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Abstract—In this paper, we study distributed scheduling in
multi-hop MIMO networks. We first develop a “MIMO-pipe”
model that provides the upper layers a set of rates and
SINR requirements that capture the rate-reliability tradeoff
in MIMO communications. The main thrust of this study is
then dedicated to developing distributed CSMA algorithms for
MIMO-pipe scheduling under the SINR interference model. We
choose the SINR model over the extensively studied protocol-
based interference models because it more naturally captures
the impact of interference in wireless networks. The coupling
among the links caused by the interference under the SINR
model makes the problem of devising distributed scheduling
algorithms very challenging. To that end, we explore the CSMA
algorithms for MIMO-pipe scheduling from two perspectives. We
start with an idealized continuous-time CSMA network, where
control messages can be exchanged in a collision-free manner;
and devise a CSMA-based link scheduling algorithm that can
achieve throughput-optimality under the SINR model. Next, we
consider a discrete-time CSMA network, where the message
exchanges suffer from collisions. For this more challenging case,
we develop a “conservative” scheduling algorithm by imposing
a more stringent SINR constraint on the MIMO-pipe model.
We show that the proposed conservative scheduling achieves an
efficiency ratio bounded from below.

Index Terms—MIMO, scheduling, SINR interference model,
CSMA, multi-hop networks.

I. INTRODUCTION

We study distributed scheduling in multi-hop networks
with MIMO links, where each node is equipped with an
antenna array. There has been a tremendous body of work
on the multiple-input multiple-output (MIMO) technology
from a PHY-layer communication perspective. For single-user
wireless channels, it has been shown that using the MIMO
technique can lead to dramatic improvements on capacity
and link reliability [2], [3]. Recent studies have explored the
fundamental tradeoffs and relations between the different gains
in single-user MIMO systems [4]. In contrast to the extensive
studies on the single-user settings, however, there has been
little work on exploring multi-hop MIMO networks. Obtaining
a rigorous understanding of the tradeoffs between the possible
MIMO gains therein has remained a largely open problem.

This research was supported in part by the U. S. National Science Founda-
tion under Grants CNS0905603, CNS 0917087, CNS-1012700, ARO MURI
project No. W911NF-08-1-0238, and AFOSR MURI project No. FA9550-09-
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Leveraging MIMO gains in a multi-hop network is inti-
mately related to link scheduling, because the intrinsic rate-
reliability tradeoff hinges heavily on the SINR values of the
coupled MIMO links due to mutual interference (see, e.g.,
[5], [6]). In this study, we will take two steps to explore the
scheduling in multi-hop MIMO networks:

• Step 1: Develop a link abstraction that can capture the
rate-reliability tradeoff in MIMO communications;

• Step 2: Pursue a deep understanding of throughput-
optimal scheduling under the SINR model1, and use this
as a basis for studying distributed MIMO link scheduling.

More specifically, to facilitate the development of low-
complexity scheduling, we propose an appropriate “MIMO-
pipe” model that provides an abstraction of the rate-reliability
tradeoff in MIMO communications. Clearly, choosing the
highest rate for a given MIMO link may not be optimal for the
network, since it may prevent other links from being simul-
taneously active and degrade the overall network throughput.
Instead, we model a MIMO-link using a set of achievable
“configurations,” under which a link can transmit multiple
data streams at the same time; and different configurations
have different SINR requirements for reliable communication.
Each MIMO link can select one among a set of configurations
according to its SINR requirement. Observe that the MIMO
communications expands the space of possible network states,
and if not designed intelligently it would further complicate
scheduling schemes that are already very complex [7].

Recently, low-complexity scheduling schemes based on
carrier sense multiple access (CSMA) have been proposed
(see [8], [9], [10], [11], [12] and the references therein). In
these CSMA algorithms, nodes first sense the channel activity,
and only when the channel is sensed to be idle can the nodes
continue with data transmissions. When the channel is detected
busy, the nodes need to backoff for a random amount of time
before reattempting the transmission. Due to its simplicity,
CSMA and its variants have been widely opted in practical
MAC protocols (e.g., IEEE 802.11). It has been shown in
[8], [11] that under an idealized CSMA model, where the
backoff time is continuous and collisions never happen, the
network state dynamics can be captured by a continuous-time

1A scheduling algorithm is said to be throughput-optimal if it can achieve
every point in the capacity region [7].
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Markov Chain (CTMC)2. The throughput-optimal scheduling
algorithm is developed based on the Markov chain modeling
of the CSMA network. However, in practical scenarios, colli-
sions could not be avoided completely. Recent work [9] has
proposed a discrete-time CSMA scheduling algorithm where
the evolution of network states follows a discrete-time Markov
Chain (DTMC). A common theme in these works is to capture
the network dynamics by a time-reversible Markov chain, and
to drive, via adaptive scheduling, the corresponding stationary
distribution to achieve the throughput-optimality. Note that
all the algorithms noted above have been developed under
protocol-based interference models where two links cannot
transmit simultaneously if one link is within a certain range
(or hops) of the other link.

In this paper, we study CSMA-based scheduling in a multi-
hop MIMO network, under the SINR interference model. Dif-
ferent from protocol-based models, the rate-reliability tradeoff
of a MIMO link hinges heavily on its SINR value. More
specifically, under the SINR model, a link transmission is
said to be successful if its SINR value is greater than a pre-
determined threshold for a given rate. A critical observation
is that a successful link transmission under the SINR model
depends on its aggregated interference level, and not on the
activity of a particular link. As we will elaborate in Section
II, the SINR model induces intrinsic global coupling, making
it challenging to develop distributed scheduling schemes. In
general, it has been largely open on how to design distributed
scheduling algorithms under the SINR model (even for the
SISO case), and a primary goal of this study is to take some
steps in this direction.

We will explore the CSMA algorithms for MIMO-pipe
scheduling, for both continuous-time and discrete-time net-
works. We summarize below the main contributions in this
study.

1) We take a bottom-up approach to develop the MIMO-
pipe model, which consists of multiple stream configura-
tions, each with a feasible rate and the corresponding S-
INR requirement. Using this model, the tradeoff between
diversity and multiplexing of MIMO communications
can be captured by the selection of MIMO configura-
tions. In a nutshell, we treat each configuration as a
virtual link with a fixed rate and the corresponding SINR
requirement, and each MIMO link is mapped to multiple
virtual links with different rates and SINR requirements.

2) We consider the CSMA algorithms for MIMO-pipe
scheduling in a continuous-time network. To tackle the
intrinsic challenge in the “aggregate interference effect”
under the SINR model, we propose to separate the
control channel for signal exchanges from that for data
transmissions. Assuming that there is no collision of
control signals, we show that the network dynamics can
be captured by a continuous-time Markov chain. Fur-
ther, we characterize the optimal backoff parameters of
different stream configurations, for throughput-optimal
scheduling.

2Strictly speaking, the algorithms in [8], [9] are CSMA/CA. We use the
term CSMA to refer to a class of algorithms based on the CSMA mechanism.

3) We then focus on the CSMA algorithms for MIMO-pipe
scheduling in a discrete-time network, where control sig-
nals may “collide.” To tackle the collisions and the link
coupling problem under the SINR model, we devise a
distributed scheduling algorithm using a “conservative”
strategy. Specifically, we impose a more stringent SINR
constraint to ensure that the transitions of the network
states only happen in the feasible state region, at the
cost of reduced network throughput. We then systemati-
cally quantify the performance gap between the optimal
scheduling and the conservative scheduling approach.
We show that this conservative distributed scheduling
can achieve an efficiency ratio bounded below.

