs 13-18. 

Shown in Table 3 is a summary of the prediction errors for the three displacement 

components. The prediction errors were computed as the norm of the difference between the 

NX/Nastran and ROM predictions divided by the norm of the NX/Nastran results and are shown 

for the ROMs of the notched and virgin beams. Clearly, the linear modes chosen to represent the 

transverse displacements, along with the modeling of the in-plane displacements by the duals, 



result in a very good matching of the transverse and dominant in-plane (T1) components with 

respect to NX/Nastran. 

The previous results have demonstrated that the reduced order model of the notched beam is 

able to capture accurately the displacement field of this beam, thereby extending published 

validation cases, see [1] for review. Furthermore, it has been observed, not too unexpectedly, that 

the displacement fields of the notched and virgin beams are indeed very close to each other, 

suggesting that the latter could be used for the prediction of the response of the former.  

    Before any such connection can be established, however, it is necessary to assess the 

capability of the notched beam reduced order model to capture the stress distribution of this 

beam. To this end, shown in Figs 19-20 are the dominant stresses xxS along the top edge of the 

beam (y=0, z=h), as computed by the reduced order model of the notched beam, see Eq. (7), and 

by NX/Nastran nonlinear (curves "NX/Nastran (Notched)") for all loading cases analyzed above. 

Clearly, the agreement is very good to excellent, even in the notch near field (and for negative 

loads, see [30]), as seen from the results in Tables 3-4. It is thus concluded from these validation 

cases that the nonlinear geometric reduced order modeling technique developed in prior 

investigations is also applicable to notched panels for the prediction of both their displacement 

and stress fields. 

 

6. DYNAMIC DISPLACEMENT AND STRESS FIELDS 

Lastly, a dynamic transverse loading was added and the response computed in NX/Nastran 

SOL 601. The beam was subjected to a uniform pressure on its bottom surface varying randomly 

in time as a white noise band-limited process in the frequency range [0,1042Hz] to simulate an 

acoustic loading of overall sound pressure level (OASPL) of 147dB. Furthermore, to permit a 



close comparison between the NX/Nastran and ROM results, a simple Rayleigh damping model 

was adopted, i.e. for which the damping matrix is 𝐷 = α𝑀 + β𝐾 with α=12.838/s and β=2.061E-

6s. This selection led to damping ratios between 0.5% and 1.3% for all four transverse modes in 

the excitation band. The time histories computed from the reduced order model were obtained with a 

Newmark-β solver with the resulting nonlinear algebraic equations solved using a fixed-point algorithm. 

A time step of 4E-5s was used for these computations. The peak transverse displacement observed at the 

center of the beam was of 3.06 beam thicknesses while its standard deviation was 1.23 beam thickness 

indicating that the response of the beam is well within the nonlinear geometric regime. 

The power spectra of the transverse displacement at the middle of the beam and of the in-

plane displacement at the beam quarter point, both at the upper edge (i.e., y=0, z=h) are shown in 

Figs. 21-23. Clearly, based on the matching of the power spectral density of the NX/Nastran 

results, the ROMs of the notched beam and of the virgin beam match very well the dynamics of 

the beam. Interestingly, the matching of the power spectrum of the in-plane displacement along 

the T1 direction at the notch tip is very good as well, even for the ROM of the virgin beam.  

The power spectral density of the dominant Sxx element stresses, at different locations along 

the beam are shown in Figs. 24-26. Away from the notch, the power spectrum of both ROMs 

match NX/Nastran. Figure 26 shows clearly the amplification of the stress field at the notch. The 

power spectrum corresponding to the ROM of the notched beam matches its NX/Nastran 

counterpart very well. 

 

7. STRESS FIELD LOCAL ENRICHMENT 

7.1. Motivation 

The findings from the previous section provide a framework to carry out dynamic 

simulations of the notched beam at a much reduced computational cost than a full finite element 



analysis. Yet, the reduced order model, in both its basis and its coefficients, depends on the notch 

geometry. This property is unfortunate in certain applications in which this geometry may be 

variable, e.g. when considering the notch as an uncertain defect or when envisioning the use of 

the reduced order model for crack propagation.  For such analyses, it would be highly desirable 

to rely on a reference geometry, most simply the virgin beam, and enrich the solution by an extra 

component accounting for the existence and geometry of the crack as opposed to building a new 

reduced order model for every new notch geometry. 

