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Dynamical systems are frequently used to model biological systems. When these models are fit to

data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction

deviation, a metric of uncertainty that determines the extent to which observed data have

constrained the model’s predictions. This is accomplished by solving an optimization problem that

searches for a pair of models that each provides a good fit for the observed data, yet has maximally

different predictions. We develop a method for estimating a priori the impact that additional

experiments would have on the prediction deviation, allowing the experimenter to design a set of

experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty

in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments

that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction

deviation provides bounds on the trajectories of the underlying true model. These results show that

prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental

design. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953795]

Nonlinear dynamical systems are used throughout sys-

tems biology to describe the dynamics of biomolecular

interactions. These models typically have a number of

unknown parameters, such as infection rates and decay

rates, which are estimated by fitting the model to meas-

urements from the physical system. Two important ques-

tions then arise: What is the uncertainty in the model

predictions, and how can that uncertainty be reduced?

We describe here a new approach for measuring uncer-

tainty in model predictions, by searching for a pair of

model parameters that both provide a good fit for the

observed data, but make maximally different predictions.

We further show how to estimate the impact on the

uncertainty of a candidate experiment that has not yet

been done, allowing the experimenter to determine

beforehand if an experiment will be valuable. We use

prediction deviation to analyze a model of HIV infection

which can only be partially observed. With prediction

deviation, and with appropriately selected experiments,

we are able to provide bounds on the behavior of the

unobserved quantities and gain insights into inhibition

that are otherwise unavailable.

I. INTRODUCTION

Systems of nonlinear differential equations are used

throughout biology to model the behavior of complex, dynam-

ical systems. These models have proven particularly useful in

systems biology for describing networks of biomolecular

interactions.1 Often the utility of the model depends on being

able to estimate a set of unknown parameters, which is typi-

cally done by collecting data from the physical system and

finding the best-fit parameters. When inferring a dynamical

system from data, there are two important questions that arise:

(1) Uncertainty quantification: Is the model sufficiently con-

strained by the data?

(2) Optimal experimental design: If not, what additional

experiments would most reduce the remaining uncertainty?

Uncertainty is often measured by constructing a confi-

dence interval for each parameter estimate. We propose a

different approach to the problem of uncertainty quantifica-

tion and then show that this approach leads naturally to an

optimal experimental design strategy. Our fundamental hy-

pothesis is that the purpose of fitting a model is to be able to

use it to make predictions. In many situations, the parameter

values per se are not of interest, rather the goal is to gain

insight into the system’s behavior. In these situations, the

purpose of assessing model uncertainty is to determine if the

model’s predictions can be trusted.

This paper begins by developing prediction deviation,

a new measure of uncertainty on predicted behaviors. We

then use prediction deviation to measure uncertainty in a

partially observed model of human immunodeficiency virus
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(HIV) infection, where we found that after one experiment

there remained substantial uncertainty in the behavior of the

unobserved component. We then show that prediction devia-

tion leads naturally to a way to measure experiment impact,
which is a maximum uncertainty on predicted behaviors if an

additional experiment were to be conducted. This approach is

used to determine a sequence of experiments that reduces

uncertainty in the HIV infection model and ultimately bounds

the behavior of the unobserved component. Finally, we pro-

vide a theoretical foundation for prediction deviation by

showing that, under reasonable assumptions, it bounds the tra-

jectory of the underlying true model.

A. Confidence intervals do not measure predictive
power

Parameter confidence intervals are a poor way of deter-

mining if a nonlinear dynamical system’s predictions are

constrained by the observed data. Sensitive dependence

means that tight confidence intervals do not imply con-

strained predictions. The classic Lorenz system provides an

illustration of this phenomenon

dx

dt
¼ h1 y� xð Þ;

dy

dt
¼ x h2 � zð Þ � y;

dz

dt
¼ xy� h3z:

Fig. 1(a) shows x(t) data generated from the Lorenz system

with parameters htrue ¼ ½7; 38; 5�, initial conditions xð0Þ ¼ 10;
yð0Þ ¼ 20, and zð0Þ ¼ 3, and a small amount of normally

distributed noise. The best-fit estimates for the parameters,

h�, are very close to the true values htrue, and have seemingly

tight confidence intervals: h�1 ¼ 7:00 ð6:51� 7:49Þ; h�2
¼ 38:03 ð36:08� 40:28Þ, and h�3 ¼ 5:00 ð4:82� 5:17Þ, with