II. SYSTEM SETUP AND RELATED WORK

Consider a multi-hop MIMO network consisting of K links,
where each link employs Nt transmit antennas and Nr receive
antennas. The received signal at the i-th receiver can be given
by

yi =

√
P

Ntdαii
Hiisi +

∑
j ̸=i

√
P

Ntdαji
Hjisj + ni, (1)

where P is the total transmission power at each transmitter;
si is the Nt × 1 transmitted signal from the i-th transmitter,
with normalized power at each antenna array to be 1, in each
symbol period; α is the path loss exponent; dji is the distance
from the j-th transmitter to the i-th receiver. We consider
a frequency flat fading MIMO channel 3 such that Hji is
the Nr × Nt channel matrix between the j-th transmitter
to the i-th receiver, where the entries of each matrix are
i.i.d. complex circular symmetric Gaussian with unit variance.
Furthermore, the entries of Hji are independent from those of
Hji′ if i ̸= i′; ni is the additive White Gaussian noise with
σ2 = E[||n2

i ||]/Nr.
The first term in (1) is the desired data signal for link i,

while the last two terms are co-channel interference and noise,
respectively. As is standard, we assume that the channel matrix
Hii is known at the receiver but unknown at the transmitter
of link i (CSI at the receiver) [13]. Moreover, in practical
systems, it is difficult, if not impossible, to obtain the MIMO
channel matrices {Hji, j ̸= i} from the interferers, simply
because the signals are not intended for the desired link and
it is infeasible to estimate and track these complex matrices.
Based on the above signal model, it is clear that unlike single-
user MIMO systems, multi-hop networks are interference-
limited, and MIMO communications are intimately tied to the
SINR values that are coupled across the links.

As in [13], let Ii denote average power level of interference-
plus-noise at the receiver of link i, i.e.,

Ii =
∑
j ̸=i

P

Ntdαji

E[Tr{HjiH
H
ji}]

Nr
+ σ2, (2)

and let SINRi denote the SINR at the receiver of link i, i.e.,

SINRi =
Pd−α

ii∑
j ̸=i Pd−α

ji

E[Tr{HjiHH
ji}]

NtNr
+ σ2

. (3)

3As in [13], shadow fading is not considered in this channel model.
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Since the entries of Hji are identically distributed with unit
power, we have E[Tr{HjiH

H
ji}] = NtNr. Then, the SINR

value at i-th link receiver can be given by

SINRi =
Pd−α

ii∑
j ̸=i Pd−α

ji + σ2
. (4)

The SINR value plays a critical role in link scheduling.

A. Feasible States and Capacity Region in a MIMO Network

Throughout the paper, we say that two active links can
coexist if they can make successful transmissions at the same
time. An interference model specifies the link coexistence
constraint. We say that the network is in a feasible state if
the set of active links satisfy the coexistence constraint of the
interference model. In a network with K links, we use a binary
vector xi = {0, 1}K to describe a feasible state. We define that
xi
l = 1, if link l is active in state i; xi

l = 0 otherwise. With
some abuse of notation, we also treat xi as the set of active
links in state i, i.e., l ∈ xi if xi

l = 1. In SISO networks, it
suffices to use a binary vector x to represent the data rate
of each link, if each link transmits at unit rate [8], [9]. In
contrast, each MIMO link has multiple stream configurations
with different transmission rates. Hence, to describe a feasible
state in a MIMO network, we also need to specify the
configuration and the corresponding transmission rate of each
active link. Without loss of generality, we consider a MIMO
network with K links, where each link has J configurations.
We use zi = (zi1, z

i
2, ..., z

i
K) to denote the configuration of

each link at feasible state i, where zil ∈ [1...J ] indicates
the configuration of link l. We also use ci = (ci1, c

i
2, ..., c

i
K)

to denote the data rates, where cil is the data rate at link
l at state i. Furthermore, we define Θ(·) as the mapping
from the configuration index to the corresponding normalized
transmission rate, i.e., cil = Θ(zil ). Finally, we set cil = 0 and
zil = 0 if link l is not active at state i.

Let S be the set of rate vectors corresponding to the feasible
states of a MIMO network. By definition [7], the capacity
region Λ is the convex hull of the vectors in S. Assume that
the traffic load at link l is represented by the normalized arrival
rate λl ≥ 0. The scheduling algorithm is said to be throughput-
optimal if it can keep the network stable at any arrival rate
vector λ = (λl, λ2, ..., λK) within the capacity region Λ [7].

B. SINR Model versus Protocol Model

Clearly, different interference models yield different link
coexistence constraints and hence different sets of feasible
states. Roughly speaking, existing interference models can
be classified into two categories: the protocol model and the
SINR model [14]. Under the protocol model, the transmission
of link l is deemed successful if no other links within a
certain transmission range are active. Therefore, the coexis-
tence relationship between two links is mainly determined by
the geometry, and hence is “static” and “binary.” Due to its
simplicity, the protocol model has been widely used.

In contrast, under the SINR model, the coexistence rela-
tionship is neither static nor binary, and the success of a
transmission depends on its own channel condition and the

level of the aggregated interference. Specifically, a transmis-
sion of a link is said to be successful if its SINR value (4)
is greater than a pre-determined threshold for a given rate.
The SINR model, built upon recent advances in PHY-layer
communication theory, opens a new avenue for more efficient
resource allocation in wireless networks.

As noted before, one significant challenge under the SINR
model is that multiple links can transmit successfully through
a common channel, even if they observe some interference
signal from each other, which is drastically different from that
under the protocol model. Furthermore, link relationship is a
function of distance to the neighboring links and their status
that may change over time. Therefore, the link coexistence
relationship under the SINR model is “multi-lateral” and
“dynamic.” As a result, link scheduling under the SINR model
is much more complicated.

In principle, every link in the network can contribute inter-
ference to an active receiver under the SINR model. However,
when the links are sparsely located and the interference power
level decreases over distance due to the free space path loss
as in [15] and [16], it is reasonable to assume the aggregated
interference from the transmitters beyond certain distance can
be upper bounded by a threshold [17]. Specifically, we define
a “close-in” radius for each link l such that the aggregated
interference power to l from the transmitters beyond the close-
in range is no more than a given parameter σ2

int. Denote N(l)
as the set of links whose transmitters are in the close-in range
of link l, called interfering links of link l and N(l)c as the
set of links whose transmitters are outside the close-in range
of link l. It follows that

∑
k∈N(l)c Pd−α

kl < σ2
int. Based on

σint, the close-in range of each link can be obtained in an
initialization stage before link scheduling, where each link
informs its incurring interference power level to neighbors by
broadcasting a dummy packet sequentially. Next, each link l
ranks its neighboring links in an ascending order based on
their interference. A neighboring link k (staring from the link
incurring the lowest interference to the highest) is deemed to
be outside the close-in range of l as long as the aggregated
inference from the links beyond the close-in radius and link
k is lower than σ2

int.
For ease of exposition, we approximately treat the aggregat-

ed interference from active links in N(l)c as white noise with
power σ2

int. By doing so, we define the following “nominal”
SINR constraint, where link l can successfully transmit if the
following condition holds:

SINRl =
Pd−α

ll

Iinl + σ2 + σ2
int

≥ βl (5)

where Iinl is the aggregated interference from the active links
in N(l); σ2 is the power of Gaussian noise; βl is the threshold
of successful transmission. In the following study, unless
otherwise specified, the SINR model is defined based on the
nominal SINR constraint in (5) 4.

4In Section V, we also defined a conservative SINR constraint that is more
stringent than the nominal SINR constraint.
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TABLE I
PARAMETERS IN CSMA-BASED ALGORITHM (AT MIMO LINK l)

Continuous time case
Rlv backoff rate of configuration v at link l
rlv rlv = log(Rlv )

Discrete time case
plv link activation probability of configuration v at link l
p̄lv p̄lv = 1− plv

C. Review: CSMA Scheduling under Protocol Model

We provide below a brief review of [8], [9], which are
perhaps the most related works to our study here.

