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Electron transfer between redox proteins participating in energy chains of biology is required to pro-
ceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard
models of electron transfer, this requirement, combined with the need for unidirectional (preferably
activationless) transitions, is translated into the need to minimize the reorganization energy of elec-
tron transfer. This design program is, however, unrealistic for proteins whose active sites are typically
positioned close to the polar and flexible protein-water interface to allow inter-protein electron tun-
neling. The high flexibility of the interfacial region makes both the hydration water and the surface
protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is
not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth
of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based
on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with
their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of sub-
sets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The
separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing.
In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface
and the time of conformational transitions of the protein caused by changing redox state results in
dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of
this dynamical freezing is significantly different reorganization energies describing the curvature at
the bottom of electron-transfer free energy surfaces (large) and the distance between their minima
(Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which
the energetic efficiency of protein electron transfer is increased relative to the standard expectations,
thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of
conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminis-
cent of the flat and rugged landscape at the stability basin of a folded protein. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4812788]

I. INTRODUCTION

This account addresses the effect of the statistics and
dynamics of the donor and acceptor electronic states, local-
ized inside hydrated proteins, on the kinetics of protein elec-
tron transfer. The main goal of the discussion is to highlight
the differences, from the perspective of activating electronic
transitions, between a dense polar solvent originally consid-
ered in the Marcus theory of electron transfer and a hetero-
geneous “solvent” composed of the protein and its hydration
layer.

The development of the Marcus theory of electron
transfer1, 2 was motivated by reactions of electron tunnel-
ing between solvated redox pairs, often represented by ions
changing their redox state, as schematically shown by two
redox states of a single solvated ion in Fig. 1(a). The orig-
inal Marcus formulation has recognized the possibility of
a heterogeneous (non-uniform) solvent surrounding the ion,
distinguishing between the fluctuations of mostly bulk-like
solvent outside the first hydration layer (outer-sphere reorga-
nization) and the fluctuations of a tighter and less thermally

a)Electronic mail: dmitrym@asu.edu

agitated first hydration layer (inner-sphere reorganization).
The collective motions of the inner shell are either frozen
on the time-scale of electron transfer3 or mostly eliminated
by the layer’s restructuring. Only ballistic, vibration-like mo-
tion of single molecules then contribute to a relatively small
inner-sphere reorganization energy. Consequently, most of the
fluctuations that the solvent provides to bring the donor and
acceptor energy levels in resonance, as required for tunnel-
ing, are homogeneous (bulk-like). Translated into theoretical
formalisms, approximations based on the properties of the ho-
mogeneous solvent provide a reasonable basis for quantitative
theories.4, 5

The thermal bath surrounding the protein redox site (iron
of the protein heme shown as an example of protein electron
transfer in Fig. 1(b)) is, on the contrary, fundamentally het-
erogeneous. Its two principal components are the protein ma-
trix holding a redox cofactor (heme, chlorophyll, metal active
site, etc.) and water of the hydration shell. The two regions
are quite distinct in rigidity, dynamics, and the distribution of
molecular charge. It is not only that the interface between a
polymer and the water solvent is by necessity heterogeneous,
the problem is complicated by the notoriously heterogeneous
interface between the protein polymer and water.

0021-9606/2013/139(2)/025102/12/$30.00 © 2013 AIP Publishing LLC139, 025102-1
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FIG. 1. Cartoon comparing the solvent bath of classical solution electron
transfer (a) to heterogeneous protein-water thermal bath of protein electron
transfer (b). The redox pair is represented by iron changing its oxidation state.
It is a solvated ion in solution (a) and is a part of the heme cofactor in a redox
protein (b). The protein part of the thermal bath is separated into a relatively
rigid region of the heme and a flexible part of the protein-water interface.
Ionized residues are predominantly located at the protein surface. They cre-
ate electrostatically polarized and density compressed water domains at the
interface. These domains combine into a heterogeneous and frustrated hydra-
tion shell of the protein with highly dispersive dynamics.

The energetic push for the protein to hold a stable folded
structure requires ionized and polar residues to localize at its
surface and to screen the protein hydrophobic core. Folding of
a single chain of amino acids does not completely accommo-
date for this energetic preference and hydrophobic patches are
still exposed to water (30%–50% of the protein surface6). The
result is an electrostatically patchy surface of the protein,7–9

producing, in turn, a patchwork of polarized and unpolar-
ized domains of water facing it.10, 11 Water is known to
orient its dipoles parallel to the dividing surface at hy-
drophobic patches12, 13 and flip its dipoles inward or outward
depending on the surface charged group.14–16 These heteroge-
neously polarized, heterogeneously compressed,17–19 and po-
tentially mutually frustrated interfacial water domains merge
into an interfacial sub-ensemble involving several hundreds
of water molecules, with its properties quite distinct from the
bulk.20, 21 The bulk perspective does not apply just to the pro-
tein part of the thermal bath, but to the hydration shell as
well.

Interfacial heterogeneity does not exhaust the list of new
physical realities presented to protein electron transfer by
the protein-water thermal bath. The once accepted picture of
proteins as static hydrophobic media, covered by a layer of
polar/ionized surface residues, has been mostly shaken by a
large number of recent data pointing to a dynamic nature of
proteins involving fluctuations of both the protein itself and
the surrounding hydration shells.22 The elastic network of the
folded amino acid chain and, in addition, the hydration shell
provide a large configurational space,23, 24 which a hydrated
protein explores by a random walk through a large num-
ber of sub-states corresponding to nominally the same folded
conformation.25 Many of these motions produce elastic defor-
mations altering either the shape of the protein or leading to

protein domain motions (such as tumbling of α-helices).8, 26, 27

Clearly, these elastic deformations project on motions of the
charged surface residues and corresponding motions of water
domains attached to them (Fig. 1(b)).28 The result is a statisti-
cally broad spectrum of electrostatic fluctuations experienced
by an active site. The dynamics of these fluctuations are also
highly dispersive, covering many orders of magnitude in re-
laxation times.29, 30

The question one has to address in relation to protein
electron transfer is how all these new physical realities project
on the energetics and dynamics of the donor-acceptor en-
ergy gap, which is the natural reaction coordinate for study-
ing radiationless transitions.31–37 That some of the traditional
concepts need revision is already clear from many reports
of the Stokes shift dynamics of chromophores placed either
at the protein-water interface or within the protein. Time-
resolved Stokes shift spectroscopy of chromophores attached
to proteins universally reports slow dynamics not recorded
by the same chromophores in solution.38–42 There obviously
are some nuclear modes, interacting with the chromophore’s
dipole moment, which are either absent in the bulk sol-
vent or alter their dynamics in the vicinity of the hydrated
protein.