95% simultaneous likelihood-based intervals in parentheses.2

Suppose we wished to use these observed data with yð0Þ ¼ 20

to predict the behavior of the system when yð0Þ ¼ 7, with

all other factors staying constant. Do the tight confidence

intervals allow for confidence in the model’s predictions at

this different initial condition? Fig. 1(b) shows that they do

not. This figure compares the predictions made by the best-fit

model h� to those made by the model with parameters
�h ¼ ½6:98; 38:12; 4:99�. �h is well within the confidence inter-

vals of h�, moreover, the fit error of �h is within the 95% confi-

dence interval for the fit error of h�, meaning �h is also a good

fit for the observed data. However, �h and h� make entirely dif-

ferent predictions for the condition we wish to predict. The

phase portraits in Figs. 1(c) and 1(d) show that this small

change in the parameters is enough to send the trajectory to a

different side of the attractor. The Lorenz system is a canoni-

cal example of sensitivity, but chaotic dynamics are not

required to have tight confidence intervals with unconstrained

predictions. For instance, this same result can be had any time

a basin boundary lies within the confidence interval.

Tight confidence intervals do not imply constrained pre-

dictions, and likewise wide confidence intervals do not imply

unconstrained predictions. Parameters in nonlinear dynami-

cal systems may be interrelated such that they individually

have large confidence intervals, yet the predictions of inter-

est are actually constrained. The following parameterization

of the Lotka-Volterra predator-prey model illustrates this

fact:

dx

dt
¼ h1h3x� h2h3xy;

dy

dt
¼ h2h4xy� h1h4y:

A symmetry in the parameters renders them all unidentifiable—

they have infinite confidence intervals. Suppose we were able

to observe x(t) data and wished to use these data to predict

the state y(t). Fig. 2 shows that despite the infinite confidence

intervals, x(t) data constrain predictions of y(t). The data in

Fig. 2 were generated using htrue ¼ ½1; 0:05; 1; 1� and initial

conditions xð0Þ ¼ yð0Þ ¼ 10, with standard normal noise. �h is

the worst-case of how bad the prediction in y(t) could be.

Specifically, of all parameters that have fit error within the 95%

confidence interval of the fit error of the best-fit (that is, all

parameters that provide a good fit of the data), �h is the one that

maximized the squared difference between its prediction of y(t)

FIG. 1. (a) Circles indicate simulated

data points from the Lorenz system,

with the best-fit in black and the alter-

native model in blue. (b) Despite both

models providing a good fit to the data

in panel (a), they produce very different

predictions on a different initial condi-

tion. (c) and (d) Phase portraits for the

trajectories in panels (a) and (b).
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and that of the best-fit h�. Thus any model that fits the x(t)
observations will make a prediction on y(t) that differs from the

best-fit by no more than the difference seen in �h.

This model contains a structural unidentifiability,

which could be identified and corrected by a reparameteri-

zation.3–5 It is also possible to have model parameters that

are structurally identifiable but not practically identifiable,

given the noise in the collected data.2 Gutenkunst et al.6

show that models with parameters that cannot be well con-

strained by data are ubiquitous in systems biology and con-

clude that “modelers should focus on predictions rather

than on parameters.”

If the purpose of fitting the model to data is to ascertain

the values of the parameters, then confidence intervals pro-

vide a useful quantification of uncertainty. However, if the

purpose is to use the fitted model to make predictions about

unobserved variables or unobserved conditions, then confi-

dence intervals serve no purpose for dynamical systems. We

propose putting aside the issue of measuring confidence

intervals and instead directly measure the uncertainty in the

quantity of interest: the predictions.

II. PREDICTION DEVIATION AS A MEASURE
OF UNCERTAINTY

Figs. 1(b) and 2(b) provide the motivation for our

approach to measuring uncertainty. We consider a scenario,

or set of scenarios, for which we are interested in predicting

the system behavior. In Fig. 1(b) this was a different initial

condition and in Fig. 2(b) it was an unobserved variable. We

then pose the following question: Of all parameters that are a

good fit to the observed data, what is the largest deviation in

predicted behaviors for any pair? We call this deviation the

prediction deviation. A low prediction deviation, such as that

in Fig. 2(b), means that the observed data have constrained

the prediction of interest. A high prediction deviation, such

as that in Fig. 1(b), means that the observed data have not

constrained the prediction of interest.

