
Quadratic formula for determining the drop size in pressure-atomized
sprays with and without swirl
T.-W Lee, and Keju An

Citation: Physics of Fluids 28, 063302 (2016); doi: 10.1063/1.4951666
View online: http://dx.doi.org/10.1063/1.4951666
View Table of Contents: http://aip.scitation.org/toc/phf/28/6
Published by the American Institute of Physics

Articles you may be interested in
High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate
Weber numbers
Physics of Fluids 28, 082101 (2016); 10.1063/1.4959290

 Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during
drop tower tests
Physics of Fluids 28, 102104 (2016); 10.1063/1.4963686

 Nonlinear dynamics of a thin liquid film deposited on a laterally oscillating corrugated surface in
the high-frequency limit
Physics of Fluids 28, 112101 (2016); 10.1063/1.4965819

 On the accuracy of RANS simulations with DNS data
Physics of Fluids 28, 115102 (2016); 10.1063/1.4966639

 Weakly nonlinear instabilities of a liquid ring
Physics of Fluids 28, 114104 (2016); 10.1063/1.4966976

 Linear and nonlinear dynamics of an insoluble surfactant-laden liquid bridge
Physics of Fluids 28, 112103 (2016); 10.1063/1.4967289

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/522021942/x01/AIP-PT/PoF_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Lee%2C+T-W
http://aip.scitation.org/author/An%2C+Keju
/loi/phf
http://dx.doi.org/10.1063/1.4951666
http://aip.scitation.org/toc/phf/28/6
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4959290
http://aip.scitation.org/doi/abs/10.1063/1.4959290
http://aip.scitation.org/doi/abs/10.1063/1.4963686
http://aip.scitation.org/doi/abs/10.1063/1.4963686
http://aip.scitation.org/doi/abs/10.1063/1.4965819
http://aip.scitation.org/doi/abs/10.1063/1.4965819
http://aip.scitation.org/doi/abs/10.1063/1.4966639
http://aip.scitation.org/doi/abs/10.1063/1.4966976
http://aip.scitation.org/doi/abs/10.1063/1.4967289


PHYSICS OF FLUIDS 28, 063302 (2016)

Quadratic formula for determining the drop size
in pressure-atomized sprays with and without swirl
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We use a theoretical framework based on the integral form of the conservation
equations, along with a heuristic model of the viscous dissipation, to find a closed-
form solution to the liquid atomization problem. The energy balance for the spray
renders to a quadratic formula for the drop size as a function, primarily of the
liquid velocity. The Sauter mean diameter found using the quadratic formula shows
good agreements and physical trends, when compared with experimental obser-
vations. This approach is shown to be applicable toward specifying initial drop
size in computational fluid dynamics of spray flows. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4951666]

NOMENCLATURE

A = cross-sectional area of the spray where drop properties are evaluated.
Ainj = injector exit area
dinj = injector diameter
D = drop diameter
Di = drop diameter for the i-th size bin
D32 = SMD = Sauter mean diameter
K, K′= proportionality constants for the viscous dissipation term
n = drop number density
p(D) = normalized drop size distribution function
uinj = mean injection velocity
u = mean drop velocity(
∂u
∂y

)
= average velocity gradient in the spray

V = volume of the spray bounded by A and spray length
µ = liquid viscosity
ρg = ambient gas density
ρL = liquid density
σ = surface tension

INTRODUCTION

Determination of the drop size and velocity statistics from sprays is a long-standing problem
in two-phase fluid mechanics. From an engineering standpoint, they are important for the obvious
reasons of influencing the subsequent vaporization and combustion processes. In practical combus-
tion devices, the fuel is injected in the liquid form and then burned. For this reason, atomization
is an integral element in combustion science and engineering. For modeling and computations of
spray combustion, the spray drop size and velocities are the starting points.1 A vast number of works

a)Author to whom correspondence should be addressed. Electronic mail: attwl@asu.edu. Department of Mechanical and
Aerospace Engineering, Arizona State University, Tempe, Arizona 85287, USA.