The loading considered in the present validation cases, and representative of the applied 

loads on panels, leads primarily to bending and stretching (from the nonlinear effects) and thus a 

mode I deformation is dominant. Accordingly, it is proposed here to estimate the stress in the 

neighborhood of the notch by adding to the virgin beam stress distribution induced by the 

external loading a term that accounts for the presence of the notch, i.e. 
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where x̂  is the axial location of the notch and ( )tzyxS enr
xx ,,,)(  is the resulting (enriched) stress 

prediction for the notched beam at location ( )zyx ,,  and time t. Further, ( )tzyxS VROM
xx ,,,)(  is its 

counterpart obtained from the ROM of the virgin beam and ( )tzyxSxx ,,,∆  is one of the stress 

enrichments described below. 

Following a stress intensity factor perspective, it is suggested that this term be computed as 

the increment of stress induced by the notch for a loading corresponding to the in-plane stress 

distribution of the virgin beam in the vicinity of the notch (taken here at a distance of 2 

thicknesses). Further, this enrichment term will be computed in a linear static analysis. 



Effectively, this approach replaces the stress distribution of the virgin beam in the vicinity of the 

notch by a stress distribution of the notched beam that smoothly connects to the virgin far-field 

behavior. 

Two separate versions of this strategy were considered and assessed on the notched beam 

from previous sections. The first one focuses solely on the interaction of the beam stretching and 

the notch as if the stress distribution through the thickness of the virgin beam was constant, 

approximated by its value at 2 thicknesses away from the notch on the top surface of the beam, 

i.e. ( )thwhxS VROM
xx ,,2/,2ˆ)( + . That is, ( )tzyxSxx ,,,∆  will be estimated as 
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where ( )zyxS NLin
xx ,,~ )(  is the stress at location ( )zyx ,,  induced linearly by a unit uniform axial 

pressure applied at axial location hx 2ˆ +  to the notched beam and ( )zyxS VLin
xx ,,~ )(  is its 

counterpart for the virgin beam both computed from their respective linear finite element models. 

The term in parentheses in Eq. (14) is effectively the stress intensity factor due to the notch.  

The enrichment formula of Eq. (14) is very simple but it neglects the effects due to bending, 

i.e. a mostly linear variation of the stress through thickness, and possibly through width 

variations. A second stress enrichment scheme was considered which addresses those factors. 

Specifically, the notched and virgin beams were subjected at location hx 2ˆ +  to an axial pressure 

matching exactly the stress ( )tzyhxS VROM
xx ,,,2ˆ)( +  predicted by the virgin beam ROM. Linear 

quasi-static computations with this loading led to the stresses ( )tzyxS NLin
xx ,,,ˆ )(  and 

( )tzyxS VLin
xx ,,,ˆ )(  for the notched and virgin beams respectively in the neighborhood of the notch. 



The second proposed enrichment ( )tzyxSxx ,,,∆  is then the difference between these two stress 

fields, i.e. 
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7.2. Validation of Stress Enrichment: Static Loading 

Shown in Table 4 are the peak stresses at the notch, as computed by the reduced order model 

of the virgin beam with the two enrichments that were previously described. Clearly, the 

agreement is very good for the cases shown. Less accurate predictions were obtained for 

negative pressures that promote the closing of the notch and thus have smaller stress intensity 

factors, see [30] for details. The stress distributions along the beam corresponding to the first 

enrichment strategy (the second one gave similar results) and cases 1 and 2 are shown in Figs. 

(19) and (20) (curves "ROM 4T4D (Virgin/Virgin) + Stress Enrichment”). The matching with 

the NX/Nastran predictions from the notched beam are clearly very good. Note that the stresses 

of the NX/Nastran analysis for the virgin beam were enriched as well to assess the accuracy of 

the enrichment procedure independently of the reduced order model. The enriched NX/Nastran 

stress results agree very well with the corresponding predictions on the notched beam as can be 

seen from Figs (19) and (20) (curves "NX/Nastran (Virgin) + Stress Enrichment") for the first 

enrichment strategy. The second one gave similar results.  

 

7.3. Validation of Stress Enrichment: Dynamic Loading 

   For completeness it was desired to assess the effect of the enrichments in a dynamic analysis. 

The dynamic loading described in section 6 was used. The power spectral density of the Sxx 

element stresses, at different locations along the beam are shown in Figs. 27-30. Interestingly, 



both enrichments lead to almost identical stress results. As seen in Fig. 27, the addition of the 

two enrichment schemes to the ROM of the virgin beam, resulted in a good matching of 

NX/Nastran near the notch, even though the virgin predictions were significantly too low, see 

Fig. 26. Note that the spectra of Figs 27-30 include both phases of notch opening and notch 

closing displacements. Thus, the less accurate predictions obtained in the static case with a 

negative pressure (see Section 7.2 and [30]) do not affect significantly the overall prediction in 

the dynamic case. 