A. Parameter estimation

We must first introduce notation to make the idea of pre-

diction deviation precise. We suppose that we are learning a

system of ordinary differential equations with state variables

xðtÞ, unknown parameters h, and known external factors m

dx

dt
¼ f x; t; h; mð Þ: (1)

If the initial conditions are known then they are included in

m, and if unknown in h.

We now provide notation for the observed data and the

data fitting problem. Let Pj ¼ ðIj; Tj; mjÞ represent a particu-

lar experiment, with Ij being the set of state variables that are

observed, Tj ¼ fTi;j : i 2 Ijg the sets of time points at which

these observations are made for each state variable, and mj

the external factors. We suppose that a total of J experiments

have been performed, resulting in observed data ~xj
iðtÞ, for

j ¼ 1;…; J; i 2 Ij; and t 2 Ti;j. We denote the complete set of

observed experiments as P ¼ fP1;…;PJg and the complete

set of observed data as ~x.

The unknown parameters h are typically estimated from

the observed data ~x by minimizing the weighted squared

error

zfit h;P; ~xð Þ :¼
XJ

j¼1

X
i2Ij

X
t2Ti;j

xi t; h; mj
� �

� ~xj
i tð Þ

rijt

 !2

; (2)

where xiðt; h; mjÞ is obtained by integrating (1) and r2
ijt is the

noise variance. The best-fit parameters h� are the solution to

the least squares problem

minimize
h

zfitðh;P; ~xÞ: (3)

B. Prediction deviation

To measure prediction deviation, we wish to search over

the set of all models that provide a good fit to the observed

data. We consider a model h to be a “good fit” to the

observed data if its fit error zfitðh;P; ~xÞ is not too much

worse than that of the best fit, h�. Specifically, we measure a

95% confidence interval for zfitðh�;P; ~xÞ, which we denote

as ½z�l ; z�u�. In the event of normally distributed observation

noise, a parametric estimate for the interval can be obtained

using the v2 distribution, or, as we do here, a nonparametric

confidence interval can be obtained with the bootstrap.7 The

prediction deviation is defined as the maximum difference

on a prediction problem between any pair of models that

both have fit error within the 95% confidence interval of the

best-fit error.

The prediction problems for which the prediction devia-

tion is to be measured are defined in the same way as the

experiment according to which data were collected. We call

Y‘ ¼ ðI‘; T‘; m‘Þ a prediction problem, where as before I‘
is the set of state variables to be predicted in problem

‘; T‘ ¼ fTi;‘ : i 2 I‘g are the sets of time points at which

FIG. 2. (a) Circles indicate simulated

data points from the Lotka–Volterra

model, with the best-fit in black and in

blue the model that maximized the dif-

ference in panel (b), subject to provid-

ing a good fit to these simulated data

points. (b) Predictions from the best-fit

and alternative models of the state y(t)
are constrained, despite unidentifiable

parameters.
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these predictions are made for each state variable, and m‘ are

the external factors. Let Y ¼ fY1;…;YLg be the full collec-

tion of variables and experiments of interest for prediction.

The squared difference between h1 and h2 on the prediction

problems is

zdevðh1; h2;YÞ :¼
XL

‘¼1

X
i2I‘

X
t2Ti;‘

xi t; h1; m‘
� �

� xi t; h2; m‘
� �

ri‘t

 !2

:

(4)

As before, r2
i‘t is an estimate of the noise level for that measure-

ment, which is important primarily for combining multiple meas-

urements of possibly different scales into one metric. Prediction

deviation can now be framed as an optimization problem

maximize
h1;h2

zdevðh1; h2;YÞ (5a)

subject to zfitðh1;P; ~xÞ � z�u; (5b)

zfitðh2;P; ~xÞ � z�u: (5c)

The objective (5a) searches for a pair of models that maximize

the difference in predictions on the prediction problems, while

the constraints (5b) and (5c) limit the search to those models

that provide a good explanation for the observed data ~x. Let
�h

1
and �h

2
be the maximizers of problem (5). Then, the opti-

mal objective value zdevð�h
1
; �h

2
;YÞ is the prediction deviation

and can be obtained by solving this single, constrained maxi-

mization problem. We show in the supplementary material8

results for the Lorenz system from Fig. 1 and now discuss

how prediction deviation can be used to understand and

reduce uncertainty in a viral infection model.