1070-6631/2016/28(6)/063302/12/$30.00 28, 063302-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
http://dx.doi.org/10.1063/1.4951666
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
mailto:attwl@asu.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4951666&domain=pdf&date_stamp=2016-06-01


063302-2 T.-W. Lee and K. An Phys. Fluids 28, 063302 (2016)

exist in empirical modeling, experimental measurements, and computational simulations of drop
size and velocity distributions in various spray configurations (a small set of representative works
can be found in Refs. 1–19). More recent work Villermaux and co-workers (e.g., Ref. 27) illustrates
the dynamical process during spray atomization including ligament formation and their break-up
into droplets. Gorokhovski and Herrmann28 have made advances into resolving detailed structure of
atomizing sprays using quasi-direct numerical simulations (DNS) however in that work, they also
cite the need for simpler, computationally efficient, phenomenological model for realistic Reynolds
and Weber number sprays. Some of the models they suggest, such as stochastic scaling, liquid
jet depletion, and liquid surface density modeling,28 include several components that are currently
being investigated for verification and application in spray systems.

Recently, we presented a new, alternate framework for calculating the drop size distribution
and velocities, based on the integral form of the conservation equations of mass, momentum, and
energy.20–22 In this approach, the conservation equations for spray flows, after some algebraic work,
render themselves solvable through iterative methods. The key is to use the integral form of the
conservation equations so that the input injection parameters are related to the output spray param-
eters, without having to resolve the details of the atomization physics. This is a departure from
existing methods, where conservation laws are applied in an integral form between “asymptotic”
states, therefore bypassing the need for detailed modeling nor complex set of assumptions. Vali-
dations of the solutions have been provided in our previous works,20–22 and this method is viable
in solving for the drop size and velocities. Both the mean drop and size distributions, obtained
using the current method, agree well with experimental data.20 In this work, we present some new
results incorporating an updated form for the viscous dissipation term, which leads to a closed-form
quadratic equation and formula for predicting the Sauter mean diameter (SMD), and compare with
experimental data and correlations for sprays with and without swirl. This method can be adopted
for specifying the initial drop size in computational simulations of spray flows.

MATHEMATICAL FORMULATION

The basic integral form of the conservation equations for mass, momentum, and energy has
been shown in our previous work.20–22 We present the equations here for the purpose of placing this
work in context. We consider a control volume that envelops the spray including all its complex
break-up and atomization mechanisms, as shown in Figure 1. The approach is to relate the mass,
momentum, and energy of the spray at the injector exit, to those at a downstream location where
the spray is fully atomized. Thus, we avoid the treatment of the complex atomization physics
(usually expressed in partial “differential” equations), and attempt to find an “integral” relationship
between the asymptotic states. The only main assumption in this formulation is that the liquid phase
completes the transition from its initial state to a final state of fully atomized group of spherical
droplets within the specified control volume, and that the viscous dissipation can be written in terms
of known parameters such as the liquid velocity and dissipation length scale. Heat and mass transfer
effects are not yet included, although it is not a far stretch of the current method to include them. For
the control volume described above, the integral form of conservation equations of mass and energy
for the liquid phase are as follows:

ρLuinjAinj =

 umax

u=0

 Dmax

D=0
np(D,u)πD3

6
ρLuAdDdu ≈ π

6
nρLuA

N
i

p(Di)D3
i∆Di, (1)

ρL
uinj

3

2
Ainj =

π

12
nρLu3A

N
i

p(Di)D3
i∆Di + nuAπσ

N
i

p(Di)D2
i∆Di + K µL

(
∂u
∂ y

)2
(Vol). (2)

The mass conservation is achieved by equating the injected mass flow rate with the mass of
the droplets contained in a volume swept by the average drop velocity, u, over a spray area, A. The
velocity distribution is simplified to an average drop velocity in Eqs. (1) and (2). The cross-sectional
area, A, represents the physical extent of the spray at the plane where full atomization is achieved,
which can be determined by the spray cone angle and the atomization length. The drop number
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FIG. 1. The schematic of the spray control volume used for the integral analysis. The inset shows the reasoning for the
viscous dissipation term in Eq. (3).

density is n, while ρL and Di are the liquid density and droplet diameter, respectively. p(Di) is the
normalized drop size distribution, and ∆Di is the drop size bin width.

The liquid- and gas-phase momentum equations can be included in iterative numerical solu-
tions,20–22 which would involve the drop drag coefficient and effects of density of both gas (in the
drag term) and liquid (in the momentum term). Such momentum effects have been discussed in
length in one of our previous works.21 As will be shown later, the current formulation is applicable
to sprays in different configurations (e.g., swirl), as long as all the velocity components (axial and
tangential for swirl sprays) are accounted for in the kinetic energy term.