 

8. CONCLUSIONS 

The focus of this investigation was on a first assessment of the predictive capabilities of 

nonlinear reduced order models for panels with a localized defect, i.e. a stress “hot spot”. An 

aluminum clamped-clamped beam with a notch placed at 30% of its length and of depth equal to 

a quarter of the thickness was considered as an example. As expected, the notch was found to 

have a negligible effect on the first few natural frequencies of the beam, but also on the 

corresponding mode shapes. In addition, only small notch-related effects could be detected on 

the in-plane component of the dual modes, which are basis functions constructed to capture the 

nonlinear transverse in-plane coupling occurring in large deformations. However, a large, rather 

broad peak was observed in the smaller transverse component of the dual modes of the notched 

beam which is absent on the corresponding plot for the virgin beam. 

The displacement field induced by a uniform pressure on the beam large enough to induce 

nonlinearity, i.e. peak transverse displacements of the order of 2 and 4 thicknesses, was also 

found to be very weakly dependent on the notch. Further, this displacement field was shown to 

be well predicted by the reduced order models of both notched and virgin beams. 



In regards to the prediction of the stress field, it was found that the notch beam reduced order 

model was indeed able to capture accurately the stress distribution induced by the pressure 

loading. Excellent prediction of the displacements and stresses was also achieved under dynamic 

loading conditions. 

Nevertheless, it was questioned whether a prediction based on the virgin beam reduced order 

model could also be used if appropriately “enriched” with the notched beam stress field in a 

superposition-like manner. Two enrichment options were assessed that rely on this stress field as 

obtained, in a linear finite element static analysis, from a notched beam subjected to the stress 

state induced on the virgin beam near the notch location. This methodology led to good to 

excellent predictions of the stress field near the notch for both static and dynamic excitations.   
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Table 1. Clamped-Clamped Beam Properties 
Beam Length 0.2286 m 
Cross-section Width (w) 0.0127 m 
Cross-section 
Thickness (h) 7.88 10-4 m 

Density 2700 kg/m3 

Young’s Modulus 73,000 MPa 
Shear Modulus 27,730 MPa 

 

 

 

Table 2. Natural frequencies along with relative difference between notched and virgin beams. 

Mode 
No. 

Virgin 
Beam 
(Hz) 

Notched 
Beam 
(Hz) 

Relative 
Difference 
(%) 

1 81.561 81.551 0.010 
3 442.075 441.900 0.040 
6 1098.527 1097.261 0.110 
10 2061.725 2061.693 0.001 

 

 

 

Table 3. Summary of prediction errors, notched beam and virgin beam ROMs. 
Peak T3 Disp 
(Beam 
Thicknesses) 

Prediction Error 
Transverse (T3) 
Component (%) 

Prediction Error 
Transverse (T1) 
Component (%) 

Prediction Error 
Transverse (T2) 
Component (%) 

 Notched 
Beam 

Virgin 
Beam 

Notched 
Beam 

Virgin 
Beam 

Notched 
Beam 

Virgin 
Beam 

 2 0.2 0.4 1 1.4 2.4 3.4 
 4 0.5 0.9 3.9 3.7 5.9 7.4 
-2 0.3 0.3 1.4 1.4 3.4 3 
-4 1 0.6 3.8 3.9 7.4 7.1 

 



Table 4. Peak in-plane element stresses in the notch region for the four loading cases studied: 
2.6kPa (Case 1) and 17kPa (Case 2). Relative errors (“Erel”) are with respect to the Nastran 

results of the notched beam. 

Computation Case 1 Case 2 
 MPa Erel (%) MPa Erel (%) 

Nastran Notched 
Beam 32.3  105.7  

Nastran Virgin Beam 
+ Enrichment #1 32.2 0.3 107 1.2 

Nastran Virgin Beam 
+ Enrichment #2 32.3 0 107.2 1.4 

ROM Notched Beam 32.7 1.2 105.8 0.1 
ROM Virgin + 
Enrichment #1 32.7 1.2 105.6 0.1 

ROM Virgin + 
Enrichment #2 32.8 1.5 105.9 0.2 

 

  



 
Figure 1. Overall nonlinear reduced order modeling process. 

 

 

Figure 2. Notched beam model: Part (b) shows the zone near the notch with a finer mesh than 
parts (a) and (c) which are away from the notch. 

 

 
  
 
 

(a) 
 

(b) 
Figure 3. Geometry and finite element mesh near the notch region: (a) notched beam and (b) 

virgin beam. L=0.2286m  and h=7.88x10-4m. 

a

c
b

x

yz

h = 0.788mm

a = 1/4h

xnotch = 0.3L

b = 0.2mm

2h 2h

h = 0.788mm

2h 2h

Notch
Region



 
Figure 4. Transverse component of the first linear mode along one of the top edges of the beam. 