The picture offered below incorporates two distinctive
properties of the protein-water thermal bath into the descrip-
tion of protein electron transfer: (i) a wide breadth of elec-
trostatic fluctuations created by the flexible protein-water in-
terface and (ii) dispersive dynamics (the existence of many
relaxation times) associated with these nuclear fluctuations.
The first feature is responsible for shallow, low-curvature
free energy surfaces along the electron transfer reaction
coordinate.43 This observation implies a large magnitude of
the nuclear reorganization (free) energy λvar associated with
the free energy curvature. The second feature addresses the
separation between the minima of the free energy surfaces.
Their separation, �X = 2λSt in Fig. 2, is related to the Stokes
shift in optical spectroscopy (the subscript “St” stands for
“Stokes”). This reorganization energy can be modified by dy-
namical freezing of some subsets of the nuclear modes affect-
ing the donor-acceptor energy gap.
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FIG. 2. (a) The energy diagram showing the energy gap between the donor
and acceptor as the electron-transfer reaction coordinate, X = �E(Q). The
condition of resonance, X = 0, defines the transition state in which electron
tunnels from the donor to the acceptor. (b) The diagram of free energy sur-
faces Fi(X) vs. the reaction coordinate X. The minima of the parabolas are
located at Xi, i = 1, 2 and the parabolas cross at X = 0. Two out of three
alternative definitions of the reorganization energy discussed in the text are
specified in the plot; �F is the reaction free energy.
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The wide breadth of electrostatic fluctuations associ-
ated with elastic motions of the protein-water interface re-
quires, by its collective nature, relatively long relaxation
times. Simulations of hydrated proteins consistently report
sub-nanosecond to nanosecond relaxation times associated
with these modes.30, 44, 45 These time-scales have also been
reported experimentally by measurements of the Stokes-shift
dynamics.40, 46–50 These, and possibly even longer,28 electro-
static relaxation times create the possibility for breaking the
ergodicity of the system and making some parts of the protein-
water phase space inaccessible on the time-scale of the re-
action or on the time-scale of electron residence on a co-
factor in a redox chain.51, 52 The resulting dynamical arrest
of corresponding nuclear modes, an almost trivial and com-
mon phenomenon in glass science,53 does not allow full sta-
tistical averages to develop on the limited time-scale of the
reaction.54

In terms of protein electron transfer occurring on the
nanosecond time-scale, this picture implies that the distance,
along the reaction coordinate, between the minima of the free
energy surfaces cannot be characterized by the same nuclear
reorganization parameter as the curvature at the free energy’s
bottom.52 If λSt is used for the former (Fig. 2) and λvar is used
for the latter, the distinction between the two reorganization
energies can be characterized by the parameter

χG = λvar/λSt. (1)

When the same Gaussian statistics of the energy gap is
applied to both redox states, one gets χG = 1.55 The pa-
rameter based on two distinct reorganization energies there-
fore quantifies the globally non-Gaussian statistics of the
donor-acceptor energy gap. We assign the label “globally non-
Gaussian” to the inability of fitting the distributions of the
energy gap in both electronic states to Gaussians with mutu-
ally consistent sets of parameters (see below). The main ob-
servation from a number of numerical simulations and some
experiments is that the following inequality holds for protein
electron transfer:

χG ≥ 1. (2)

The actual magnitudes of χG can significantly exceed unity.52

The consequences of this perspective for the performance
of biology’s energy chains are quite dramatic, as we discuss
below, since the energy released in the form of heat in acti-
vationless electron transfer can be reduced by a factor of χG.
The ability of proteins to increase χG is therefore directly re-
lated to their performance as energetically efficient enzymatic
machines. This picture explains the remarkable energetic ef-
ficiency of electron transport chains in biology, often oper-
ating in narrow windows of redox potentials.56 It also offers
possible routes to implement this design strategy in artificial
photosynthesis.

II. MECHANISTIC FEATURES OF PROTEIN
ELECTRON TRANSFER

The modern formulation of the electron transfer theory
utilizes the notion, going back to Lax,31 that the instantaneous
energy gap between the electronic energy levels of the accep-

tor and the donor makes the natural choice for the reaction
coordinate of radiationless transitions (Fig. 2(a)).32–36 This
reaction coordinate is a “collective variable,” influenced by
many molecules interacting with the two electronic states. If
the corresponding manifold of the nuclear coordinates is de-
noted as Q, then each magnitude of the donor-acceptor gap
�E(Q) should satisfy the condition X = �E(Q).

The probability to find a particular energy gap is obtained
by projecting the canonical statistical ensemble on the free en-
ergy surfaces Fi(X), where we use i = 1 for the initial state and
i = 2 for the final state. This projection is accomplished math-
ematically by tracing the canonical distribution, while sepa-
rating out a subset of coordinates satisfying the condition X
= �E(Q) through Dirac’s delta-function33, 36

e−βFi (X) ∝ 〈δ (X − �E(Q))〉i . (3)

Here, 〈. . . 〉i refers to an ensemble average when the system
is in equilibrium with the donor-acceptor complex in its elec-
tronic state i = 1, 2; β = 1/(kBT ) is the inverse temperature.

Given that many atomic and molecular coordinates con-
tribute to Q, and assuming a linear coupling between the
donor-acceptor complex and the thermal bath,55 one can ex-
pect that, according to the central limit theorem, the distribu-
tion Pi(X) of energy gaps should be Gaussian

Pi(X) ∝ e−βFi (X) ∝ exp

[
− (X − Xi)2

2〈(δX)2〉i

]
. (4)

This is the central assumption of the Marcus theory, which
can be cast in the form of two parabolic free energy surfaces

F1(X) = (X − X1)2

4λvar
,

F2(X) = (X − X2)2

4λvar
+ �F.

(5)

In this equation, Xi is the average energy gap, which specifies
the location of the minimum of each parabola. At the same
time, Xi is the energy of the vertical charge-transfer transition
between the ground and optically excited states (Fig. 2).

The reorganization energy

λvar = β〈(δX)2〉/2 (6)

in the denominator of the parabolas specifies the variance of
the Gaussian distribution in Eq. (4), as is reflected by the sub-
script “var.” It is accessible from inhomogeneous broadening
of a single vibronic transition in optical spectra.57 Note that
we have dropped the dependence on the state in the ensem-
ble average and in the corresponding reorganization energy
in Eq. (6). The difference between λvar values is two elec-
tronic states is not a major effect for our present consideration,
although it becomes important for systems involving signifi-
cant changes in the electronic polarizability upon electronic
transition.55, 58

The distance between the minima of the parabolas speci-
fies another spectroscopically measurable quantity, the Stokes
shift.57 We specify the corresponding reorganization energy
as the half of it,

λSt = �X/2 = |X1 − X2| /2. (7)
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The two reorganization energies, λvar and λSt, which have
been specified so far to reflect the information available from
spectroscopic data, are distinct from the reorganization energy
defined in the traditional formulation of the Marcus theory fo-
cused on electron-transfer (radiationless) reactions.1 Specif-
ically, the reorganization energy of “horizontal,”59 in con-
trast to “vertical” Franck-Condon, transition is defined as the
free energy (reversible work) required to drive the system,
remaining in a given electronic state, from its initial equi-
librium nuclear configuration to the final nuclear configura-
tion, i.e., the distance |�X| along the reaction coordinate. This
reorganization energy, which we denote λr, is given by the
relation

λr = (λSt)2

λvar
= λSt

χG

, (8)

where χG is specified by Eq. (1).
The reorganization energy λr = −�F has an important

property to measure the free energy released to the surround-
ing medium in an activationless (�F† = 0) reaction, where
�F† is the activation free energy.