Here, we focus on the SMD-velocity relationship, by using the mass (Eq. (1)) and energy
balance (Eq. (2)). An estimate of the average viscous dissipation can be written as follows:

µL

(
∂u
∂ y

)2
(SprayVolume) ∼ µL

(
u

D32

)2

(SprayVolume). (3)

Physically, the deformation of the spray liquid column toward droplets would occur at some veloc-
ity scale, which we will take to be the mean liquid velocity, and at the length scale of the droplets
formed. Here, we take the length scale to be the SMD itself, since that is the scale at which the
liquid deformation leading to droplet formation occurs, as depicted in Fig. 1 inset. K is the only
adjustable constant in this formulation, as the exact relationship between the viscous dissipation
terms and the spray volume is approximated. The dissipation term in our previous work20–22 was
only dimensionally correct and ad hoc. It led to some reasonable results, but also caused some
numerical difficulties when the liquid velocity was large or close to the injection velocity. Now, the
reason for this previous numerical instability is evident as shown below: when the liquid velocity
approaches the injection velocity, the expected drop diameter is infinite (see Figure 2, for example).
Schmehl29 notes that for droplet breakup (secondary atomization) processes, the droplet viscous
dissipation is exactly 16πµR3

o

(
ẏ
y

)2
, where Ro is the initial drop radius, y is the ellipsoid coordinate,

and therefore dy/dt is the surface velocity. Eq. (3) is mathematically analogous to the expression of
Schmehl,29 where the ratio of the velocity to dissipation length scale is squared and then multiplied
by a volume term and viscosity.

Substitution of Eq. (5) into the energy equation (Eq. (2)), after solving for n from Eq. (1),20–22

gives us a quadratic equation for the D32-velocity relationship,

ρL *
,

uinj
2 − u2

2
+
-

D2
32 − 6σD32 − K ′µu2

= 0. (4)
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FIG. 2. Comparison of the calculated SMD with experimental data of Ruff and Faeth.26

K′ now absorbs the spray volume term, for simplicity. As will be discussed later (in Figures 7 and
8), K′ increases with increasing distance from the injector, as the spray volume increases. This
formulation becomes yet simpler for a fixed droplet diameter (D32 → D), which would allow for
a transform of velocity to drop size distributions, as will be shown later. This leads to a quadratic
solution for the D32-velocity relationship,

D32 =
3σ +


9σ2 + K ′ρLµu2 u

2
inj−u

2

2

ρL
u2

inj−u
2

2

. (5)

The solution branch with the negative sign (before the square-root term) is discarded, due to its
non-physical value.

RESULTS AND DISCUSSION

A plot of Eq. (5) is shown in Figures 2 and 3, as solid lines, and comparison is made with
experimental data for sprays without swirl (Figure 2) and with swirl (Figure 3). Figure 2 com-
pares Eq. (5) with D32 vs. drop velocity data for pressure-atomized sprays with no swirl,26 while
Figure 3 is a comparison with the most probable drop size vs. the drop velocity obtained from
joint-probability density function (pdf) data in swirl sprays.23 The plots show that if the spray or

FIG. 3. Comparison of the calculated SMD with experimental data of Rimbert and Castanet.27
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FIG. 4. Comparison of SMD with the correlations of Lefebver,24 for swirl sprays.

droplet velocity has not lost (converted) any of its kinetic energy to surface tension energy, i.e.,
u = uinj, then the expected drop size is infinity. Physically, this means that no droplets exist, and
that the liquid column is intact. As more of the initial kinetic energy is lost through fluid dynamic
drag between the liquid and the gas, then the corresponding loss of kinetic energy must appear as
surface energy, minus the viscous dissipation. Thus, when u < uinj, the resulting drop size is smaller.
Below a certain range, u/uinj ≈ 0.75 for the pressure-atomized sprays without swirl in Figure 2,
the decrease in the drop size is gradual with respect to the velocity decrease, meaning that a near
“equilibrium” has been reached for the energy distribution in the spray. A later plot (Figure 4) will
show that other parameters such as surface tension and viscosity result in expected trends for the
drop size. Thus, the plots in these figures show that there is a “break-up” regime where the velocity
of the liquid phase is not substantially different from the injection velocity and the drop size is
very large or generation of small droplets improbable. The “atomization” regime is attained when
the liquid-phase velocity has been retarded to a sufficient degree, and then the drop size change is
relatively small for any further reductions in the drop velocity. The latter fact is useful for estimating
the initial drop size in spray computations as the drop size is less sensitive to the exact value of
liquid velocities at this range.