Under the protocol model, an “idealized” CSMA scheduling
algorithm is proposed in [8] for a continuous-time network.
It is assumed that random backoff time and data transmis-
sion time follow continuous distributions. It also takes the
assumption that the range of carrier-sensing is large enough
and signal propagation delay is zero, which remove potential
hidden terminal problem (see [18] for further discussions on
hidden terminal problems). Therefore, the probability for two
conflicting links to start transmission at the same time is 0
and the collisions can be ignored. Under these assumptions,
the state transitions of the CSMA network can be modeled as
a continuous-time Markov chain, where transitions only occur
between the feasible states that differ from each other by only
one link status. It follows that the stationary distribution of
feasible states xi can be characterized by

p(xi) =
1

C

∏
l∈xi

Rl, (6)

where Rl is defined as backoff rate and C is the normalization
term satisfying

∑
i p(x

i) = 1. In [9], the idea has been extend-
ed to a time-slotted system, where simultaneous transmissions
in a time slot may collide. It has been shown that the network
states can be modeled as a discrete-time Markov chain, and
the corresponding stationary distribution can also be written
in a product-form:

p(xi) =
1

C

∏
l∈xi

pl
p̄l
, (7)

where pl is defined as link activation probability in [9] and
p̄l = 1 − pl. Furthermore, it has been shown that adaptive
CSMA scheduling algorithms that adjust link parameter based
on local queue information can achieve throughput-optimality.
We extend the results to more general MIMO scenarios.
To this end, we define similar parameters for each MIMO
configuration v of link l as shown in Table I.

III. MIMO-PIPE MODELING: RATES, SINR, AND
INTERFERENCE TOLERANCE LEVELS

A first key step in our study on MIMO scheduling is to
develop a PHY-based tractable model that captures the rate-
reliability tradeoff for a single MIMO link, which we call the
“MIMO-pipe” model.

In MIMO networks, every MIMO link can offer stream
multiplexing by opening up multiple spatial data streams in
the same frequency channel, and achieve spatial multiplexing
gain. The number of data streams depends on the stream

configuration of the link. Given the number of antennas and
the total transmission power at each node,5 we assume that
the transmission power is equally split among the transmit
antennas. Clearly, the greater the number of data streams
there are at each MIMO link, the lower the reliability and
the interference tolerance capability per stream. Accordingly,
the required average SINR per receive antenna [13], called
SINR requirement, is more stringent. In the following, we
will elaborate the tradeoff between stream multiplexing gain
and interference tolerance capability (determined by the cor-
responding SINR requirements).

A. MIMO Configurations and SINR Requirements

Without loss of generality, suppose that each link has J
configurations, and for configuration v, v ∈ [1...J ], there are
Θ(v) date streams. For simplicity, we set the transmission rate
of each stream to be the same, denoted as Rs, and hence
the link rate is RsΘ(v) at configuration v. Without loss of
generality, we assume the stream rate Rs is fixed at 1 in this
study. The SINR requirement of stream r at configuration v,
can be in general given as

βvr = f(v, r,H, Pe), (8)

which depends on the channel matrix H and the average BER
requirement Pe for reliable communication. The function f
depends on the physical-layer techniques, such as coding and
modulation.

Due to self-interference cross data streams on the same
MIMO link, the SINR values of different streams can be
different. To guarantee the decodability of all data stream-
s, the SINR requirement of configuration v should be set
as βv = max{βv1, βv2, ..., βvΘ(v)}, i.e., the highest SINR
requirement corresponding to the bottleneck stream. Such
bottleneck stream usually has the least number of transmit
antennas. Therefore, it is reasonable to consider a subset of
configurations in which transmit antennas are equally divided
for each stream. Clearly, the collection of configurations for
a MIMO link with Nt transmit antennas corresponds to an
integer set {nv |nv is a divisor of Nt, v = 1, 2, 3..., J} and
the number of configurations equals the number of divisors of
Nt. Specifically, the configuration v has nv data streams and
each stream has Nt

nv
transmit antennas. For example, for the

4×4 MIMO link, we consider three configurations: 1-transmit
antenna per stream, 2-transmit antennas per stream, and 4-
transmit antennas per stream, with data rates 4Rs, 2Rs,Rs,
and SINR requirements β1 > β2 > β3, respectively.

B. Interference Tolerance

Under the SINR model, the successful transmission depends
on the current SINR value at the MIMO receiver. By definition
of the nominal SINR constraint in (5), we assume that the
MIMO link l can successfully transmit with v-th configuration
at time t if the following condition holds:

SINRl(t) =
Pd−α

ll

Iinl (t) + σ2 + σ2
int

≥ βlv, (9)

5In this study, the transmission power is assumed to be fixed. Dynamic
power control is beyond the scope of this paper.
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where Iinl (t) is the aggregated interference from the active
links in N(l); βlv is the SINR requirement of v-th configu-
ration at link l; other items follow the same definitions as in
(5). Given a link activation setting, we define the interference
tolerance level as the interference power that the receiver
can further tolerate without violating the SINR requirement.
By (9), for the v-th configuration of link l, its interference
tolerance at time t can be given by:

Tlv (t) =
Pd−α

ll

βlv
− Iinl (t)− σ2 − σ2

int. (10)

Clearly, the interference tolerance can be calculated by the
receiver based on the interference power level Iinl (t) that the
receiver currently experiences. Note that the interference tol-
erance level depends on the aggregated interference from the
neighbors, and will change dynamically over time according
to the on/off status of nearby links.

Fig. 1 illustrates the relationship between interference tol-
erance (reliability) and rate of a single 4× 4 MIMO link. We
emphasize that the stream configurations here correspond to
a few points on the rate-reliability tradeoff curve, and that the
rates are set to multiplications of the basic rate Rs to reflect
the multiplexing gain. In general, one can find multiple pairs
of (rate, interference tolerance level) of a MIMO link.

Fig. 1. Rate-reliability tradeoff for a MIMO link with 4× 4 antennas.

Scheduling problem under the MIMO-pipe model is to
decide which link to transmit and which configuration to use
in data transmission. Clearly, the configuration with more data
streams (higher multiplexing degree) can achieve a higher
data rate, but in the meanwhile, fewer transmit antennas are
assigned to each stream which results in a lower interference
tolerance level. Once a link chooses a higher rate configu-
ration, it would not be able to co-exist with many nearby
links. Hence, there exists an intrinsic tradeoff between the
throughput for a single link and overall network.

IV. CSMA ALGORITHM FOR MIMO-PIPE SCHEDULING:
A CONTINUOUS-TIME MODEL

In this section, we study the CSMA algorithm for a
continuous-time network, under the SINR model. For ease of
exposition, we first focus on the distributed scheduling for
SISO case and further generalize our study to the MIMO-pipe
model.

A. SINR-aware Channel Probing: A Dual Band Approach

We aim to develop the scheduling algorithm under the SINR
model by utilizing the Markov chain structure of a CSMA
network, where the network states evolve as a continuous-time

Markov chain and each state in the Markov chain corresponds
to a feasible link activation. According to [8], a CSMA
network can be described by a continuous-time Markov chain
when it satisfies the following requirements:
(R1) Network state transitions only occur between the feasible
states that differ from each other by only one link status.
(R2) For each link, the backoff time and the data transmission
time are both exponentially distributed.
To meet the first requirement, a key challenge is to ensure
that the CSMA network always stays in a feasible state under
the SINR model. In other words, the scheduling algorithm
can guarantee the coexistence of active links under the SINR
model. Specifically, when a link is activated, it should tolerate
the aggregated interference from other active links, and mean-
while, its incurring interference would not violate the SINR
requirements of other on-going transmissions.