The complexity of several alternative definitions of the
reorganization energy does not appear in the standard formu-
lation of the Marcus theory, in which all reorganization ener-
gies defined above are equal.57 Different definitions provide
alternative routes to the same theory parameter. This is easy
to show by applying the linear relation between the two free
energy surfaces35 to Eq. (5),

F2(X) = F1(X) + X. (9)

This relation is a property of the canonical ensemble.60 From
this additional requirement, one gets one single reorganiza-
tion energy λ required to describe both optical and thermally
activated transitions,

λvar = λSt = λr = λ. (10)

In addition to this relation, one gets �F = X̄ = (X1 + X2)/2,
thus reducing the model to two independent parameters.

Several alternative definitions of the reorganization en-
ergy are introduced here because Eq. (10) breaks down for
protein electron transfer, requiring two separate reorganiza-
tion energies to determine the electron-transfer energetics, λSt

and λvar; the reorganization energy λr is defined by them via
Eq. (8).

Electronic transitions occur by tunneling when zero en-
ergy gap between the donor and acceptor, X = 0, is reached
(Fig. 2). The activation barrier for 1 → 2 reaction follows
from the probability of reaching the X = 0 point on the reac-
tion free energy surface. From Eq. (4) one gets

�F † = (X1)2

4λvar
= (λSt + �F )2

4λvar
→ (λ + �F )2

4λ
, (11)

where the equality between the reorganization energies
[Eq. (10)] is used in the last transformation.

One has to stress that the sum of λSt and �F in
Eq. (11), each of which is a free energy, makes the average
(vertical) transition energy. This constraint implies that the
entropy parts of λSt and �F cancel out in the sum. This re-
quirement is in fact stipulated by the Franck-Condon prin-

ciple demanding stationary nuclei during an optical transi-
tion. Since the nuclei do not move on the transition time-
scale, there is no entropy change associated with a vertical
transition.

III. DYNAMICS OF THE ENERGY GAP
AND NONERGODIC KINETICS

Electron transfer is promoted by nuclear fluctuations af-
fecting the donor-acceptor energy gap. The spectrum of these
fluctuations is therefore of main interest for the theory de-
velopment. In spectroscopy, temporal changes of the transi-
tion energy are commonly associated with the Stokes-shift
dynamics.61–63 The dynamics of small fluctuations around
equilibrium are identical to the dynamics in response to a
small perturbation,64 and so we will use the term “Stokes-shift
dynamics” for the dynamics of near-equilibrium fluctuations
of X.

The relaxation of a small deviation from equilibrium
δXi(t) = X(t) − Xi can be followed by monitoring the time
self-correlation function

Si(t) = [〈(δXi(0))2〉]−1〈δXi(t)δXi(0)〉. (12)

Its Fourier transform leads to the loss function,64 χ ′′(ω)
= βωS(ω)/2. Here, as above, we have dropped the index “i”
from both Si(t) and χ ′′

i (ω). The loss function quantifies the
dissipation of energy to the surrounding thermal bath upon
changing the redox state or charge distribution of the donor-
acceptor complex. The peaks of χ ′′(ω) tell about the charac-
teristic relaxation times of the nuclear modes coupled to the
donor-acceptor energy gap and their heights quantify relative
weights of these modes in the overall solvent reorganization
energy.

Molecular charge-transfer complexes, which have been
extensively studied over the last several decades,63 are char-
acterized by two types of nuclear modes affecting elec-
tronic transitions. The skeletal vibrations of the complex it-
self are typically in the high-frequency region, exceeding
kBT in energy.65 The second, slower mode is assigned to the
solvent. It has two characteristic time-scales: ballistic mo-
tions, on the time-scales of <100 fs,66 and collective orien-
tational motions of the solvent multipoles, on the picosecond
time-scale.61, 67

The splitting of the fluctuation spectrum into the high-
frequency and low-frequency parts is accommodated in the
Marcus theory by separating the reorganization energy into
the high-frequency, intramolecular, and low-frequency sol-
vent components. The intramolecular contribution is small for
rigid binuclear charge-transfer complexes,68 but might be sig-
nificant for organic compounds.65 It is typically small for co-
factors participating in protein electron transfer.69 It has been
argued that the combination of a rigid structure of the cofactor
with delocalization of the transferred electron over a number
of its atoms helps to reduce intramolecular reorganization70

and, by that, the energy penalty of elastic deformation caused
by transferring the electron.

Reasons for the overall small intramolecular reorganiza-
tion energy are not well understood. It is clear that the heme
cofactor presents a rigid subunit with a low intramolecular
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reorganization energy.71 Why the deformation caused by al-
tering the redox state either does not propagate further in-
side the protein or, when propagating,72 does not affect the
reorganization energy has not been fully addressed. A part of
the reason might be assigned to a typically weak coupling of
the heme to the rest of the protein; many redox proteins hold
the heme in the folded position by non-bonded interactions
only, while a flexible linker is present in others.73 Irrespec-
tive of the reasons, there are indications of a small magnitude
of the internal reorganization energy in proteins transferring
electrons69 and general conservation of their structure in dif-
ferent redox states.74 We, therefore, focus here on the solvent
component of nuclear reorganization, by which we mean re-
organization of the strongly coupled protein-water solvent. In
anticipation of the results discussed below, the protein-water
thermal bath is mechanistically viewed as a combination of a
rigid core in the nearest vicinity of the redox center and a flex-
ible interfacial region surrounding it. It is the latter part that is
responsible for a broad spectrum of electrostatic fluctuations
affecting the active site (Fig. 1(b)).

The dynamics of the protein-water solvent are signifi-
cantly more complex than the dynamics of a typical polar
molecular liquid. Two distinctions are particularly notewor-
thy. First, the spectrum of relaxation times is broad, i.e., many
characteristic relaxation times can be identified. Second, there
is a significant excess of slow relaxation times, extending
down to conformational transitions at the millisecond time-
scale for single-domain proteins, or even longer time-scales
for multidomain proteins.75 This new physical reality requires
new theoretical approaches to describe protein electron trans-
fer, which we discuss next.