A correlation by Wu et al.30 shows similar (but apparently reversed) asymptotic behavior with
current results in Figures 2 and 3. The correlation gives SMD/d = 46.4/We0.74,30,31 where the
Weber number, We, is based on the jet speed. Thus this correlation gives infinite SMD at zero jet
speed with a rapid decrease toward an asymptotic SMD at high jet speeds. We may reason that
this is the same effect observed in our energy balance, where the jet speed is representative of the

FIG. 5. Comparison with SMD with correlations of Chen et al.25
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kinetic energy and zero Weber number corresponds to no kinetic energy available to be converted to
surface energy, and therefore infinite drop size as in Figures 2 and 3. Figure 3 shows experimental
data by Rimbert and Castanet,27 who obtained detailed statistics of drop size and velocity in swirl
sprays. The data shown in Figure 3 are the most probable drop size at a given liquid velocity, which
illustrate the utility of Eq. (5) in swirl sprays so long as all the relevant velocity components are
included in the kinetic energy term.

We can also compare Eq. (5) with existing correlations for SMD, as shown in Figures 4 and 5.
The first correlation by Lefebvre24 for swirl sprays contains the dependence on injection pressure
(converted to the injection velocity), viscosity, and surface tension. The comparison is reasonable,
where the mean spray velocity needs to be estimated in Eq. (5). Once a reasonable estimate is made,
the values for both spray velocity and the constant, K′, are fixed. Increasing the viscosity results
in larger drop size, and the decrease in the surface tension smaller drop size, where the decrease
due to the latter effect is somewhat overestimated by Eq. (5). Another correlation by Chen et al.25

includes the effect of the viscosity, but not surface tension. Equation (5) generates again favorable
comparison, where the surface tension effect is still present but relatively small for the injection
velocities of interest.

In computational fluid dynamics (CFD) of sprays, including spray evaporation and combustion,
setting the initial conditions for the drop size and velocity has been the biggest hurdle in accurate
simulations. Once the initial drop size and velocity are properly set, then there are several reliable
methods for subsequent tracking of the particles, such as particle-in-cell (Eulerian-Lagrangian)
calculations. Phase change, mass, and energy transfers can also be effectively treated using ther-
modynamic modules. Thus, a capability to specify the droplet initial conditions, based on the first
principles, is of utmost necessity, to replace the ad hoc models presently used in many commer-
cially available software packages. We start by taking note of the fact that the energy balance used
in Eq. (5) can be used between any two locations. In Figure 1, we have applied the method from
the injector exit to the “atomization plane,” where the liquid core has completely disintegrated and
atomized into spherical droplets. In compact sprays, such as swirl sprays, this may be an ideal
application since the spray initial conditions can be set at a location close to the injector exit. But
what about pressure-atomized sprays without swirl, such as diesel sprays, with atomization lengths
typically observed at x/d of 100–2001,2 Much can happen within the volume that extends to such
large axial locations, in terms of fuel mixing and combustion, for instance. Thus, it is necessary to
set the initial conditions in a different manner.

If we again look at results in Figures 2 and 3, we can see that it is possible to use the ve-
locity information to set the initial SMD, since the quadratic formula (Eq. (5)) provides a direct
velocity-drop size relation. Also, from such plots, we can obtain estimates for the maximum and
minimum drop size, to determine the general shape, variance term, of the drop size distribution. In
this regard, we note that the liquid-phase velocities are quite accurately computed by computational