III. UNCERTAINTY IN A MODEL OF HIV INFECTION

A. The model and data

We now use prediction deviation to assess how well

observed data constrain the model predictions of an unob-

served component in a model of the innate immune response

to HIV infection.9 The model describes the dynamics of how

interferon-alpha (IFNa) protects CD4 T cells from infection

by HIV. IFNa is a signaling protein that endows CD4 T cells

with protection from HIV by upregulating genes that disrupt

viral replication. In the model, CD4 T cells (C) are infected

by HIV (H) and become infected cells (CH) that produce addi-

tional viruses. Exposure to IFNa (I) induces a refractory state

in both uninfected and infected cells (CI and CHI, respec-

tively) which if uninfected are protected from infection, and if

infected no longer produce additional viruses. The refractory

state is reversible and CI and CHI cells eventually revert to

their original state, C and CH, respectively. The dynamical

system that describes the interactions of these quantities is

dC tð Þ
dt
¼ h1C tð Þ þ h3CI tð Þ � h2C tð Þ I tð Þ

h8 þ I tð Þ � h5CðtÞHðtÞ;

dCI tð Þ
dt
¼ h1 � h3ð ÞCI tð Þ þ h2C tð Þ I tð Þ

h8 þ I tð Þ ;

dCH tð Þ
dt

¼ h1 � h4ð ÞCH tð Þ þ h5C tð ÞH tð Þ

� h2CH tð Þ I tð Þ
h8 þ I tð Þ þ h3CHI tð Þ;

dCHI tð Þ
dt

¼ h1 � h3 � h4ð ÞCHI tð Þ þ h2CH tð Þ I tð Þ
h8 þ I tð Þ ;

dH tð Þ
dt
¼ h6CH tð Þ � h7H tð Þ:

We use here tissue culture data collected by Browne

et al.,9 who provide full details of the experimental methodol-

ogy. In short, varying levels of IFNa were added to tissue cul-

tures with CD4 T cells. After allowing the cells to incubate

with the IFNa for 6 h, HIV was added to the culture for 1 h

and then washed out. The total number of uninfected (Cþ CI)

and infected (CHþ CHI) cells, along with the viral count (H)

were measured with four replicates every 24 h, for 3 days.

This experiment was done separately for a total of 7 initial

IFNa levels: 0, 0.002, 0.02, 0.2, 2, 20, and 200 ng/ml. In this

tissue culture, the IFNa activity remained constant and so IðtÞ
was a known, external factor. Details of model fitting and pre-

diction deviation implementation are given in Appendix A.

B. Prediction deviation after one experiment

To illustrate how prediction deviation changes with

additional experiments and how it can be used for experi-

ment selection, we label each combination of variables and

IFNa level as a separate experiment. For example, Cþ CI

measured at I¼ 0.002 ng/ml defines one experiment, and H

measured at I¼ 2.0 ng/ml is another. There are a total of 21

such experiments for which data were collected. We begin

by using data from only one of these experiments, and then

consider the problems of determining uncertainty in model

fit, and deciding which additional experiments to add in

order to reduce prediction uncertainty.

The purpose of defining the model and collecting experi-

mental data is to understand the dynamics of how IFNa
provides protection to CD4 T cells during HIV infection.

The experimental data themselves do not explicitly show

the interaction of IFNa and CD4 T cells inasmuch as only

the sum Cþ CI can be observed. The natural prediction

problem is to then try to predict the CI timecourse, at the

same observation times as the Cþ CI data. We begin with

just one experiment, and let P be the experiment correspond-

ing to Cþ CI measured at I¼ 0.002 ng/ml. Let Y be the cor-

responding prediction problem, CI at I¼ 0.002 ng/ml.