The reorganization energy is defined in the Marcus the-
ory as canonical, equilibrium free energy. This definition car-
ries with it the assumption that all degrees of freedom con-
tributing to λ are significantly faster than the observation time
τobs = k−1, which is the inverse of the reaction rate k for
electron-transfer reactions. This condition is typically satis-
fied for not too fast reactions in polar molecular solvents, but
often becomes compromised for the protein-water solvent.52

The protein-water thermal bath becomes nonergodic when the
reaction rate exceeds one of the characteristic relaxation fre-
quencies (peaks) in χ ′′(ω). There is of course nothing spe-
cific to protein in this phenomenon, which is also realized
for redox couples in solution.49, 51, 76–78 Specific to proteins
is a substantial weight of low-frequency modes in the over-
all reorganization energy, which makes this effect significant
numerically.

To illustrate the origins of nonergodicity, Fig. 3 shows
the typical Stokes-shift loss function calculated from atom-
istic simulations (∼100–150 ns Molecular Dynamics (MD)
trajectories) of two hydrated proteins, cytochrome c (cytC),30

and green fluorescent protein (GFP).45 In the former case, the
energy gap coordinate corresponds to changing the oxidation
state of the iron of the heme, in the latter case the energy gap
is between the ground and excited singlets of GFP’s chro-
mophore. The characteristic feature of several such functions
reported so far30, 45, 79 is the existence of two peaks, with a pos-
sibility that even slower relaxation times are still not resolved
on the length of the simulation trajectory.

0.01 0.1 1 10 100 1000

ω, ns
-1

0

0.2

0.4

χ″
(ω

)

cytC
GFP
GFP, prot. frozen

FIG. 3. Stokes-shift loss function χ ′′(ω)/χ ′(0) for cytochrome c (cytC)30 and
green fluorescent proteins (GFP)45 obtained from MD simulations. The dot-
ted line indicates simulations in which the motions of both the protein and
the GFP chromophore were frozen during the simulation run. The results
for GFP report the loss function calculated in the excited S1 singlet of the
chromophore.

The faster relaxation component is characteristic of the
water shell, slowed down compared to the bulk by the pres-
ence of a large solute,80 and intramolecular localized vibra-
tions of the protein. The slower component in χ ′′(ω) arises
from the coupled elastic motions of the protein and its hydra-
tion shells. This attribution is clearly demonstrated by the dis-
appearance of the slow peak when the protein is frozen,45, 81

as is shown by the dotted line in Fig. 3. In addition, when
the overall spectral density is split into the water and protein
components, their corresponding low-frequency peaks point
to nearly equal relaxation times.45, 79 This observation indi-
cates that the protein and water motions contributing to the
low-frequency relaxation are strongly coupled. These nuclear
modes are specific to the elastically soft hydrated protein.
They are not observed for molecular charge-transfer com-
plexes dissolved in polar liquids, for which the Marcus theory
has been extensively tested.5, 82

The existence of nanosecond relaxation modes, and per-
haps still unresolved slower relaxation components,83 car-
ries a profound consequence for protein electron transfer oc-
curring on nanosecond and sub-nanosecond time-scales. The
variance reorganization energy in Eq. (6) can be calculated
by integrating the entire loss spectrum of the Stokes shift
dynamics,

λvar ∝
∫ ∞

0
χ ′′(ω)(dω/ω). (13)

Because of the ω−1 scaling, the low-frequency components of
the loss spectrum are most important.

Once again, Eq. (13) applies when k 
 τ−1
j , where τ j are

the characteristic relaxation times responsible for the peaks in
χ ′′(ω) (Fig. 3). If this condition is violated, the low-frequency
motions do not participate in fluctuations of the donor-
acceptor energy gap and the above equation for the thermo-
dynamic reorganization energy needs to be replaced with a
nonergodic (non-canonical) reorganization energy51, 54, 84 de-
pending on the rate constant k,

λvar(k) ∝
∫ ∞

k

χ ′′(ω)(dω/ω). (14)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.219.247.33 On: Thu, 17 Jul 2014 19:01:43



025102-6 Dmitry V. Matyushov J. Chem. Phys. 139, 025102 (2013)

If the Stokes shift relaxation function S(t) [Eq. (12)] is ap-
proximated by a multi-exponential decay, Eq. (14) leads to a
simple formula for the reorganization energy,

λvar(k) = f (k)λvar. (15)

Here, λvar is the thermodynamic (canonical) reorganization
energy in Eqs. (6) and (13) and the nonergodicity coefficient
is

f (k) = (2/π )
∑

j

Aj arccot
(
kτj

)
,

∑
j

Aj = 1, (16)

where Ai are the relative weights of the relaxation components
in χ ′′(ω).

The nuclear motions affect not only the reorganization
energy, but also the reaction free energy �F. Therefore, the
need for a nonergodic correction does not stop at λ(k). Em-
pirically, one might replace �F with �F(k), if the vertical
separation between the free energy minima can be measured
on the same time-scale as the reaction. However, the reaction
free energy becomes ill-defined and the advantage of an inde-
pendent experimental input, which had prompted the splitting
of the average vertical energy gap Xi into �F and λ,1 is mostly
lost. One can therefore switch back to the average energy gap,
which then becomes a function of the reaction rate as well,58

Xi(k) = Xnp + f (k)XC
i . (17)

In this equation, the average energy gap is separated into
the components Xnp and XC

i . The former is the sum of the
gas-phase energy gap and dispersion and induction interac-
tions between the transferred electron and (fast) electronic de-
grees of freedom of the protein-water solvent. The latter, XC

i ,
is the Coulomb interaction of the transferred electron with
partial atomic charges moved by (slow) nuclear modes. The
Coulomb component is affected by the nonergodic cutoff of
the loss spectrum and, therefore, requires the nonergodicity
coefficient f(k).

IV. NONERGODICITY AND GLOBALLY
NON-GAUSSIAN STATISTICS

The nonergodic effects discussed here originate from the
difficulty to separate the time-scales of nuclear relaxation
from the time-scale of the reaction. The discussion so far has
followed the logic of the Marcus picture assuming that the po-
larization fluctuations of the bath occur near its equilibrium
configuration, with both the initial and final equilibrium con-
figurations equally accessible. We now turn our attention to
a view of the electron-transfer reaction in terms of two reac-
tion coordinates,85–88 the already discussed polarization of the
protein-water interface and, in addition, a reaction coordinate
representing conformational transitions of the protein caused
by changing redox state.