FIG. 6. SMD calculated from CFD-generated average liquid velocities. CFD is for a liquid jet, with no droplets in the flow.
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methods. For example, Figure 6 shows the average liquid velocity as a function x/d for a liquid
jet at injection velocity of 56 m/s, the same as the experiment by Ruff and Faeth.26 Although the
centerline velocity persists at a level close to the injection velocity to a large axial location, velocity
averaged over the cross section of the liquid jet undergoes a transition to lower value much earlier,
as seen in Figure 6. Thus, we can use this average liquid velocity to find the SMD’s as a function
of x/d, again using Eq. (5), which are overlaid in Figure 6 for various values of K. We can see that
the initial SMD tends to be quite large, 800–1400 µm, depending on K, and drops to 250–450 µm
range, when the average liquid velocity has been retarded by x/d ∼ 15. Thus, we can use the
SMD calculated using Eq. (5) at, say, x/d = 5 to set the initial SMD. Subsequent computations
of the spray flow to track drop motion and dispersions (that can cause variations in the SMD at
axial and radial locations) show quite good agreement with data of Ruff and Faeth,26 as shown in
Figure 7. Figure 7 shows the CFD results for SMD along with drop velocity as a function of the
radial location, as computed using initial SMD specified at x/d = 5 and K′ = 0.06. For initial SMD
specification, only one value of K′ is needed. However, for local SMD calculations, K′ increases
nearly linearly with x/D since it contains the spray volume term (Eq. (3)). These are compared
with SMD measurements of Ruff and Faeth,26 and again confirmed with Eq. (5) that relates the
drop velocity with SMD at the same location. Although the initial SMD was set at a location close
to the injector (x/d = 5) in Figure 7 for comparison with data at x/d = 12.5, 25, 50, and 100, for
most simulations SMD initial condition should be set beyond x/d = 15, where the transition to the
equilibrium liquid momentum and therefore SMD is achieved as shown in Figure 6. Some pertinent
details of the computational work for the liquid velocity (Figures 6 and 8), spray CFD (Figure 7),
and experimental data of Ruff and Faeth26 are included in the Appendix.

Figure 7 shows the SMD remains high near the centerline, mainly because x/d locations are
well below the so-called atomization length. Lower SMD are observed near the periphery of the
spray, as smaller droplets preferentially disperse toward regions of lower velocity. This observa-
tion also points to a method for more spatially detailed specifications of the initial drop size.
That is, instead of initiating the spray calculations at a plane (x/d = 5 in the above example)
close to the injector exit, we can specify the drop initial conditions at the spray “boundary layer,”
which corresponds to the regions where atomization is taking place from the liquid surface in the
pressure-atomized sprays. This will amount to a two-dimensional specification of the drop initial
conditions, where the SMD and velocities are specified at the inner radial location (close to the
liquid-air interface). We take the advantage of the fact that close to the injector, the liquid velocities
(shown as dotted lines in Figure 7) tend to be independent of the drop size as the momentum is
dominated by the initial inertia of the injection. The available liquid velocity can then be converted
to local SMD as in Figure 7.

An alternative method for spatial specification of the initial drop size is to use the CFD results
for axi-symmetric, columnar liquid jet (Figure 6) directly, at the same initial spray injection condi-
tions (injection velocity, injector diameter, and liquid properties), and again use the velocity data
from such simulations, as shown in Figure 8. We immediately see that the liquid velocity profiles
are much more compact than the actual spray flow, since the liquid column does not spread out
as much as the droplet-laden flow in Figure 7. However, the SMD values are again close to the
experimental data,26 albeit at smaller radial locations. Thus, we can “release” the droplets of the
calculated SMD’s at the inner spray at the CFD-generated liquid velocity vectors (axial and radial
components) to provide the local initial droplet conditions in spray simulations.

As noted earlier, for a fixed drop size, D32 in Eq. (5) simply reduces to D as a function of drop
velocity, providing essentially the cross correlation between the drop size and velocity. This can be
used to construct the drop size distribution, in addition to the SMD. There are on-going works by
other researchers28,30,31 to determine the exact drop velocity distributions which may deviate from
conventional clipped-Gaussian probability density function. For the purpose of demonstrating the
transform from the drop velocity to drop size distributions, we take the simple clipped-Gaussian
velocity distribution (f(u)) and use Eq. (5) to determine the drop size distribution (g(D)), as shown
in Figure 9, through Eq. (5). Due to the asymptotic behavior for drop size as a function a liquid
velocity, there is a shift toward smaller drop size and a long tail in the large drop size, which is
the drop size distribution observed in sprays. For the velocity distribution (—) centered at a larger
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FIG. 7. Comparison of the SMD, measured, calculated, and also from CFD-generated liquid velocities. CFD is for a spray
flow, with droplets released at x/d= 5. The plots are for x/d= 12.5 (top), 25, 50, and 100 (bottom).
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FIG. 8. Comparison of the SMD, measured, calculated, and also from CFD-generated liquid velocities. CFD is for a liquid
jet, with no droplets in the flow. The plots are for x/d= 12.5 (top), 25, 50 and 100 (bottom).
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FIG. 9. Transform from velocity distributions to the drop size distributions via the “quadratic formula.”

liquid speed, the corresponding drop size distribution (—) is shifted toward larger drop size due to
the steep slope of u-D relationship near uinj. When more exact velocity distributions are known from
CFD or other means, then it can be easily converted to the drop size distribution using this approach.