Using prediction deviation, we can determine if the

observations of Cþ CI at I¼ 0.002 ng/ml constrain the pre-

dictions of CI at I¼ 0.002 ng/ml, and Fig. 3 shows that

they do not. In particular, Fig. 3(a) shows that the two mod-

els that maximize prediction deviation both provide a good

fit for the observed data, while Fig. 3(b) shows that they pro-

vide widely diverging predictions about the CI timecourse:

One of the models suggests that nearly all of the CD4 T cells

are refractory, while the other one suggests that nearly none

of them are. These observed data do not in any way increase

our understanding of the IFNa dynamics.
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IV. OPTIMAL EXPERIMENT DESIGN

Knowing that the predictions of CI are entirely uncon-

strained, the question that naturally follows is to determine

which of the remaining 20 experiments should be done next

in order to maximally reduce the prediction deviation. More

generally, we wish to predict the impact that a particular can-

didate experiment or set of experiments P0 will have on the

prediction deviation, given that we have already completed

experiments P, with P0 \ P ¼ ;.
Fig. 4 provides some insight into this problem. This fig-

ure shows the predictions of the best-fit and prediction devia-

tion models from Fig. 3 on two of the candidate experiments,

CþCI at I levels of 0.0 and 200.0 ng/ml. On the candidate

experiment in Fig. 4(a), the prediction deviation models are

very different. Suppose observations were collected for this

experiment and then prediction deviation were recomputed

using both these observations and the original set. After col-

lecting data, at least one of the prediction deviation models

in Fig. 4(a) would no longer be a good fit. We cannot know

a priori if the observations will lie close to one of the models

and thereby disqualify the other, or if they will lie in the mid-

dle, disqualifying both, but at least one model will not be a

good fit for the new observations.

Fig. 4(b) shows the alternative situation where the pre-

diction deviation models do not disagree on the candidate

experiment. Were this experiment to be done, it is possible

that the observations would disqualify both prediction devia-

tion models and there would be a reduction in uncertainty.

However, it is also possible for the observations to be such

that both models remain feasible, meaning there is no reduc-

tion in uncertainty.

The experiment in Fig. 4(a) seems like a good choice for

reducing uncertainty, however having a large deviation on

the candidate experiment P0 does not necessarily mean that

the deviation on the prediction problem of interest, in this

case CI at I¼ 0.002 ng/ml, will actually be reduced. Certainly

that pair of prediction deviation models will no longer satisfy

both constraints (5b) and (5c), however, there may exist yet

another pair of models that do not disagree on P0 but produce

the same prediction deviation on Y. A powerful property of

prediction deviation as a measure of uncertainty is that we

actually can determine if this is the case.

A. Estimating experiment impact

Collecting observations from experiment P0 would

change the prediction deviation by requiring the prediction

deviation models to be a good fit for the new observations.

In essence, there would be two new constraints that must be

satisfied

zfitð�h
1
;P0; ~x0Þ � g and

zfitð�h
2
;P0; ~x0Þ � g;

for some g, where ~x0 are the new observations. In Appendix A,

we show that these constraints imply

zdevð�h
1
; �h

2
;P0Þ � 2g; (6)

which allows us to get some idea of the impact these con-

straints would have even without knowledge of ~x0. The

essence of this result is that if the prediction deviation mod-

els are a good fit for the new data, they must have close tra-

jectories on the new data. We are unable to restrict the

prediction deviation models to be a good fit for the new data

until we have collected the new data. We can, however,

restrict the prediction deviation models to have close trajec-

tories on the candidate experiment, thus estimating the

FIG. 3. (a) Circles indicate observed

data for total uninfected CD4 T cells.

In black is the best-fit model, and in

blue are the two prediction deviation

models, which also provide a good fit

to the data. (b) The prediction devia-

tion models provide widely differing

predictions about the number of unin-

fected cells that are refractory, ranging

from nearly none to nearly all.

FIG. 4. Trajectories from the same

best-fit (black) and prediction deviation

(blue) models as Fig. 3, for two candi-

date experiments. (a) Observations

from this experiment would disqualify

at least one of the prediction deviation

models. (b) Both prediction deviation

models might remain feasible after this

experiment.
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impact that the candidate experiment would have on the pre-

diction deviation. This is done by solving the prediction

deviation problem with the added constraint (6), which we

call the experiment impact problem

maximize
h1;h2

zdevðh1; h2;YÞ; (7a)

subject to zfitðh1;P; ~xÞ � z�u; (7b)

zfitðh2;P; ~xÞ � z�u; (7c)

zdevðh1; h2;P0Þ � g: (7d)

This problem is identical to problem (5) used to find the pre-

diction deviation, with the added constraint (7d). Model pairs

like that in Fig. 3(a) will not be feasible solutions to this

problem, inasmuch as they violate (7d). If there does exist a

different pair that produces close trajectories on P0 but still

has a large deviation on Y, this optimization problem will

find that pair. We denote the solutions to this optimization

problem as ĥ
1

and ĥ
2
, and call the optimal objective value

zdevðĥ
1
; ĥ

2
;YÞ the estimated experiment impact.