 

 
Figure 5. In-plane component of the first linear mode along one of the top edges of the beam. 

 
Figure 6. Zoomed-in view of the in-plane displacements near the location of the notch. 
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Figure 7. In-plane component of the first linear mode, curves correspond to displacements at the 

same nodes. 
 

 
Figure 8. Zoomed-in view of the in-plane component, curves correspond to displacements at the 

same nodes. 
 

 
Figure 9. Transverse component of the first dual mode along one of the top edges of the beam. 
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Figure 10. In-plane component of the first dual mode along one of the top edges of the beam. 

 

 
Figure 11. Zoomed-in view of the in-plane displacements near the location of the notch. 

 

 
(a) 

 
(b) 

Figure 12. Displacements from Nastran at two points of a clamped-clamped beam under various 
loadings, transverse displacement at middle point vs. Transverse and inplane displacements at 

the notch tip. (a) Virgin beam. (b) Notched beam. 

0 0.05 0.1 0.15 0.2
-25

-20

-15

-10

-5

0

5

10

15

20

25

Beam Span (m)

 

 

Virgin Beam
Notched Beam

0.062 0.064 0.066 0.068 0.07 0.072 0.074 0.076

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

Beam Span (m)

 

 

Virgin Beam
Notched Beam

-0.02
-0.015

-0.01 -0.005
0 0.005

0.01

-4

-2

0

2

4
-3

-2

-1

0

1

2

3

 

Inplane Disp.
Notch Tip (Beam Th)

Transverse Disp.
Notch Tip (Beam Th)

 

Tr
an

sv
er

se
 D

is
p.

1/
2 

Po
in

t (
B

ea
m

 T
h)

Dynamic 147dB
Static Uniform Load
1-1 Dual
1-2 Dual
2-2 Dual

-20 -15
-10

-5
0

5

x 10
-3-4

-2
0

2
4
-3

-2

-1

0

1

2

3

 

Inplane Disp.
Notch Tip (Beam Th)

Transverse Disp.
Notch Tip (Beam Th)

 

Tr
an

sv
er

se
 D

is
p.

1/
2 

Po
in

t (
B

ea
m

 T
h)

Dynamic 147dB
Static Uniform Load
1-1 Dual
1-2 Dual
2-2 Dual



 
Figure 13. Transverse displacements at the top (y=0, z=h) edge of the beam induced by a 

uniform pressure of 2.6kPa on its bottom surface. Reduced order models, nonlinear static FEA 
(“NX/Nastran NL”). 

 

 
Figure 14. Transverse displacements at the top (y=0, z=h) edge of the beam induced by a 

uniform pressure of 17kPa on its bottom surface. Reduced order models, nonlinear static FEA 
(“NX/Nastran NL”). 
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Figure 15. In-plane displacements at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam 

induced by a uniform pressure of 2.6kPa on its bottom surface. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”). 

 
 

 
Figure 16. In-plane displacements at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam 

induced by a uniform pressure of 17kPa on its bottom surface. Reduced order models (“ROM 
4T4D”), nonlinear static FEA (“NX/Nastran NL”). 
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Figure 17. Close-up view of the in-plane displacements (T1) at the beam top edge (y=0, z=h) due 

to a uniform pressure of 2.6kPa. Reduced order models (“ROM 4T4D”), nonlinear static FEA 
(“NX/Nastran NL”). 

 
 
 

 
Figure 18. Close-up view of the in-plane displacements (T1) at the beam top edge (y=0, z=h) 

due to a uniform pressure of 17kPa. Reduced order models (“ROM 4T4D”), nonlinear static FEA 
(“NX/Nastran NL”). 
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Figure 19. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of 

2.6kPa. Reduced order models with and without stress enrichment 1 ("ROM 4T4D") and 
nonlinear static FEA (“NX/Nastran”). 