CONCLUSIONS

We have used a theoretical framework based on the integral form of the conservation equations,
along with a phenomenological model of the viscous dissipation, to find a closed-form solution to
the liquid atomization problem. The energy equation renders to a quadratic formula for the drop size
as a function, primarily of the liquid velocity with surface tension and viscosity as fluidic parame-
ters. The SMD found using the quadratic formula shows good agreement and physical trends, when
compared with experimental observations. This approach also has good utility toward specifying
initial SMD and drop size distributions in computational fluid dynamics of spray flows, either at
plane close to the injector or more spatially at the spray boundary. The current method is based
on the conservation of mass, energy, and also momentum, and therefore free of any non-physical
assumptions. The only term to be modeled is the viscous dissipation (the Reynolds number effect);
however, we have found a mathematically29 and physically (Figure 1) reasonable form. There are
quasi-DNS results on spray atomization27 with which the only adjustable constant, K, in the current
formulation can be evaluated. Also, further work may be needed in accurately specifying the spray
“control volume,” since the current approach only links the initial and final asymptotic states. The
“equilibrium” in liquid energy states should be reached since the energy terms to obtain Eq. (5) are
prescribed based on the final drop kinetic and surface energy, along with the viscous dissipation that
the liquid phase incurred during the atomization process.

APPENDIX: DETAILS OF EXPERIMENTAL DATA USED AND COMPUTATIONAL WORK

For data of Ruff and Faeth,26 water jets were injected vertically downward in still room air,
using a 9.5-mm injector diameter, at a mean jet velocity of 56.3 m/s.26 This corresponded to a mass
flow rate of 3.99 kg/s, Reynolds number = Re = 534 000, and Weber numbers based on gas and
liquid densities of 500 and 412 000, respectively. The Ohnesorge number was 0.00 121. The liquid
velocities were measured using a phase-discriminating laser Doppler velocimetry (LDV) system,
which involved a conventional two-component LDV triggered by a 5-mW He-Ne laser to detect the
presence of liquid in the probe volume. The drop size measurements were done via double-pulse
holography, which were able to penetrate through the dense part of the sprays. Experimental uncer-
tainties (95% confidence) for SMD measurements were less than 10%.26

For the simulations of liquid jet velocities used in Figures 6 and 8, the above injection condi-
tions were used as the velocity inlet boundary condition in ANSYS/FLUENT (Version 16.2). Axi-
symmetric grid containing 108 883 quadrilateral cells was created using pre-processor ICEM soft-
ware. The minimum and maximum face areas in the total domain are approximately 7.4 × 10−5 m2

and 9.3 × 10−3 m2 based on sensitivity analysis and standard wall functions are applied. Steady
RANS equations for conservations of mass, momentum, and energy are solved in combination
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with the realizable k-ε turbulence model by Shih et al.,32 which predicts the spreading rate of both
planar and round jets.33 The SIMPLE algorithm is used in ANSYS/FLUENT for pressure-velocity
coupling, while pressure interpolation is second order and second-order discretization schemes are
used for both the turbulence kinetic energy term and the turbulence dissipation rate term of the
equations.

For the spray simulations shown in Figure 7, a Lagrangian-Eulerian model is used, again in
ANSYS/FLUENT. A full, three-dimensional “test section” grid of dimensions 0.21 m × 0.21 m ×
1.9 m was made with the pre-processor ICEM software, with 333 036 hexahedral cells. A stretching
ratio of 1.05 controls the cells located in the immediate surroundings of the nozzle. The Eulerian
component was similar to the liquid jet simulations described in the previous paragraph. Lagrangian
trajectory simulations are performed for the discrete phase. The discrete phase interacts with the
continuous phase, and the discrete phase model source terms are updated after each continuous
phase iteration. To solve the equations of motion for the droplets, the “automated tracking scheme
selection” is adopted to be able to switch between higher order lower order tracking schemes. This
mechanism can improve the accuracy and stability of the simulation.34 SMD diameter as prescribed
by Eq. (5) and Figure 6 is input as a Rosin-Rammler distribution, at 300 uniformly distributed points
on the injector exit. The spherical drag law is used to estimate the drag coefficients. It assumes
that the surface tension on the drop-fluid interface is strong enough to resist the tendency of the
aerodynamic force to deform the drop. In this scenario, droplets are assumed to be non-deforming
spheres, and drag coefficients (Cd), as functions of the Reynolds number (Re), are estimated based
on experimental drag data for solid spheres. The correlation proposes the following drag coefficient
for a wide range of Reynolds numbers up to 5 × 104: Cd = a1 +

a2
Re +

a3
Re2 in which a1, a2, and a3 are

three constants that apply over several ranges of Re given by Morsi and Alexander.35

1 G. M. Faeth, “Structure and atomization properties of dense turbulent sprays,” in 23rd International Symposium on
Combustion (The Combustion Institute, 1990), pp. 1345–1352.