Of all possible outcomes of P0, the outcome that

reduces uncertainty in Y the least is if the observations fol-

low the trajectories of ĥ
1

and ĥ
2
. In this sense, the predicted

experiment impact is a worst-case reduction of uncertainty,

and we can expect that P0 will reduce the prediction devia-

tion at least as much as zdevðĥ
1
; ĥ

2
;YÞ, subject to the close-

ness requirement g being appropriate. Appendix A describes

how g can be chosen.

V. REDUCING UNCERTAINTY OF IFNa DYNAMICS

We now continue the results on uncertainty in IFNa
dynamics and use the predicted experiment impact to find

additional experiments that reduce the uncertainty shown in

Fig. 3(b). There are 20 candidate experiments consisting of

different component measurements and varying IFNa levels.

The estimated experiment impact optimization problem, (7),

was solved for each of these candidate experiments, and

results for the experiment that predicted the largest reduction

of uncertainty, Cþ CI at I¼ 0.0 ng/ml, are shown in Fig. 5.

Fig. 5(a) shows the predicted experiment impact models on

the candidate experiment, which are forced to have close tra-

jectories. Fig. 5(b) shows that for the prediction problem

there is a substantial reduction in uncertainty by requiring

the models to produce close trajectories on the candidate

experiment—this is the estimated experiment impact. The

actual experiment impact is shown in Figs. 5(c) and 5(d): in

Fig. 5(c) the actual observations, and in Fig. 5(d) the predic-

tion deviation after including those observations. The actual

reduction in prediction deviation was very close to that pre-

dicted by the estimated experiment impact in Fig. 5(b).

The estimated experiment impact problem predicted a

significant reduction in uncertainty from only one of the

20 candidate experiments. Fig. 6 shows the results of sepa-

rately adding each of the 20 candidates, and the Cþ CI at

I¼ 0.0 ng/ml experiment of Fig. 5 provided by far the largest

reduction of uncertainty. The other two experiments at

I¼ 0.0 ng/ml provided a moderate reduction in uncertainty,

while the remaining 17 experiments provided no reduction in

uncertainty. Some experiments actually increased the uncer-

tainty, by increasing the amount of noise in the fitting.

We denote the prediction deviation models after includ-

ing data from experiment P0 as �h
10

and �h
20

. Fig. 7(a) com-

pares the estimated experiment impact, zdevðĥ
1
; ĥ

2
;YÞ, to the

actual impact of each candidate experiment, zdevð�h
10
; �h

20
;YÞ.

As already seen in Fig. 5, for the one candidate that in actual-

ity significantly reduced uncertainty, the predicted impact

was very close to the actual impact. There were two

FIG. 5. (a) and (b) The expected experi-

ment impact for a candidate experiment

(a) on the prediction problem (b). In

black and blue are the best-fit and predic-

tion deviation models, respectively, as

in Figs. 4(a) and 3(b). In red are the

expected experiment impact models,

which predict a substantial reduction in

uncertainty from this experiment. (c) and

(d) The corresponding figures after

adding observations from the candidate

experiment in (a). In (c), the updated

best-fit and prediction deviation models

after adding the data (circles, with over-

lapping data shown side-by-side). In (d),

the updated prediction deviation, reduced

from (b) by the new observations.
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experiments that provided a moderate reduction in uncer-

tainty which was not matched by the estimated experiment

impact. For the remaining 17 experiments, solving the esti-

mated experiment impact problem correctly predicted that

these experiments would not reduce uncertainty. Because it

comes from adding a constraint to the prediction deviation

problem, the estimated experiment impact problem cannot

predict an increase in uncertainty, rather it can only predict

that uncertainty will not decrease. Thus in Fig. 7(a) the esti-

mated experiment impacts for the 17 ineffectual candidates

are very close to the previously measured prediction

deviation.