To tackle this issue, we propose the following “SINR-
aware” channel probing approach. This mechanism enables
each link to assess its coexistence relationship with other active
links under the SINR model by utilizing carrier-sensing and
control messages exchange. The key idea is that each receiver
keeps sensing the channel and broadcasts its interference
tolerance level to the neighbors. With that information, when
an inactive link, say k, is about to be active, the transmitter
of link k can decide whether its potential transmission will
violate the SINR requirements of any ongoing transmission.
Simply put, for each active link l, the receiver calculates
its interference tolerance Tl(t) according to (10). Then, it
broadcasts Tl(t) in the control message to its nearby links,
i.e., to any link k with k ∈ N(l). Based on the interference
power information acquired during the initialization stage (see
Section II-B), the transmitter of link k can estimate how much
interference it would incur to other receivers. By doing so,
link k can judge its coexistence feasibility with the existing
active links and avoid possible violations to the nominal SINR
requirements.

To ensure that the data transmission would not collide with
the control signal, we consider a dual-band approach where
we separate the frequency band into data channel and control
channel for each signal. By doing so, a receiver can broadcast
control message and receive data packets at the same time.
From the idealized CSMA assumption as in [8], the trans-
missions of control signal can be completed instantaneously
(i.e., zero propagation delay) and do not collide in the control
channel. The details of the channel probing mechanism are
summarized in Algorithm 1. Note that the channel probing is
a sub-step of CSMA-based scheduling that will be explained
in Algorithm 2.

Note that the continuous backoff time ensures that no
more than one link decides to transmit at the same instance.
Therefore, only one link can change its state during each
transition. By using the proposed SINR-aware channel probing
approach, the state transitions of the CSMA network only
take place among the feasible states under the SINR model.
Furthermore, both the backoff time and data transmission time
can be designed to follow exponential distributions, which
will be shown in the following section. Building on these, the
CSMA network can satisfy the requirements R1 and R2, and
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its dynamics can be captured by a continuous-time Markov
chain.

Algorithm 1 SINR-aware channel probing (at link l)
At the receiver

• Idle period
– The receiver keeps sensing the data channel and

updating its current Tl(t) by (10).
• Data transmission period

– When link l starts transmission, its receiver broad-
casts Tl(t) through the control channel.

– When receiver senses “new” interference during data
receiving, Tl(t) will be updated and broadcasted
again through the control channel.

– When link l finishes transmission, its receiver broad-
casts Tl(t) = ∞.

At the transmitter
• Keeps overhearing the control messages from the con-

trol channel.
• Once receiving a control message from the receiver

of link k, the transmitter can estimate its possible
interference incurring to k based on the interference
information acquired at initialization stage.

Check the link coexistence requirements
At time t, link l can coexist with nearby active links without
violations to the SINR requirements (assuming other exist-
ing active links can also coexist) under the following two
necessary conditions:

1) Tl(t) > 0.
2) For any active link k ∈ N(l), the interference from

link l to k is no great than Tk(t).

B. CSMA Algorithm for MIMO-pipe Scheduling

We next devise the CSMA scheduling algorithm for MIMO
links. Recall that under the MIMO-pipe model, each link
has multiple stream configurations, and can choose a feasible
configuration as long as it satisfies the SINR requirement.
Therefore, the MIMO network will have a much larger set of
feasible states compared to the SISO case. We develop CSMA
scheduling for MIMO-pipe links such that the network state
transitions still can be captured by a continuous-time Markov
chain, using our SINR-aware channel probing.

We model each MIMO configuration as a “virtual link,”
with separate mean backoff time and interference tolerance.
Specifically, letting lv denote a virtual link with configuration
v at link l, the backoff time of lv is exponentially distributed
with mean 1/Rlv , where Rlv is called “backoff rate.” With
some abuse of notation, we treat zi as the set of active
virtual links at state i. At state i, if link l transmits at stream
configuration v, then lv ∈ zi and zil = v.

Along the same line as in conventional CSMA, each vir-
tual link contends for transmission using the backoff timer.
However, the timer freezes when the virtual link cannot make
transmission because it would violate any existing transmis-
sion of nearby links. This feasibility test can be done with the
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Link 2

(a) An example network
with two 4×4 MIMO links

A (0,0)A (0,0)

E(2,0)E(2,0)

C(1,0)C(1,0)

D(0,2)D(0,2)

G(0,3)G(0,3)

F(3,0)F(3,0)

B(0,1)B(0,1)

H(1,1)H(1,1)

I(1,2)I(1,2)

11
R

21
R

12
R

13
R

21
R

22
R

11
R

11
R

23
R

22
R

1

1

1

1

1

1

1

1

1

1

(b) State transition graph for the continuous-time
Markov chain associated with the network in (a)

Fig. 2. MIMO network with virtual links and the corresponding Markov
chain model.

TABLE II
FEASIBLE STATE

feasible state A B C D E F G H I
z 0,0 0,1 1,0 0,2 2,0 3,0 0,3 1,1 1,2
c 0,0 0,1 1,0 0,2 2,0 4,0 0,4 1,1 1,2

Note: The link configurations and link rates for each feasible state are
represented by z = (z1, z2) and c = (c1, c2) as defined in Section II-A.
The feasible states in the table are given for illustration purpose only.

information obtained from the SINR-aware channel probing.
When the virtual link starts data transmission, it should
broadcast its interference tolerance level though the control
channel. The details of the CSMA algorithm for MIMO link
scheduling are summarized in Algorithm 2.

With the help of the SINR-aware channel probing, the
MIMO network remains in feasible states and can be modeled
as a Markov chain as in the SISO case. To get a more concrete
sense, we consider an example network with two 4×4 MIMO
links in Fig. 2(a). The feasible states in Table II are given
for illustration purpose only. The network states transition can
be captured by a continuous-time Markov chain whose state
transition graph is depicted in Fig. 2(b), where each cycle
corresponds to a feasible state (z1, z2) and z1 and z2 represent
the configuration of link 1 and link 2, respectively. In the state
transition graph in Fig. 2(b), we denote the transition between
two states by a directional line with the transition rate. For any
two connecting states, the left state transits to the right state
with a rate of Rlv , and the right state transits to the left state
with a rate of 1. The stationary distribution of the feasible
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state zi can be obtained as

p(zi) =
1

C

∏
lv∈zi

Rlv , (11)

where C is the normalization term. For each link l, let Ri
l

denote the backoff rate of the active virtual link at state i, i.e.,

Ri
l =

{
Rlv

1
if zil = v
if zil = 0 (i.e., link l is inactive).

(12)

Then, we can rewrite (11) as:

p(zi) =
exp(

∑K
l=1 r

i
l)∑

j exp(
∑K

l=1 r
j
l )
, (13)

where ril = log(Ri
l) for each virtual link. The normalized

throughput of link l is given by

θl =
∑

i
Θ(zil ) · p(zi). (14)

Algorithm 2 Continuous-time CSMA scheduling under the
MIMO-pipe model (at link l)

Transmission initiation
• For each virtual link lv, v ∈ [1...J ], the transmitter

checks its coexistence with the active nearby links using
Algorithm 1.

• When a virtual link lv satisfies the link coexistence
constraint, it waits for a period of time (backoff) that
is exponentially distributed with mean 1/Rlv .

Random backoff
When a nearby link begins transmission, lv updates its
interference tolerance level and checks the link coexistence
constraint using Algorithm 1. If lv can no longer coexist
with the current active links, lv would suspend its backoff
and resume it after the coexistence constraint is satisfied,
i.e., after some nearby active link finishes its transmission.
Data transmission

• Once the back-off time of virtual link lv expires, link
l would launch the data transmission at the stream
configuration v. The transmission time is exponentially
distributed with mean 1.

• Other virtual links of link l suspend the backoff and
would resume it until link l finishes data transmission.

The next key step is to optimize the backoff time of
each virtual link, so that the corresponding adaptive CSMA
algorithm can converge to the throughput-optimal one. A
central problem is how to use local information to adapt the
backoff time so as to meet the throughput requirement of each
link, i.e., θl ≥ λl. Along the lines in [8], we have the following
result.

Lemma 4.1: Under the time-scale-separation assumption
[8] 6, the CSMA algorithm for MIMO scheduling can achieve
any throughput λ in the capacity region, by adjusting the
backoff rate of each virtual link as follows:

6As shown in [19], it is possible to achieve the throughput-optimality under
certain conditions without the time-scale-separation assumption.