2 G. M. Faeth, L.-P. Hsiang, and P.-K. Wu, “Structure and break-up properties of sprays,” Int. J. Multiphase Flow 21, 99–127
(1995).

3 W. E. Ranz, “Some experiments on orifice sprays,” Can. J. Chem. Eng. 36, 175 (1958).
4 C. C. Miese, “Correlation of experimental data on disintegration of liquid jets,” Ind. Eng. Chem. 47, 1960 (1955).
5 T.-W. Lee and A. Mitrovic, “Liquid core structure of pressure-atomized sprays via laser tomographic imaging,” Atomization

Sprays 6, 111–126 (1996).
6 E. Babinsky and P. E. Sojka, “Modeling drop size distributions,” Prog. Energy Combust. Sci. 28, 303–329 (2002).
7 S. D. Sovani, P. E. Sojka, and Y. R. Sivathanu, “Prediction of drop size distributions from first Principles: Joint pdf effects,”

Atomization Sprays 27, 213–222 (2002).
8 R. W. Sellens and T. A. Brzustowski, “A simplified prediction of the drop size distribution in a spray,” Combust. Flame 65,

273–279 (1986).
9 X. Li and R. S. Tankin, “Drop size distribution: A derivation of a Nukiyama-Tanasawa type distribution function,” Combust.

Sci. Technol. 60, 345–357 (1988).
10 X. Li, L. P. Chin, R. S. Tankin, T. Jackson, J. Stutrud, and G. Switzer, “Comparison between experiments and predictions

based on maximum entropy for sprays from a pressure atomizer,” Combust. Flame 86, 73–89 (1991).
11 C. W. M. van der Geld and H. Vermeer, “Prediction of drop size distributions in sprays using the maximum entropy

formalism: The effect of satellite formation,” Int. J. Multiphase Flow 20(2), 363–381 (1994).
12 M. Ahmadi and R. W. Sellens, “A simplified maximum-entropy-based drop size distribution,” Atomization Sprays 3,

291–310 (1993).
13 J. Cousin, S. J. Yoon, and C. Dumouchel, “Coupling of classical linear theory and maximum entropy formalism for prediction

of drop size distribution in sprays: Application to pressure swirl atomizers,” Atomization Sprays 6, 601–622 (1996).
14 C. Dumouchel and S. Boyaval, “Use of the maximum entropy formalism to determine drop size distribution characteristics,”

Part. Part. Syst. Charact. 16, 177–184 (1999).
15 C. Dumouchel, “A new formulation of the maximum entropy formalism to model liquid spray drop-size distribution,” Part.

Part. Syst. Charact. 23, 468–479 (2006).
16 W. A. Sirignano and C. Mehring, “Review of theory of distortion and disintegration of liquid streams,” Prog. Energy Com-

bust. Sci. 26, 609–655 (2000).
17 M. R. Archambault, C. F. Edwards, and R. W. MacCormack, “Computation of spray dynamics by moment transport equa-

tions. II. Application to calculation of a quasi-one dimensional spray,” Atomization Sprays 13(1), 89–115 (2003).
18 M. R. Archambault and C. F. Edwards, “Computation of spray dynamics by direct solution of moment transport

equations-inclusion of nonlinear momentum exchange,” in Eighth International Conference on Liquid Atomization and
Spray Systems, Pasadena, CA, USA, July 2000 (ILASS, 2000).