The two experiments with a moderate reduction in

uncertainty that was not predicted give insight into how the

estimated experiment impact problem works. Fig. 8 shows

the pre-experiment and post-experiment prediction devia-

tion models, along with the expected experiment impact

models, for one of these two experiments. Estimated experi-

ment impact is a worst-case analysis, and for these two

experiments the worst-case models did not reduce uncer-

tainty while the post-experiment models did. Each of these

experiments had a potential outcome, consistent with the

observed data, which would not have reduced uncertainty.

Fig. 8(a) shows this worst-case potential outcome for one of

the experiments. The actual data did not follow these worst-

case trajectories, and in fact were able to moderately reduce

uncertainty. Importantly, there were no experiments for

which the estimated experiment impact indicated a reduc-

tion of uncertainty where in reality there was none. Because

estimated experiment impact is a worst-case analysis, if the

model is correct, this type of error will not occur and we

will not do experiments that end up not reducing

uncertainty.

The fact that 17 of the 20 experiments produced no

reduction of uncertainty could not have been known without

solving the estimated experiment impact problem. In particu-

lar, measuring the uncertainty in the candidate experiments

themselves, as in Fig. 4, could not predict that all of these

experiments would have no impact. Fig. 7(b) compares the

deviation on the candidate experiments, zdevð�h
1
; �h

2
;P0Þ, to

the actual experiment impact zdevð�h
10
; �h

20
;YÞ. The two candi-

dates with the highest pre-experiment deviation did not

actually reduce uncertainty at all. Fig. 7(b) shows that the

uncertainty in the candidate experiment does not at all pre-

dict the impact that the candidate will have in the uncertainty

of the prediction problem.

Fig. 9 shows the outcome of using the expected experi-

ment impact in a sequential experimentation setting. Starting

from the data in Fig. 3(a), we sequentially added in the data

from the candidate experiment whose estimated experiment

impact predicted the largest reduction in uncertainty. Each

time after adding data from a candidate, we recomputed the

prediction deviation with the new set of observations and

recomputed the estimated experiment impact of the remaining

candidates. Fig. 9(a) shows that adding in the second set of

observations (those in Fig. 5(c)) produced a large drop in pre-

diction deviation, shown in Figs. 5(b) and 5(d). Additional

experiments continued to reduce uncertainty, but in much

smaller amounts, consistent with the findings of Fig. 6. After

adding data from just 3 of the 20 candidate experiments, the

uncertainty was at nearly the level that was obtained by

FIG. 7. (a) Markers show for each candidate experiment the estimated experiment impact compared to the actual prediction deviation measured after including

the observations from that candidate. The gray line indicates where the estimate matches the actual outcome. (b) For each candidate experiment, the deviation

of the prediction deviation models on that candidate experiment (see Fig. 4) compared to the prediction deviation measured after including the observations

from that candidate. Candidate deviation does not provide a good prediction of experiment impact.

FIG. 6. Markers show the prediction

deviation measured after including

observations from each of the 20 can-

didate experiments. The horizontal

line shows the prediction deviation

prior to incorporating those observa-

tions, from Fig. 3. The experiment

that most reduced uncertainty was that

from Fig. 5.
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including all 20 of the candidate experiments. Fig. 9(b) com-

pares the prediction deviation with only the initial experiment

to that obtained after including the first three experiments

selected using the estimated experiment impact. Initially, the

data supported both the hypothesis that nearly none of the

CD4 T cells were refractory, and the hypothesis that nearly all

of the CD4 T cells were refractory. With the additional obser-

vations, the prediction deviation shows that only a small mi-

nority of CD4 T cells are refractory.