In contrast to relatively fast fluctuations of the interfacial
polarization, ranging from ps to ns in relaxation times, con-
formational transitions require passing high activation barri-
ers and, therefore, can be slow, spanning the μs to ms time-
window.22, 89 Many electron-transfer steps within biological
electron transport chains are faster,56 and that again creates

conditions for dynamical freezing of the modes slow com-
pared to the reaction rate.

The loss of ergodicity in the phase space of protein con-
formational transitions projects itself on the separation be-
tween λSt and λvar reorganization energies. While access to
the protein high-frequency vibrations and lower-frequency
dissipative elastic motions around only one of the conforma-
tional equilibria is required for producing λvar, both equilib-
rium states are required to determine λSt. Inaccessibility of
one of the conformational states limits λSt to the manifold of
polarization modes only, while allowing both the polarization
and protein vibration/elastic modes to affect λvar.

This situation is schematically illustrated in Fig. 4. We
show two coordinates in the plot, one representing the po-
larization fluctuations of the coupled protein-water system, as
quantified by the loss function χ ′′(ω), and the other represent-
ing conformational changes in the protein caused by changing
the redox state. The total Stokes shift reorganization energy
requires both fast changes of the interfacial polarization and a
conformational transition of the protein. If the residence time
of the electron on a given cofactor is long and the system has
sufficient time for a slow conformational change, one should
reach the equilibrium limit of Gaussian fluctuations within the
canonical ensemble, characterized by λSt = λvar [Eq. (10))]
and χG = 1 [Eq. (2)]. This situation is marked in Fig. 4 by a
diagonal (dashed line) transition path connecting the two fully
equilibrated configurations.

In the other limiting case of the residence time short com-
pared to the time of conformational transition, the reaction
ends at a local minimum along the polarization P-axis in
Fig. 4. Electro-elastic fluctuations of the interface allow a
number of trajectories to reach the local minimum along the

FIG. 4. Cartoon illustrating ergodicity breaking of electron transfer involv-
ing two collective coordinates: (i) fast (∼ns–ps) coordinate P representing
polarization of the protein-water interface and (ii) slow (ms–μs) coordinate q
representing conformational transition caused by changing redox state. The
dashed diagonal line represents the pathway between two equilibrium states
along which the standard prescriptions of Gaussian statistics with χG = 1
apply. For a reaction faster than the time-scale of conformational transition
along the q-coordinate, only the local minimum along the fast reaction coor-
dinate P is reached. Since the trajectories are spread by fluctuations around
the equilibrium conformation of the initial state, one gets χG > 1. Many
local minima, shown by the wiggled line on the top, might exist along the
q-coordinate and, therefore, a number of outcomes approaching χG = 1 are
possible when the reaction time becomes longer, approaching the time of es-
tablishing the conformational equilibrium.
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P-coordinate, which is indicated by several alternative transi-
tion paths in Fig. 4. Formally, this situation can be described
by requiring the energy gap coordinate to be a linear func-
tion of two Gaussian variables, P and q: X = aP + bq. The
statistical average in Eq. (3) is then taken over the Gaus-
sian variable P, which is allowed to have two equilibrium
values corresponding to two local minima along the P-axis,
and variable q, which is allowed only one equilibrium value.
If κP and κq are two force constants for harmonic displace-
ments along the P and q coordinates, respectively, one gets
λvar = a2/(2κP ) + b2/(2κq). On the other hand, if �P is the
distance between the two minima along the P-axis, one gets
λSt = a�P/2. As discussed above, one has to violate the lin-
ear relation in Eq. (9) between the two free energy surfaces
to allow χG �= 1. If that happens, one gets F2(X) − F1(X)
= X/χG + Const.

If the standard relations of linear response are satisfied
along the P-axis, one has a�P = a2/κP and, therefore, λvar

P

= λSt
P = λSt. At the same time, because b2/(2κq) term is a part

of λvar, one gets λvar > λSt and χG > 1. All that is required to
arrive at this result is to use a restricted ensemble90 (dynam-
ically restricted ensemble for kinetic applications51) defined
on a portion of the phase space, instead of the canonical en-
semble defined on the entire phase space of the system. In
other words, nonergodic statistical average is not defined by
the Hamiltonian alone, but involves an additional information
on the phase space dynamically allowed to the system, effec-
tively an entropic term. Thus X is an energy function speci-
fying the change of the coupling to the bath upon electronic
transition, but, because of nonergodicity, it is not the same
function as the one involved in the statistical average. The re-
sult is a breakdown of the linear relation in Eq. (9) specific to
the canonical ensemble.

An alternative way to think about separate trajectories
reaching the local minimum on the P-axis (Fig. 4) is a random
walk of the protein through nearly iso-energetic sub-states at
the bottom of the stability basin.91 Since each sub-state has
a slightly different conformation, it will produce a different
coupling of the quantum energy level of the localized electron
to the polarization of the protein-water solvent. As a result,
each sub-state will produce a separate reaction pathway. The
statistics of just a few sub-states will lead to a superposition of
parabolas in Fi(X), each weighted with its Boltzmann factor.92

Alternatively, when there is a large number of nearly iso-
energetic sub-states, such as in a fragile glass-former,53 their
couplings to the reaction coordinate will be spread accord-
ing to a Gaussian distribution. One then immediately arrives
at Eq. (5). If, additionally, the distribution of sub-states is an
“intrinsic property” of the protein, not affected by electronic
transition, the result is λvar > λSt and χG > 1. Whether a new
conformational state that can potentially alter the distribution
of sub-states is not kinetically reached or is too high in free
energy thermodynamically is irrelevant here. The main point
is that the corresponding part of the phase space is inaccessi-
ble, and that simple fact requires two separate reorganization
energies to describe the reaction. Further, a non-Gaussian pro-
tein landscape projects on non-parabolic free energy surfaces.
For instance, a square-well landscape produces non-parabolic
Fi(X) flattened at the bottom.93

Simulations report quite significant values of χG when
the trajectories in two redox states are started from the same
protein conformation and their length is insufficient to sam-
ple alternative conformations. The laboratory situation might
of course be everything in between of two limiting cases:
the transition along the P-axis or along the equilibrium path
shown by the dashed line in Fig. 4. The flat bottom of the
basin of stability of a typical folded protein89 suggests that
there might be many local conformational minima (shown
by the wiggled line in Fig. 4) on the way of the overall con-
formational transition connecting the local minimum on the
P-axis to the global equilibrium minimum in the P − q plane.
What this perspective practically implies is that a number of
possible outcomes for the magnitude of χG are possible, de-
pending on the residence time of the electron on a cofactor
within the electron transfer chain. Natural electron transfer
chains have potentially taken advantage of this possibility, as
we discuss below.