For link l,

yl(t+ 1) = [yl(t) + ξ(λl − θl(t))]
+,

where yl is shown to be proportional to the queue length at
link l [8], and ξ > 0 denotes a small constant (step size). Each
virtual link adapts its backoff time according to

Rlv = exp(ylΘ(v)), v ∈ [1...J ],

where Θ(v) is the data rate of configuration v.
The proof of Lemma 4.1 is relegated to Appendix A.
In the idealized CSMA network, it is assumed that control

messages have zero propagation delay, and would never col-
lide. The proposed channel probing approach is based on such
“collision-free” assumption. However, it would not work very
well in a more realistic discrete-time network where collisions
can happen.

V. CSMA ALGORITHM FOR MIMO-PIPE SCHEDULING: A
DISCRETE-TIME MODEL

In the following, we extend our distributed MIMO-pipe
scheduling approach to a synchronized time-slotted network.

A. CSMA Algorithm for Conservative MIMO-pipe Scheduling

We study the CSMA algorithms for link scheduling under
the SINR model in a discrete-time network, where the time is
slotted. At each time slot t, the scheduling algorithm decides
a transmission schedule z(t), i.e., the set of links that transmit
simultaneously at t.

In [9], the authors develop a CSMA scheduling scheme for
the protocol model, which operates as follows: let z(t − 1)
denote the transmission schedule in time slot t − 1. At the
beginning of time slot t, a feasible schedule denoted by
decision schedule M(t) is calculated. A subset of links in
M(t) is discarded if they interfere with any link in z(t− 1).
Each link in the remaining M(t) independently determines
whether it will be active in time slot t or not using its own link
information, and all the other links remain in the same state as
in time slot t−1. Finally, links in z(t) transmit data packets in
time slot t. It is required all the links in M(t)⊕ z(t− 1) can
coexist satisfying the underlying interference constraints. Such
requirement is not difficult to be satisfied under the protocol
model, due to the static link coexistence relationship [9].
However, under the SINR model, the coexistence relationship
between two links becomes dynamic and depends on the states
of the neighboring links within their close-in radius. Therefore,
a key challenge here is to ensure the coexistence of the links
in M(t)⊕ z(t− 1) under the SINR model.

To tackle the above challenge, we impose a more stringent
requirement for link coexistence beyond the previously dis-
cussed “nominal” SINR constraint so that the link coexistence
relationship becomes static again. Under this “conservative”
SINR constraint, we further develop the “conservative” CSMA
link scheduling algorithm. For ease of exposition, we first
consider a SISO network. Specifically, for each link l, we rank
its interfering links N(l) (the links within its close-in radius),
in an ascending order based on the interference they incur
to link l. We partition the interfering links in N(l) into two
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Fig. 3. A example network and the associated conflict graph.

disjoint sets Na(l) and Nb(l), i.e., Nb(l) = N(l)\Na(l). Let
Na(l) contain all the neighboring links (starting from the link
incurring the lowest interference to the highest) such that their
potential aggregated interference to link l is no greater than
T o
l , where T o

l is defined as the initial interference tolerance
level when no other neighboring links of l are active, i.e.,
T o
l = Pd−α

ll /βl − σ2 − σ2
int and

∑
k∈Na(l)

Pd−α
kl < T o

l . For
convenience, we call Na(l) the “tolerable set” and Nb(l) the
“intolerable set.” The partition of these two sets depends on
the estimation of interference power levels, which requires the
information of channel gains between link l and the neighbor-
ing links. As in the continuous-time case, such information can
be acquired in the initialization stage. Clearly, for each link l,
the sets Na(l) and Nb(l) are independent with the states of
nearby links. Given a fixed network topology, the Na(l) and
Nb(l) will not change over time.

Using the above definitions, we impose the following more
stringent coexistence constraint:
Conservative coexistence constraint for SISO links: ∀ k ∈
N(l) and ∀ l ∈ N(k), links l and k can coexist if and only if
k ∈ Na(l) and l ∈ Na(k).

Thanks to this new coexistence condition, the link coexis-
tence relationship between two links becomes static again, so
that the complexity of scheduling can be greatly reduced. In
the meanwhile, the conservative model still takes into account
the “aggregate interference effect,” and provides a more real-
istic characterization of co-channel interference compared to
the protocol model. As elaborated in Section V-B, despite the
throughput loss due to the conservative coexistence constraint,
the conservative scheduling can at least achieve a guaranteed
fraction of the optimal throughput region.

Due to the static coexistence relationship, we can now
depict a conflict graph G for the network, where each vertex
corresponds to a link, and there is an edge between two
vertexes if they conflict with each other. For convenience, we
say that link l and link k are “severely conflicting” if they
cannot satisfy the conservative coexistence constraint. Since
only the links in Na(l) are allowed to transmit simultaneously
with l, the aggregated interference from Na(l) is guaranteed
to be lower than T o

l , so that the nominal SINR requirement is
certainly satisfied.

Fig 3(a) depicts an example network with 5 links under the
conservative coexistence constraint. We assume that the tolera-
ble sets and the intolerable sets of each link are predetermined
as shown in Table III. According to the conservative coexis-
tence constraint, only the following link pairs can coexist: (1,

TABLE III
TOLERABLE SET AND INTOLERABLE SET

link tolerable sets intolerable sets
1 3, 4 2, 5
2 4, 5 1, 3
3 1, 5 2, 4
4 1, 2 3, 5
5 2, 3 1, 4

3), (1, 4), (2, 4), (2, 5), (3, 5). The corresponding conflict
graph of this network is shown in Fig. 3(b).

Next, we generalize the above constraint to the MIMO-
pipe case by using the concept of “virtual link” introduced
in the previous section. Let V(l) be the set of virtual links
corresponding to link l, and lv ∈ V(l) be the virtual link
corresponding to the v-th configuration of link l. As before,
we use z(t) to denote the active virtual links at time slot t,
where lv ∈ z(t) and zl(t) = v, if link l chooses configuration
v in the slot t.

For virtual link lv ∈ V(l), it has a unique SINR requirement,
and thus has a unique initial interference tolerance level T o

lv
.

We also define its tolerable set of virtual links as N̂a(lv) and
intolerable set of virtual links as N̂b(lv) in the similar way.
We impose the conservative SINR constraint under the MIMO-
pipe model as follows:
Conservative coexistence constraint for the MIMO-pipe
model:

• At each slot, only one virtual link in V(l) can transmit
data.

• For two links l and k, their virtual links lv and kj can
coexist if and only if lv ∈ N̂a(kj) and kj ∈ N̂a(lv).

We next devise CSMA algorithm for MIMO link scheduling
by using the above conservative coexistence constraint. We
combine channels for control message and data transmission,
by dividing a time slot into a control slot and a data slot, each
with multiple mini-slots as in [9]. During the control slot,
each link contends to be included in the decision schedule
M by broadcasting a control message. To ensure that the
links in M can conform the conservative constraints, each
virtual link includes the information of its intolerable set in
the control message. Once a virtual link lv sends the control
message and successfully joins M, the interfering links in
N(l) can check its coexistence relationship with lv based on
the information of N̂b(lv), and will give up contenting if the
coexistence constraint fails to hold. Staring from an empty set,
and adding links to M one-by-one, we can obtain the decision
schedule M such that all the links included in M can conform
the conservative coexistence constraint.

A complication may occur when there is a “collision” during
the control slot, i.e., more than one link sends control packet
to contend for channel at the same mini-slot, and they conflict
under the conservative constraint. For example, suppose link
lv and link kj that conflict under the conservative constraints
contend for channel at the same mini-slot. It is possible that
each link can decode its own control packet but fails to decode
the packet from the other link. As a result, both links would
include themselves in the decision schedule M independently
even they conflict under the conservative constraints. To avoid
this situation, we assume that once there is a collision in the
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control channel (the receiver can detect the collision from the
SINR level), each link will give up joining decision schedule
and no one can be included in M in that slot. Once we obtain
a decision schedule M, we remove some links in M that
conflict any link in z(t− 1) and change the status of the rest
links in M with certain probability. The proposed scheduling
algorithm is summarized in Algorithm 3.