 

 
Figure 20. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of 

17kPa. Reduced order models with and without stress enrichment 1 ("ROM 4T4D") and 
nonlinear static FEA (“NX/Nastran”). 
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Figure 21. Power spectral density of the transverse displacement at the beam middle point, 

x=L/2, y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 

 

 
Figure 22. Power spectral density of the in-plane displacement at the notch tip (OASPL = 

147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 23. Power spectral density of the in-plane displacement at the beam quarter point, x=L/4, 
y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
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Figure 24. Power spectral density of the Sxx element stress near the middle of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 

 
Figure 25. Power spectral density of the Sxx element stress near the support of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 26. Power spectral density of the Sxx element stress near the notch at y=0, z=h (OASPL = 

147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
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Figure 27. Power spectral density of the Sxx element stress near the notch tip at y=0, z=h (OASPL 

= 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 28. Power spectral density of the Sxx element stress near the middle of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 

 
Figure 29. Power spectral density of the Sxx element stress at 2 beam thicknesses from the notch 

tip and y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 
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Figure 30. Power spectral density of the Sxx element stress near the support of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 
 

LIST OF CAPTIONS 
 

Figure 1. Overall nonlinear reduced order modeling process. 
 

Figure 2. Notched beam model: Part (b) shows the zone near the notch with a finer mesh than 
parts (a) and (c) which are away from the notch. 

 
Figure 3. Geometry and finite element mesh near the notch region: (a) notched beam and (b) 

virgin beam. Where L=0.2286m  and h=7.88x10-4m. 
 

Figure 4. Transverse component of the first linear mode along one of the top edges of the beam. 
 

Figure 5. In-plane component of the first linear mode along one of the top edges of the beam. 
 

Figure 6. Zoomed-in view of the in-plane displacements near the location of the notch. 
 

Figure 7. In-plane component of the first linear mode, curves correspond to displacements at the 
same nodes. 

 
Figure 8. Zoomed-in view of the in-plane component, curves correspond to displacements at the 

same nodes. 
 

Figure 9. Transverse component of the first dual mode along one of the top edges of the beam. 
 

Figure 10. In-plane component of the first dual mode along one of the top edges of the beam. 
 

Figure 11. Zoomed-in view of the in-plane displacements near the location of the notch. 
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Figure 12. Displacements from Nastran at two points of a clamped-clamped beam under various 
loadings, transverse displacement at middle point vs. Transverse and inplane displacements at 

the notch tip. (a) Virgin beam. (b) Notched beam. 
 

Figure 13. Transverse displacements at the top (y=0, z=h) edge of the beam induced by a 
uniform pressure of 2.6kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
 

Figure 14. Transverse displacements at the top (y=0, z=h) edge of the beam induced by a 
uniform pressure of 17kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
 

Figure 15. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam induced 
by a uniform pressure of 2.6kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
 

Figure 16. In-plane disp. at the top (y=0, z=h) and bottom (y=0, z=0) edges of the beam induced 
by a uniform pressure of 17kPa on its bottom surface. Reduced order models (“ROM 4T4D”), 

nonlinear static FEA (“NX/Nastran NL”). 
 

Figure 17. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) due to a 
uniform pressure of 2.6kPa. Reduced order models (“ROM 4T4D”), nonlinear static FEA 

(“NX/Nastran NL”). 
 

Figure 18. Close-up view of the in-plane disp. (T1) at the beam top edge (y=0, z=h) due to a 
uniform pressure of 17kPa. Reduced order models (“ROM 4T4D”), nonlinear static FEA 

(“NX/Nastran NL”). 
 
Figure 19. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of 

2.6kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress Enrichment)”, 
nonlinear static FEA (“NX/Nastran”). 

 
Figure 20. Element stress Sxx near the beam edge at y=0, z=h, induced by a uniform pressure of 

17kPa. Reduced order model with stress enrichment (“ROM 4T4D+Stress Enrichment)”, 
nonlinear static FEA (“NX/Nastran”). 

 
Figure 21. Power spectral density of the transverse displacement at the beam middle point, 

x=1/2L, y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 
(“NX/Nastran”). 

 
Figure 22. Power spectral density of the in-plane displacement at the notch tip (OASPL = 

147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 

Figure 23. Power spectral density of the in-plane displacement at the beam quarter point, x=1/4L, 
y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 



Figure 24. Power spectral density of the Sxx element stress near the middle of the beam at y=0, 
z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 25. Power spectral density of the Sxx element stress near the support of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 

Figure 26. Power spectral density of the Sxx element stress near the notch at y=0, z=h (OASPL = 
147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 

 
Figure 27. Power spectral density of the Sxx element stress near the notch tip at y=0, z=h (OASPL 

= 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
Figure 28. Power spectral density of the Sxx element stress near the middle of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 

Figure 29. Power spectral density of the Sxx element stress at 2 beam thicknesses from the notch 
tip and y=0, z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA 

(“NX/Nastran”). 
Figure 30. Power spectral density of the Sxx element stress near the support of the beam at y=0, 

z=h (OASPL = 147dB). Reduced order model (“ROM(4T4D)”) and FEA (“NX/Nastran”). 
 