V. ELECTRO-ELASTIC FLUCTUATIONS
OF THE PROTEIN-WATER INTERFACE

The nonergodic separation between the Stokes shift λSt

and variance λvar reorganization energies discussed above is
only efficient if χG � 1, i.e., when λvar is large. A large am-
plitude of electrostatic noise produced by elastically flexible
protein-water interface is therefore quite essential for this new
mechanistic picture of protein electron transfer. These electro-
static fluctuations are caused by coupled protein-water elas-
tic deformations occurring on the sub-nanosecond time-scale
(low-frequency peak in χ ′′(ω) in Fig. 3). They move protein
surface charges and, adiabatically, domains of surface water,
polarized by the protein and attached to it by surface hydrogen
bonds (Fig. 1(b)).

In an attempt to understand the origin of intense electro-
static fluctuations, and qualitatively describe them, a natural
approach is to look at the contributions to λvar from the pro-
tein and hydration shell separately. This approach is straight-
forward for the Stokes shift, which can be separated into the
protein (p) and water (w) components

λSt = λSt
p + λSt

w . (18)

In contrast, λvar involves a cross-term, λvar
pw,

λvar = λvar
p + λvar

w + λvar
pw. (19)

A direct application of the linear-response
approximation,64 equivalent to the Gaussian statistics in
the fully equilibrated canonical ensemble, suggests the
following connection between the Stokes-shift and variance
components:

λSt
p,w = λvar

p,w + 1
2λvar

pw. (20)

Equation (20) thus indicates that one cannot apply linear
response to a single component only and, instead, cross-
correlations have to be involved.94, 95 This general result is not
limited to electron-transfer reorganization and becomes im-
portant in other areas as well, e.g., for the dielectric response
of protein solutions.96, 97

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.219.247.33 On: Thu, 17 Jul 2014 19:01:43



025102-8 Dmitry V. Matyushov J. Chem. Phys. 139, 025102 (2013)

The relative contributions of the protein and water to λSt,
and its total magnitude, are strongly affected by the proximity
of the redox site to the interface.44 However, water and pro-
tein contributions to λSt are typically of similar magnitudes.
For instance, λSt = 1.07 eV for the half-reaction of changing
the redox state of protein plastocyanin is split into 0.60 eV
from protein and 0.47 eV from water.11 Similarly, λSt of pri-
mary charge separation in bacterial photosynthesis, calculated
from long simulations trajectories (i.e., referring to k → 0),
is about 0.76 eV, and is split into 0.41 eV from protein and
0.35 eV from water.98 The reorganization energy referring to
the fast reaction rate of photosynthetic charge separation, τobs

 0.3 ps−1, is reduced to 0.36 eV according to the nonergodic
cutoff described by Eqs. (14) and (17).

Overall, neither the proposal that protein is a hydropho-
bic environment producing little reorganization energy nor the
idea that water is sufficiently screened from affecting elec-
tron transfer are supported by simulations. A typical protein
redox center is affected by both components of the protein-
water solvent, and the protein surface contains a sufficient
number of movable polar/charged groups to act as a polar
solvent. The latter point also implies that care is required
with the idea that a significant reduction of the reorganiza-
tion energy may be achieved in protein complexes, when bulk
water (but hardly the first hydration layer) is removed from
the contact area. The fact that many redox proteins form
highly transient complexes, with many nearly isoenergetic
configurations99, 100 suggests that no significant enhancement
of the rate is achieved in a particular binding configuration.

The analysis of the variance reorganization energy in
Eq. (19) in terms of the water and protein components is
more non-trivial and requires considering cross-correlations
between the protein and water fluctuations. The individual
components λvar

p and λvar
w are often found to be significantly

larger than the total λvar. The cross-term λvar
pw is therefore neg-

ative, pointing to a mutual cancellation between the water
and protein fluctuations.11 The physics of this cancellation is
easy to understand in terms of domains of water polarized by
the charged surface residues and adiabatically following their
elastic motions (Fig. 5(a)).45 The dipoles of waters polarized
by a charged residue create surface charges of the opposite
sign, thus screening the electrostatic potential of the residue.
The overall cancellation of the direct and cross contributions
to λvar, however, strongly varies among the proteins studied
so far and is probably largely determined by the specific dis-
tribution of the surface charge for a given protein.45 This ob-
servation links sequence to function, since the distribution of
the surface charge is encoded in the sequence and the fold.

Given the complexity of the mutual cancelation of the
water and protein electrostatic fluctuations, one wonders if at
least one of the components can be adequately modeled. This
attempt was undertaken28 within the framework of an elasto-
electric model of the protein. The model keeps the atomic
charge distribution of a standard force field, but coarse-grains
the protein motions into an elastic network of rigid amino
acids connected by Hookean springs.101, 102 A heterogeneous
scheme of assigning the force constant was applied,103, 104 in
which stiffer springs were used for back-bone amino-acids
and the springs attached to the ionized surface residues were
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FIG. 5. (a) Cartoon of the water domain polarized by a positively charged
surface residue. As in Fig. 1, the redox site is specified by the Fe ion chang-
ing its redox state. The preferential orientation of the water dipoles at the
surface creates surface charge and an effective electrostatic potential com-
pensating for the potential of the surface residue.45 The compensation can be
incomplete, and the overall effect is determined by the surface charge dis-
tribution. (b) The protein component χ ′′

p (ω) of the loss function calculated
from MD trajectories of a fully hydrated protein cytochrome B562 (dashed
line) and the same property calculated from the solvated dissipative electro-
elastic model (sDENM), which coarse-grains the protein to an elastic network
of rigid amino acids carrying atomic force-field charges.28

additionally softened by solvation.28 The assignment of the
spring force constants was tested on the dynamics of amino
acid separations produced by long MD simulations. Further,
assuming non-Markovian Langevin dynamics of the normal
modes diagonalizing the network of amino-acid beads, elec-
trostatic frequency-dependent response functions were con-
structed. Those can be used to test the consistency with χ ′′

p(ω)
(protein component of the loss function) reported by MD
simulations.

These results, from Ref. 28, are shown in Fig. 5(b).
The assignment of the slower, nanosecond dynamics of the
energy-gap to elastic deformations of the protein is consistent
with the electro-elastic coarse-grained model, and the mag-
nitude of λp in Eq. (19) can be reproduced. The view that
large-amplitude electrostatic noise at the active site is caused
by elastic motions altering the protein’s charge distribution is
supported by both atomistic simulations and formal modeling.