Algorithm 3 Discrete-time CSMA scheduling under the
MIMO-pipe model (at link l)

Initialization: Find N̂a(lv) and N̂b(lv) for every virtual link
lv .
Selection of decision schedule M

1) Virtual link lv selects a random backoff time uniformly
in [1, Wl] mini-slots, and begins backoff.

2) Virtual link lv stops the backoff timer and will not
be included in the decision schedule, if one of the
following two conditions is valid: (1) lv hears an
INTENT message7 from virtual link kj , and link lv and
kj are severely conflicting links, or (2) other virtual
links in V(l) send INTENT messages.

3) After the backoff timer expires, virtual link lv sends
INTENT message to announce its intention to be
included in the decision schedule.

4) After lv sends INTENT message, it keeps sensing the
channel. If its INTENT message collides with other
control messages, lv will not be included in M(t) in
this control slot. Otherwise, lv will join in the decision
schedule.

Setup of the transmission state
• If virtual link lv satisfies both the following conditions:

1) lv ∈ M; 2) lv /∈ N̂b(kj) and kj /∈ N̂b(lv) for all
kj ∈ z(t−1), it will change its state: active (zl(t) = v)
with activation probability plv , and inactive (zl(t) = 0)
with probability p̄lv = 1 − plv . Otherwise, lv remains
in the same state as in previous time slot, i.e., zl(t) =
zl(t− 1).

Data transmission
• If zl(t) = v, l will transmit using configuration v in the

data slot.
• If zl(t) = 0, l will not transmit in the data slot.

Observe that in Algorithm 3, each virtual link can make
decisions on its transmission state independently. It is clear
that the network state z(t) can be modeled as a discrete-time
Markov chain, since the state transition probability depends
on the selection probability of decision schedule M and
the activation probability of each virtual link. As in [9], the
transition probability from z to z′ is given as:

p(z, z′) =
∑

M∈A(z,z′)

ϵ(M)
∏
lα∈a

p̄lα ·
∏
kβ∈b

pkβ ·
∏
iγ∈c

piγ ·
∏
jθ∈d

p̄jθ ,

(15)

7INTENT message has the similar definitions as in [9]. The index of links
in N̂b(lv) is included in the INTENT message, so any link kj receiving this
INTENT message can examine if lv and kj can coexist.

where A(z, z′) denotes the set of possible decision schedules
M that include all links differ in z and z′. Furthermore,
ϵ(M) > 0 is the probability that the decision schedule M
will be chosen in the control slot. For all virtual links included
in M with no severely conflicting links active in the previous
slot, they can be classified into four sets: set a denotes the
virtual links active in z and inactive in z′; set b denotes the
virtual links inactive in z and active in z′; set c denotes the
virtual links which keep active in two states; and set d denotes
the virtual links which keep inactive in two states. Also, p and
p̄ are the corresponding activation probabilities specified in
Algorithm 2. It can be verified that the stationary distribution
of feasible state zi is given by:

p(zi) =
1

C

∏
lv∈zi

plv
p̄lv

, (16)

where C is the normalization term satisfying
∑

i p(z
i) = 1.

As in the continuous-time case, each plv can be adapted
using local queue information.

Lemma 5.2: Under the time-scale-separation assumption
[8], the CSMA algorithm for MIMO scheduling can achieve
any network throughput λ in the capacity region corresponding
to the conservative coexistence constraint, by adjusting the
activation probability of virtual links as follows:

For link l,

yl(t+ 1) = [yl(t) + ξ(λl − θl(t))]
+,

where yl is shown to be proportional to the queue length at
link l [8], and ξ > 0 is a small constant (step size). Each
virtual link can update its activation probability according to

plv =
eylΘ(v)

1 + eylΘ(v)

where Θ(v) is the data rate of configuration v.
We provide the proof of Lemma 5.2 in Appendix B.
Note that each link may not fully utilize its initial interfer-

ence tolerance due to the conservative coexistence constraint.
Since the feasible states under the conservative SINR con-
straint will be a subset of those under the nominal SINR
constraint, it is clear that the capacity region corresponding
to the conservative coexistence constraint is only a fraction of
that under the nominal SINR constraint. Hence, the “conser-
vative scheduling” achieves a suboptimal performance. In the
following, we will show that the conservative scheduling at
least achieves a guaranteed fraction of the optimal throughput
region.

B. Efficiency Ratio of Conservative MIMO-pipe Scheduling

In this section, we characterize the throughput performance
achieved by the conservative SINR-based scheduling. Specif-
ically, we provide a lower bound of γ ∈ [0, 1] such that
for any traffic arrival rate λ in the capacity region under the
nominal SINR constraint, γλ is supported by the conservative
scheduling. The fraction γ is called as the efficiency ratio.

Recall that the throughput region of our suboptimal schedul-
ing algorithm is the convex hull of the set of feasible s-
tates under the conservative SINR constraint. To compare
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the throughput region of CSMA algorithm under different
interference constraints, it suffices to compare the convex hulls
formed by their feasible states.

For convenience, let S and C be the sets of the rate vectors
obtained from the feasible states under the nominal SINR
model and the conservative SINR model, respectively. For a
MIMO-pipe model with K links, we use a K-dimension vector
to denote the feasible rates, where each element is the link
transmission rate at the corresponding state. For each feasible
rate s ∈ S , there exists a subset C ⊂ C such that the set of
the active virtual links in s, can be “covered” by the union of
the sets of the active virtual links for the feasible rate in C,
i.e.,

{l ∈ 1, 2, · · · ,K : sl = r in State s}
⊂

∪
c∈C

{l ∈ 1, 2, · · · ,K : cl = r in State c}. (17)

Note that there may exist multiple different subsets C ⊂ C
that “cover” the set of the active links of s. Nevertheless, we
will show that only the subsets with the least cardinality are
closely related to the efficiency ratio.

Let V ∗
k ⊂ C be the minimal covering set for state sk in the

sense that 1) V ∗
k satisfies (17), and 2) for any other subset

V ⊂ C that satisfies (17), we have that the cardinality of V ∗
k

is no larger than that of V , i.e., |V ∗
k | ≤ |V |.

Define the effective interference number as the maximum
of the cardinalities among the minimal covering set for all the
feasible rates in S, i.e.,

N(S, C) , max
{k:sk∈S}

|V ∗
k | .

Under the conservative SINR model, any sk in S can be
decomposed into no more than N(S, C) states in C, where
N(S, C) depends on the coexistence relationship of links.

Theorem 5.1: The conservative MIMO-pipe scheduling re-
sults in an efficiency ratio γ ≥ 1/N(S, C).

The proof is given in Appendix C.
The above result reveals that the efficiency ratio is bounded

from below by the reciprocal of the effective interference num-
ber. Note that determining the effective interference number
requires globe information of all the feasible states in general.
In the following, we develop a local search algorithm to find
an upper bound on the effective interference number.

Observe that for any virtual link lv, there may exist a set
of virtual links L = {lv} ∪ {N |N ⊂ N̂(lv)}, such that
the virtual links in L can coexist under the nominal SINR
constraint, where N̂(lv) = Na(lv)∪Nb(lv). We call L a “local
feasible state,” and clearly virtual link lv can have multiple
local feasible states. We use L(lv, j) to denote the j-th local
feasible state of lv , and nv(lv, j) to denote the number of links
in L(lv, j) severely conflicting with lv under the conservative
SINR constraint, i.e., nv(lv, j) = |L(lv, j) ∩ Nb(lv)|. We
further define

ne , max
lv

max
L(lv,j)

nv(lv, j).