19 S. Subramaniam, “Statistical representation of a spray as a point process,” Phys. Fluids 12(10), 2413–2431 (2000).
20 T.-W. Lee and D. Robinson, “A method for direct calculations of the drop size distribution and velocities from the integral

form of the conservation equations,” Combust. Sci. Technol. 183(3), 271–284 (2011).

http://dx.doi.org/10.1016/0301-9322(95)00059-7
http://dx.doi.org/10.1002/cjce.5450360405
http://dx.doi.org/10.1021/ie50549a013
http://dx.doi.org/10.1615/atomizspr.v6.i1.60
http://dx.doi.org/10.1615/atomizspr.v6.i1.60
http://dx.doi.org/10.1016/S0360-1285(02)00004-7
http://dx.doi.org/10.1615/AtomizSpr.v10.i6.40
http://dx.doi.org/10.1016/0010-2180(86)90041-6
http://dx.doi.org/10.1080/00102208808923992
http://dx.doi.org/10.1080/00102208808923992
http://dx.doi.org/10.1016/0010-2180(91)90057-I
http://dx.doi.org/10.1016/0301-9322(94)90088-4
http://dx.doi.org/10.1615/AtomizSpr.v3.i3.30
http://dx.doi.org/10.1615/AtomizSpr.v6.i5.5014
http://dx.doi.org/10.1002/(SICI)1521-4117(199908)16:4<177::AID-PPSC177>3.0.CO;2-L
http://dx.doi.org/10.1002/ppsc.200500989
http://dx.doi.org/10.1002/ppsc.200500989
http://dx.doi.org/10.1016/S0360-1285(00)00014-9
http://dx.doi.org/10.1016/S0360-1285(00)00014-9
http://dx.doi.org/10.1615/AtomizSpr.v13.i1.50
http://dx.doi.org/10.1063/1.1288266
http://dx.doi.org/10.1080/00102202.2010.519362


063302-12 T.-W. Lee and K. An Phys. Fluids 28, 063302 (2016)

21 T.-W. Lee and J. Y. Lee, “Momentum effects on drop size, calculated using the integral form of the conservation equations,”
Combust. Sci. Technol. 184, 434–443 (2012).

22 T.-W. Lee and J. H. Ryu, “Analyses of spray break-up mechanisms using the integral form of the conservation equations,”
Combust. Theory Model. 18(1), 89–100 (2014).

23 N. Rimbert and G. Castanet, “Liquid atomization out of a full cone pressure swirl nozzle,” personal communications (2015).
24 A. H. Lefevbre, Atomization and Sprays (Hemisphere Publishing Corp., 1989).
25 L. Chen, Z. Liu, P. Sun, and W. Huo, “Formulation of a fuel spray SMD model at atmospheric pressure using design of

experiments,” Fuel 153, 355–360 (2015).
26 G. Ruff and G. M. Faeth, “Structure of the near-injector region of nonevaporating pressure-atomized sprays,” J. Propul.

Power 7, 221–231 (1991).
27 M. Gorokhovski and M. Herrmann, “Modeling primary atomization,” Annu. Rev. Fluid Mech. 40, 343–366 (2008).
28 P. Marmottant and E. Veillermaux, “On spray formation,” J. Fluid Mech. 498, 73–111 (2004).
29 R. Schmehl, “Advanced modeling of droplet deformation and breakup for CFD analysis of mixture preparation,” ILASS-

Europe, 2002.
30 P. K. Wu, R. F. Miranda, and G. M. Faeth, “Effects of initial flow conditions on primary break-up of nonturbulent and

turbulent liquid jets,” AIAA Paper No. 94-0561, 1994.
31 S. S. Yoon and S. D. Heister, “A nonlinear atomization model based on a boundary layer instability mechanism,” Phys.

Fluids 16, 47–61 (2004).
32 T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A new k-ϵ eddy viscosity model for high Reynolds number

turbulent flows,” Comput. Fluids 24, 227–238 (1995).
33 ANSYS, Inc., ANSYS Fluent 12.0 User’s Guide, 2009.
34 S. Subramaniam, “Lagrangian–Eulerian methods for multiphase flows,” Prog. Energy Combust. Sci. 39, 215–224 (2013).
35 S. A. Morsi and A. J. Alexander, “An investigation of particle trajectories in two-phase flow systems,” J. Fluid Mech. 55,

193–208 (1972).

http://dx.doi.org/10.1080/00102202.2011.641628
http://dx.doi.org/10.1080/13647830.2013.861515
http://dx.doi.org/10.1016/j.fuel.2015.03.013
http://dx.doi.org/10.2514/3.23315
http://dx.doi.org/10.2514/3.23315
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102200
http://dx.doi.org/10.1017/S0022112003006529
http://dx.doi.org/10.1063/1.1629301
http://dx.doi.org/10.1063/1.1629301
http://dx.doi.org/10.1016/0045-7930(94)00032-T
http://dx.doi.org/10.1016/j.pecs.2012.10.003
http://dx.doi.org/10.1017/S0022112072001806