VI. EXPERIMENTAL EVIDENCE

Separate experimental measurements of λSt and λvar reor-
ganization energies can be achieved by optical spectroscopy
of transitions changing the charge distribution of a chro-
mophore. The former is one half of the solvent-induced
Stokes shift, while the latter is responsible for inhomoge-
neous broadening of individual vibronic lines in the optical
spectrum.65, 105 In cases when the band-shape analysis of opti-
cal transitions in proteins is possible, the experimental results
point to λvar > λSt, in accord with our suggested picture. The
established examples are just a few. A recent example is the
absorption and emission spectra of the metal-free cytochrome
c,50 which lead to χG = 2 (using the Gaussian line-shape fit
reported in Ref. 50). A more extensive set of measurements
reports band-shapes of fluorescent proteins of various primary
colors.106 Figure 6 shows an example of the band-shape anal-
ysis of mStrawberry fluorescent protein,106 which results in
χG  1.8. This latter result is below χG obtained in MD
simulations of a similar fluorescent protein.45 The difference
might be attributed to a heterogeneous distribution of proteins
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FIG. 6. Absorption and emission lines of mStrawberry fluorescent protein106

(solid lines) and their fit by vibronic progression of Gaussian lines65

(dashed lines). The fitting was done with fixed effective frequency of in-
tramolecular vibrations νv = 1300 cm−1 and the Huang-Rhys factor65 of S
= 0.5: λSt = 344 cm−1, λvar = 613 cm−1, and χG = 1.8.

occupying different sub-states along the q-coordinate in Fig.
4 and thus effectively reducing χG.

An alternative approach to extract λSt and λvar sepa-
rately is through electrochemistry. For globally non-Gaussian
statistics of the energy gap described here, the activation
barrier of electrochemical discharge is given as �F † = (λSt

+ eη)2/(4λvar), where η is the electrode overpotential and e is
the elementary charge. The activation free energy at η = 0 is
then

�F † = λr

4
= λSt

4χG

. (21)

Cyclic voltammetry of redox proteins immobilized on
self-assembled monolayers has consistently produced low ac-
tivation barriers.107–114 The values of reorganization energy
extracted from these measured barriers according to the stan-
dard Marcus recipe (χG = 1 in Eq. (21)) fall in the range
of 0.1–0.4 eV, often inconsistent with independent estimates.
The lowering of the barrier with increasing χG is, how-
ever, exactly what the current model predicts (depression of
the barrier shown by the vertical arrow in Fig. 7(a) and by
Eq. (21)).

A good study case to illustrate the origin of discrepancies
is electron transfer in a family of azurin mutants for which
both experimental activation enthalpies114 and λSt from ex-
tensive MD simulations115 have been reported. Experimental
activation enthalpies �H† = �F† + T�S† for four mutants
and wild-type azurin,114 are plotted in Fig. 7(b) against �F†

calculated from Eq. (21) with λSt from simulations.115 Get-
ting a near-unity slope between �H† and �F† requires χG

 7, which is taken as a constant value. This value is con-
sistent with χG  7.8 calculated from MD simulations of
plastocyanin,11 a blue copper protein from the same family
and with a similar structure.

The value of χG can be extracted from the dependence of
the rate on the electrode overpotential,113 which in the current
description is given by the following equation:

k(η) ∝ erfc

(
λSt + eη√

2σ (T )

)
. (22)
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FIG. 7. (a) Cartoon of electrochemical electron transfer. Shown are the metal
electrodes with the Fermi energy level εF and the energy levels of the oxi-
dized (Ox) and reduced (Red) forms in the solution. Zero overpotential leads
to symmetric free energy surfaces Fi(X) crossing at the point of resonance
of either Ox or Red energy levels with the Fermi energy level of the metal.
Introducing the non-Gaussian parameter χG > 1 lowers the activation barrier
from the Marcus prediction of λSt/4 to the value given by Eq. (21) (indicated
by the arrow). (b) Experimental �H† from Ref. 114 vs. �F† for wild type
and a number of mutants of azurin (points). The activation free energy �F†

is calculated from Eq. (21) with λSt from MD simulations115 and a constant
χG = 7. The latter choice of χG produces a unity slope of the linear re-
gression (shown by the dashed line) and a non-zero intercept, nominally cor-
responding to the activation entropy. The required value of χG is consistent
with χG  7.8 reported from MD simulations of a structurally similar protein
plastocyanin.11

Here, erfc(x) is the complementary error function. A combi-
nation of temperature and overpotential dependencies might
appear, at first glance, as a sensible approach to fit Eq. (22)
to experiment. The use of the Arrhenius kinetics might, how-
ever, be misleading for protein electron transfer, as we discuss
next.

Simulation studies of redox proteins offer specific predic-
tions regarding the temperature dependence of the rate of pro-
tein electron transfer.45, 116 The low-temperature portion of the
energy-gap variance commonly follows the prediction of the
fluctuation-dissipation theorem64, 117 established for a thermal
bath of harmonic oscillators, σ (T)2 ∝ T (Fig. 8). The rate
constant

k ∝ exp

[
− (X1)2

2σ (T )2

]
(23)

FIG. 8. Cartoon illustrating the typical temperature dependence of the vari-
ance of the donor-acceptor energy gap in protein electron transfer. The low-
temperature portion follows the rules established for a bath of harmonic os-
cillators, σ (T)2 ∝ T, with the resulting Arrhenius law for the rate constant
of electron transfer. The high-temperature part of the variance inflects into
a stronger temperature variation. When the high-temperature portion of the
plot is fitted to a straight line σ (T)2 ∝ (T − T0), electron transfer rate follows
the Vogel-Fulcher-Tammann kinetics (Eq. (24)).
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then follows the Arrhenius law. On the contrary, the en-
trance of slow elastic motions of the proteins into the ob-
servation window79 at higher temperatures implies a faster
than linear growth of σ (T)2 [Fig. (8)].45, 116 In the high-
temperature range, the variance can be approximated by a
linear function,45 σ (T)2 ∝ (T − T0). This temperature depen-
dence, substituted into Eq. (23), leads to the Vogel-Fulcher-
Tammann kinetics often found for fragile glass-formers,53

k ∝ exp

[
− AT0

T − T0

]
. (24)

Equations (23) and (24) make specific predic-
tions regarding the magnitude and the temperature
dependence of the electrochemical transfer coefficient
α = ∂(�F†(η))/∂(eη)|η = 0. One gets

α(T ) = 1

2χG

T

T − T0
, (25)

where χG is calculated at some temperature and left un-
changed. χG > 1 means α(T) < 0.5 in Eq. (25). This result can
potentially be masked in measurements done at a fixed tem-
perature by the compensating effect of the temperature term
in the second part of Eq. (25). Given that T0  (0.5 − 0.7)T
for room-temperature measurements, the temperature term in
Eq. (25) can produce a factor of 2–3.

VII. EFFICIENCY OF ENERGY CHAINS IN BIOLOGY

Energy in living organisms is supplied by the gradient of
proton concentration across the cellular membrane. This en-
ergy source is common to all types of cells and is considered
to be one of the two founding principles of life,118 the storage
of genetic information in the DNA is the second one.