It follows that for any virtual link, nv(lv, j) would be no
greater than ne. Detailed algorithm to find ne is provided in
Algorithm 4. We next have the following result.

Theorem 5.2: The effective interference number is upper
bounded by ne + 1, i.e., N(S, C) ≤ ne + 1.

The proof is given in Appendix D.

Algorithm 4 Local search algorithm
let ne = 0;
for l = 1 to K do

For link l, let nl = 0
for v = 1 to J do

For virtual link lv, let nv(lv) = 0
repeat

For local feasible state L(lv, j)
if nv(lv, j) ≥ nv(lv), then

nv(lv) = nv(lv, j)
end if

until all local feasible states of lv has been enumerated
if nv(lv) ≥ nl, then
nl = nv(lv)

end if
end for
if nl ≥ ne, then
ne = nl

end if
end for

Combining Theorems 5.1 and 5.2, we conclude that

γ ≥ 1

N(S, C)
≥ 1

ne + 1
. (18)

VI. NUMERICAL EXAMPLES

In this section, we illustrate, via numerical examples, the
performance of the proposed CSMA algorithms in a multi-
hop MIMO-pipe network. We explore the cases for both
continuous-time model and discrete-time model.

A. Simulation Settings

Specifically, we study a network with six 4 × 4 MIMO
links. Assume that each link has three possible configurations,
with data rate 1 (data unit/ms), 2 (data units/ms) and 4 (data
units/ms), respectively. We construct the network topology as
follows. Consider an area of 20×20 square unit, we randomly
deploy six transmitter-receiver pairs, such that each receiver is
within distance 3 from the corresponding transmitter. Accord-
ing to (1), the signal power from the transmitter attenuates
as it propagates through space. In the simulations, the path
loss exponent α is fixed at 2 and the transmission power
P is set to 1 unit. For the white noise, we set SNRdB =
10 logP/σ2 = 20dB. We also choose σ2

int = 0, and hence the
close-in range of each link includes other 5 links. The SINR
requirements corresponding to three configurations are 8dB,
16dB and 24dB, respectively.

We illustrate the queue length behaviors of MIMO-pipe
scheduling under different traffic loads. To illustrate the
throughput optimality, we first find an arrival rate vector at
the boundary of capacity region, denoted as λ̄. Then, we
consider a “load factor” ρ, ρ > 0, and set the traffic load
at λ = ρλ̄ as in [20]. Clearly, the traffic load is in the capacity
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region if ρ < 1 and outside the capacity region if ρ > 1.
We build up λ̄ by using a set of feasible states under the
nominal SINR constraints. Specifically, for feasible state i, let
ci denote the rate vector of active links, and let si denote the
summation of the active link rates, i.e., si =

∥∥ci∥∥
1
. Among

all the feasible rate vectors, let M be the set of vectors with
maximal value of si, i.e., M = {ci : si = maxj s

j}.Clearly, a
convex combination of a set of rate vectors in M corresponds
to a point on the boundary of the capacity region. In the
simulations, we simply choose λ̄ = 1

|M|
∑

ci, ci ∈ M.

B. Continuous-time Network Model

To illustrate the throughput-optimality, we compare the
queue behaviors of continuous-time CSMA algorithm under
different traffic loads. Specifically, the queue length usually
keeps increasing if the network throughput cannot meet the
traffic demands. Note that a scheduling algorithm is said to be
throughput-optimal if it can yield stable queue length behav-
iors at any traffic load in the capacity region, corresponding
to ρ < 1 [21]. We first consider ρ = 0.98 such that the traffic
arrival rate vector λ = ρλ̄ is in the interior of capacity region.
As shown in Fig. 4, the scheduling algorithm yields stable
queue length behavior at each link, indicating it can achieve
network throughput λ. Fig. 5 exemplifies the throughput-
optimality by comparing the total queue length under various
ρ. As expected, the total queue length tends to be stable under
traffic load in the capacity region (ρ < 1). However, while
ρ > 1, the queue length grows rapidly, and the system will
become unstable, which means the scheduling algorithm fails
to support the traffic loads beyond the capacity region.
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Fig. 4. Continuous-time model: queueing length behavior at each MIMO
link with ρ = 0.98.
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Fig. 5. Continuous-time model: total queue lengths of 6 MIMO links with
different ρ values.

C. Discrete-time Network Model

We evaluate the conservative CSMA scheduling scheme
under the discrete-time model. Due to its throughput sub-
optimality, the conservative scheduling scheme can only
achieve a fraction of the capacity region and cannot support
all the traffic loads with ρ < 1. We illustrate its throughput
performance by comparing the total queue lengths under
various ρ in Fig. 6. We observe that when ρ ≥ 0.6 the
queue length keeps increasing, indicating that the scheme can
no longer support the traffic loads with ρ ≥ 0.6. We also
compare the queue behaviors for the continuous-time case and
the discrete-time case in Fig. 7. In this figure, we depict the
total queue lengths averaged over the period from 1600ms to
2000ms. We observe that the queue length corresponding to
the discrete-time case grows rapidly at a smaller ρ than that of
the continuous-time case, indicating its inferior performance
to the continuous-time scheduling scheme.

For this scenario, we find that the effective interference
number N(S, C) is no more than 2 by using Algorithm 4 and
hence the efficiency ratio γ is no less than 0.5 by Theorem 5.1.
It follows that the conservative scheduling can at least achieve
a 1

2 fraction of the capacity region, which is confirmed by Fig.
6. Indeed, the network remains stable under traffic load with
ρ = 0.55.
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Fig. 6. Discrete-time model: total queue lengths of 6 MIMO links with
different ρ values.
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VII. CONCLUSION AND FUTURE WORK

We investigate CSMA algorithms in multi-hop MIMO net-
works under the SINR interference model. To this end, we
first developed a MIMO-pipe model that provides the upper
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layers a set of rates and SINR requirements, which capture the
rate-reliability tradeoffs in MIMO communications. We then
focused on developing distributed scheduling for MIMO-pipe
networks under the SINR model. Specifically, we explored
the CSMA algorithms for MIMO-pipe scheduling in both a
continuous-time system and a discrete-time system. Particu-
lary, in the idealized continuous-time CSMA network, we pro-
posed a dual-band approach to facilitate the message passing
on interference tolerance levels, and showed that the CSMA
scheduling algorithm can achieve throughput optimality under
the SINR model. For the more difficult discrete-time case, we
developed a “conservative” scheduling algorithm in which a
more stringent SINR constraint is imposed. We showed that
an efficiency ratio bounded below can be achieved by our
distributed scheduling algorithm.

We believe that the studies here on SINR-based distributed
scheduling scratch only the tip of the iceberg. Clearly, there
are still many open issues in the MIMO network scheduling.
One interesting issue is how to generalize the MIMO-pipe
model into different types of channel fading scenarios. In
addition to the SINR level, it is also intriguing to consider
other parameters in a realistic MIMO scenario to evaluate
the QoS of MIMO communication. It is worth studying the
joint design of link scheduling and dynamic power control to
better leverage the interference among MIMO links. For the
more practical discrete-time case, it remains open to develop a
CSMA scheduling algorithm with throughput-optimality under
the SINR interference model. We are currently investigating
these issues along this avenue.
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APPENDIX

A. Proof of Lemma 4.1

Following the same lines as in [8], we study the backoff
time adaption algorithm based on the following entropy max-
imization problem:

max −
∑

i ui log ui

s.t.
∑

i ui · cil ≥ λl,
ui ≥ 0,

∑
i ui = 1.