The creation of the concentration gradient implies mov-
ing protons from the cytoplasm to the intracellular solution.
This proton translocation is driven by the transport of elec-
trons across the membrane in the opposite direction, from
outside to inside the cell. The electron transport is initiated
by reducing agents from food supply or from the energy of
light in photosynthetic organisms. In both cases, electrons are
injected into a chain of electron-transfer cofactors localized
inside the membrane.56

The requirement to separate the input and output sites,
and to translocate protons at intermediate sites, puts in place
the need for a long distance of cross-membrane electron trans-
port, involving many intermediate states. This structural con-
straint is combined with the energetic constraint requiring that
the overall free energy released as heat in many intermedi-
ate states should not exceed the difference in redox free en-
ergies of the input and output states. Given that this free en-
ergy gap typically does not significantly exceed ≈1 eV, many
steps in the electron transport chain are nearly reversible. For
instance, electron transport in mitochondria involves about 22
intermediate cofactors with the overall change of the driving
force (negative of the reaction Gibbs energy) not exceeding
1.1 eV.56

Long distance of electron transport and a small driving
force are conflicting requirements. One needs a positive driv-

ing force to direct electrons along the chain of hops between
the cofactors to avoid reversibility. On the other hand, a large
number of such hops within a small overall free energy gap
leaves only a small driving force for a single electron-transfer
event. This, in addition to the danger of reversing the electron
flow, has to result in a significant slowing down of the entire
energy chain. These mechanistic and energetic constraints,
mostly dictated by the structural arrangement of the cofac-
tors in the membrane and the amount of the redox energy
provided by food, pose the question of how biology achieves
its energy production goals and, in case of bacterial photo-
synthesis, does it with a high quantum yield of generating an
across-membrane electron-hole pair per absorbed photon.119

The new mechanistic properties of protein electron trans-
fer, first revealed by simulations43, 52 and more recently sup-
ported by electro-elastic models of proteins,28 provide the
resolution of the paradox of energetic efficiency of biology.
As discussed above, two components are important here, the
breadth of electrostatic fluctuations produced by the protein-
water interface and the ability to dynamically freeze some
of the nuclear degrees of freedom on the time-scale of the
reaction.

The requirement to dynamically freeze a part of the spec-
trum of nuclear modes to prevent the system from full equili-
bration, and thus gaining a large λSt consistent with χG  1,
imposes some significant limitations on the time-scales avail-
able to elementary electron-transfer steps in energy-efficient
electron transport chains. This is illustrated in Fig. 9. It shows
the range of time-scales at which the operation of enzymatic
reactions can both take advantage of a broad distribution of
electrostatic fluctuations and avoid the penalty of a large λSt.

The rightmost part of the diagram in Fig. 9 indicates
reactions occurring on the time-scale of picoseconds. This

FIG. 9. Time arrow classifying elementary steps of biological electron trans-
fer. The rightmost reaction time window shows ultrafast picosecond reactions
activated by ballistic vibrational modes of the medium. All dissipative dy-
namics of the protein-water interface are dynamically frozen on this time
window and the reaction operates according to the classical Marcus pre-
scription of crossing parabolas, but with an effective reorganization energy
λvar(k) 
 λvar and, correspondingly, dynamically arrested solvation compo-
nent of the reaction free energy.52, 58 The leftmost time window corresponds
to slow reactions fully equilibrated to the nuclear modes of the protein-
water system. An activationless electronic transition is energetically ineffi-
cient in this reaction window since the conformation change resulting from
altering the redox state leads to a large energy loss �F  −λSt  −λvar

to heat. The intermediate window allows energetically efficient activation-
less electron transfer, when the energy lost to heat is −λSt/χG, χG > 1.
The vertical lines separating the regions are not intended to represent ex-
act boundaries and specify only approximate, order-of-magnitude reaction
times.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.219.247.33 On: Thu, 17 Jul 2014 19:01:43



025102-11 Dmitry V. Matyushov J. Chem. Phys. 139, 025102 (2013)

is the time-scale of primary charge separation in bacte-
rial photosynthesis.119 Most of the nuclear modes contribut-
ing to the reorganization energy are frozen on the reaction
time τobs = k−1, leading to λvar(k)  0.36 eV, instead of λvar

 2.5 eV calculated from long MD trajectories. Since only
fast ballistic modes operate on this time-scale, χG  1 and
the reaction rates can be calculated from the standard picture
of Marcus crossing parabolas characterized by an effective
reorganization energies λ(k) and, correspondingly, effective
reaction free energies.52, 58

The leftmost part of the diagram shows slow reactions,
slower than the conformational transition of the protein as-
sociated with changing redox state. All nuclear modes cou-
pled to the energy-gap reaction coordinate fully explore their
phase space and the standard prescriptions of the equilibrium
thermodynamics of Gaussian fluctuations apply.33–35, 55 In this
time window, an activationless transition loses a significant
energy �F  −λSt  −λvar. To avoid such energy losses, re-
actions on this time-scale proceed with nearly zero driving
force.56 Since this route leads to a significant slowing down,
such reactions are often accompanied by proton transfer,120

shifting �F in the favorable direction.
Finally, reactions on the nanosecond time-scale (middle

time window) proceed with partial dynamical freezing of the
conformational degrees of freedoms, resulting in χG > 1. Ac-
cording to Eq. (8) the energy λr released to heat in an activa-
tionless transition is scaled down by a factor of χG. The shal-
low, but not widely separated free energy surfaces relevant
to this time window allow multiple electron transfer events
within a narrow range of the reaction driving force.

VIII. CONCLUDING REMARKS

The idea of fine tuning, ascribed to evolution, of either
redox potentials or reorganization energies of cofactors in-
volved in functionally significant biological interactions is
often discussed in the literature. Fine tuning clearly collides
with the requirement of robust operation, little sensitive to ex-
ternal conditions and occasional mutations.121 The view of
biological electron transfer offered here is in a way opposite
to the concept of fine tuning. Both simulations and formal
modeling suggest that biological redox machines operate in
a highly fluctuating nano-scale environment,122, 123 character-
ized, in particular, by a high level of electrostatic noise. They
take advantage of this noise by allowing shallow landscapes
of electron transfer free energies achieved by adjusting rates
of electronic transitions and residence times on the redox co-
factors to the time-windows at which electrostatic fluctuations
of the interface are explored, but conformational transitions,
coupled to changes in the redox state and occurring on longer
time-scales, are not. Efficient electron transport thus occurs
through a sequence of conformationally quenched cofactors,
dynamically restricted from altering their equilibrium con-
formations, but sensitive to faster elastic fluctuations of the
protein-water interface. This requirement cannot be accom-
modated for all steps in the chain and slower electron-transfer
steps have to operate at nearly zero driving force, with the
resulting, and real, danger of reversibility.124
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