(19)

Assume that each i relates to a feasible state in the MIMO
network. In contrast to the binary data rate in the SISO
link case [8], the MIMO link rate cil can take multiple
values depending on the link configuration. If this problem
is feasible, the optimal point u∗ would satisfy the constraint∑

i u
∗
i · cil ≥ λl. That is to say, as long as the optimal value

u∗
i equals the stationary distribution of feasible states (13),

then each MIMO link will meet the throughput requirement
θl ≥ λl according to (14). With this insight, a key challenge is
to find a sufficient condition for the equivalence of these two
distributions, i.e., p(zi) = u∗

i . The Lagrangian of (19) can be
written as

L1 = −
∑

i
ui log ui +

∑
l
yl(

∑
i
ui · cil − λl)

+ µ(
∑

i
ui − 1) +

∑
i
wiui,

(20)

where y, µ and w are dual variables. Based on the KKT
condition, we obtain that

u∗
i =

exp(
∑K

l=1 ylc
i
l)∑

j exp(
∑K

l=1 ylc
j
l )
. (21)

With (13), it can ensure p(zi) = u∗
i if the following condition

holds:

exp
(∑K

l=1
ylc

i
l

)
= exp

(∑K

l=1
ril

)
, ∀ i. (22)

From cil = Θ(zil ) and ril = rlv when lv is the active link for
state i, a sufficient condition for (22) is

rlv = ylΘ(v), ∀ v ∈ [1...J ].
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This condition can also be rewritten as:

Rlv = exp(ylΘ(v)), ∀ v ∈ [1...J ]. (23)

As in [8], the optimal dual variable y∗l is essentially propor-
tional to queue length at link l, and can be achieved by using
the following gradient method:

yl(t+ 1) = [yl(t) + ξ(λl − θl(t))]
+.

Meanwhile, each virtual link can adjust its backoff time
according to (23). Note that the above adaptive algorithm
depends on accurate estimation of link throughput θl(t). As
in [8], we take the same time-scale-separation assumption,
i.e., the variable yl changes slowly enough so that the CSMA
Markov chain can converge to its stationary distribution within
each duration t and t+1. By doing so, we can always obtain
a good estimation of the link throughput.

B. Proof of Lemma 5.2

Based on the Markov chain modeling, the activation proba-
bility of each virtual link can be obtained by the same gradient
method as in Section IV-B. The only additional requirement
is that the stationary distribution of the feasible states in
the discrete-time network (16) equals the distribution (21). A
sufficient condition for this requirement turns out to be:

plv
p̄lv

= exp(ylΘ(v)), ∀ l, v,

and equivalently

plv =
eylΘ(v)

1 + eylΘ(v)
, (24)

where Θ(v) is the data rate of configuration v. Clearly, yl
can be achieved along the same line as in the continuous-
time network, and each virtual link can update its activation
probability according to (24). It follows that the adaptive
algorithm also requires the time-scale-separation assumption
in [8].

C. Proof of Theorem 5.1

For any feasible traffic arrival rate λ = {λ1, λ2, · · · , λK}T
under the SINR model, there exists a state probability vector
P = {P1, P2, · · · , P|S|}T such that

∑|S|
i=1 Pi = 1, and

PTAS ≥ λ, (25)

where AS is a |S| ×K matrix, with

AS
k,l , (Transmission rate of link l in state sk),∀ k, l. (26)

To show that γ ≥ 1
N(S,C) , it suffices to show that there exists

a state probability vector Q = {Q1, Q2, · · · , Q|C|}T such that

QTAC ≥ γλ, (27)

where AC is defined in the same way as AS in (26). We use
induction on |S| to show that (27) is valid for some Q, for
any given P satisfying (25). It is easy to verify when |S| = 1.
Assume that the conclusion holds when |S| = n. Now we
consider the case |S| = n + 1, pick the state sk in S such
that |V ∗

k | = N(S, C). Without the loss of generality, suppose
k = n+ 1.

It follows from (25) that for l = 1, 2, · · · ,K,

n∑
i=1

PiA
S
i,l + Pn+1A

S
n+1,l ≥ λl, (28)

which indicates that for l = 1, 2, · · · ,K,

n∑
i=1

P ′
iA

S
i,l ≥ λ′

l, (29)

where

P ′
i , Pi

1− Pn+1
, λ′

l ,
λl − Pn+1A

S
n+1,l

1− Pn+1
. (30)

By induction, based on (29), there exists Q′ such that∑|C|
j=1 Q

′
j = 1, and for l = 1, 2, · · · ,K,

|C|∑
j=1

Q′
jA

C
j,l ≥ γ′λ′

l, (31)

where γ′ , 1
N(S′,C) and S ′ = sk, k = 1, 2, · · · , n. It is clear

that, γ′ ≥ γ, and it follows that
|C|∑
j=1

Q′
jA

C
j,l ≥ γλ′

l,∀ l = 1, 2, · · · ,K. (32)

Similar, we can find Q′′ such that
∑|C|

j=1 Q
′′
j = 1, and

|C|∑
j=1

Q′′
jA

C
j,l ≥ γAS

n+1,l,∀ l = 1, 2, · · · ,K. (33)

Define

Qj , Q′
j(1− Pn+1) +Q′′

j Pn+1, ∀ j = 1, 2, · · · , |C|. (34)

Observe that Q = {Q1, Q2, · · · , Q|C|}T defined above is a
state probability vector, i.e.,∑

j

Qj = (
∑
j

Q′
j)(1− Pn+1) + (

∑
j

Q′′
j )Pn+1 = 1. (35)

Furthermore, multiplying (32) with (1−Pn+1) on both sides
yields that
|C|∑
j=1

Q′
j(1− Pn+1)A

C
j,l ≥ γ(λl − Pn+1A

S
n+1,l), ∀ l = 1, 2, · · · ,K.

(36)
Further, multiplying (33) with Pn+1 yields that

|C|∑
j=1

Q′′
j Pn+1A

C
j,l ≥ γPn+1A

S
n+1,l, ∀ l = 1, 2, · · · ,K. (37)

Adding the above two equations together, we see that Q
defined in (34) satisfies (27), and the proof is concluded.

D. Proof of Theorem 5.2

Under the conservative SINR model, we can build a conflict
graph G associated with the MIMO-pipe network, where each
vertex corresponds to a virtual link. The feasible state, under
the SINR model, sk ∈ S corresponds to a subgraph of G,
and the feasible state under the conservative SINR model
corresponds to an independent set of G. Let G(sk) be the
subgraph of G, which only contains the vertexes corresponding
to the active virtual links in sk and their associated edges.
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The value |V ∗
k | relating to state sk can be interpreted as

the minimum number of independent sets to construct the
subgraph G(sk). The problem of finding these independent
sets boils down to a graph coloring problem [22]. According
to graph theory, we can decompose any subgraph G(sk) into
no more than ∆(G(sk))+1 independent sets, where ∆(G(sk))
is the maximum degree of G(sk).

Next, we establish the relationship between ∆(G(sk)) and
ne from local search algorithm in Section V. In the conflict
graph, let v(lv) denote the vertex corresponding to virtual
link lv. Define deg(lv, G(sk)) as the degree of vertex v(lv)
in subgraph G(sk). Then we have the following result:

max
v(lv)∈G(sk)

deg(lv, G(sk)) = ∆(G(sk)). (38)

Recall that ne is the maximum number of links severely
conflicting with lv in any local feasible state under the con-
servative SINR constraint, where there is no interference from
links other than lv ∪N(lv). If any link other than lv ∪N(lv)
is active, some links in L(lv, j) may no longer satisfy the
nominal SINR constraint. Hence, the number of conflicting
links which can be active simultaneously with any virtual link
lv , under the nominal SINR constraint, must be no greater than
ne. Therefore, we conclude that

ne ≥ deg(lv, G(sk)), ∀ lv ∈ sk,∀ sk ∈ S. (39)

It follows that

ne ≥ max
lv∈sk

deg(l, G(sk)),∀ sk ∈ S,

= ∆(G(sk)), ∀ sk ∈ S. (40)

In conclusion, ne+1 is an upper bound for |V ∗
k | for ∀sk ∈ S ,

and hence an upper bound for N(S, C) as well.
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