VI. THEORETICAL ANALYSIS

Prediction deviation has a strong theoretical guarantee

that further motivates its use as a metric of uncertainty. For

the purposes of the theoretical analysis, we assume that there

exists a true model htrue, and the observed data equal the out-

put of this true model, plus random noise

~xj
iðtÞ ¼ xiðt; htrue; mjÞ þ �ijt;

where �ijt are independent but not necessarily identically dis-

tributed random variables. Let a be such that z�u used to mea-

sure prediction deviation is the upper-bound on a 1� a

confidence interval. Under reasonable assumptions on �ijt

which are given in Appendix B, the following theorem

holds:

Theorem 1. With probability at least 1� a

zdevðhtrue; �h
1
;YÞ � zdevð�h

1
; �h

2
;YÞ and

zdevðhtrue; �h
2
;YÞ � zdevð�h

1
; �h

2
;YÞ:

This theorem means that the trajectory of the true model

is in a particular sense bounded by that of the prediction

deviation models: With high probability, it does not differ

from either of the prediction deviation models by an amount

larger than the difference in the prediction deviation models

themselves. Thus if the prediction deviation is small and the

trajectories of the prediction deviation models are close, then

the trajectory of the true model can be specified within a nar-

row window, with high probability. This guarantee shows

that prediction deviation corresponds to bounds on the

underlying true model and provides additional support for

the validity of prediction deviation as a metric of uncertainty.

The proof is given in Appendix B.

FIG. 8. (a) and (b) The expected experi-

ment impact for a candidate experiment

(a) on the prediction problem (b). In

black and blue are the best-fit and pre-

diction deviation models, respectively.

The expected experiment impact models

(red) show a possible outcome of the

experiment that does not reduce uncer-

tainty. (c) and (d) The corresponding

figures after adding observations from

the candidate experiment in (a). The

actual data from the experiment (c)

were not the worst-case outcome found

by the expected experiment impact

problem in (a), and actually produced a

moderate reduction in uncertainty (d).

FIG. 9. (a) Observations were added

sequentially from the candidate experi-

ment with the best estimated experi-

ment impact, and prediction deviation

recomputed after each addition. The

horizontal gray line shows the predic-

tion deviation obtained after adding

observations from all 20 candidate

experiments. (b) The prediction devia-

tion models corresponding to the 1

(blue) and 4 (purple) completed

experiment markers from (a).
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VII. RELATED WORKS

There are several related lines of work assessing predic-

tive power in dynamical systems. Kreutz et al.10 use an

optimization approach to measure prediction confidence

intervals. Prediction intervals are measured by solving a

sequence of minimization problems, separately for each time

point in each prediction problem. Prediction intervals differ

from the prediction deviation in that there might be different

models that provide the upper and lower bounds at each time

interval, whereas prediction deviation produces a single pair

of models that maximizes the total deviation across all time

points. The main strength of using prediction deviation as a

measure of uncertainty is the ability to directly predict the

impact of an additional experiment on the prediction devia-

tion, via the estimated experiment impact problem. Kreutz

et al.10 propose using the prediction intervals of the candi-

date experiments to decide which experiment would have

the highest impact on the prediction problem. For nonlinear

dynamical systems, reducing uncertainty of the model under

one condition (the candidate experiment) does not necessar-

ily reduce uncertainty under a different condition (the predic-

tion problem). This is shown clearly in Fig. 7(b), where

many candidate experiments had large uncertainty them-

selves, yet their observations did not reduce the uncertainty

in the prediction problem. For prediction deviation, on the

other hand, solving the optimization problem in (7) provides

a direct estimate of how much reducing uncertainty in the

proposed experiment will reduce uncertainty in the predic-

tion problem. Because it is a worst-case analysis, the esti-

mate from solving (7) also will not make the sort of error

shown in Fig. 7(b) where the recommended experiments end

up not reducing uncertainty. Other approaches to measuring

prediction intervals include boostrapping11 and MCMC sam-

pling in a Bayesian framework.12 Vanlier et al.13 provide a

review of recent approaches to measuring uncertainty both in

parameters and in predictions.

Optimal experimental design has typically been studied in

the context of parameter estimation14–16 or, more recently,

model selection and discrimination.17–21 Kreutz and Timmer22

provide a review of recent approaches to optimal experimental

design for these two problems. Our methods here are for opti-

mal experimental design for prediction uncertainty, which gen-

erally requires predicting the impact of a proposed experiment

on prediction uncertainty. Casey et al.23 measure prediction

uncertainty using a linearization of the prediction problem and

then show how to predict the impact of a proposed experiment

on the approximated prediction uncertainty. Another approach

to optimal experiment design is to simulate the outcome of the

proposed experiment using the best-fit model, and to measure

the corresponding reduction in uncertainty.16 Useful experi-

ments will themselves have high prediction uncertainty, so

there will likely be a large range of possible outcomes, only

one of which is the best-fit outcome. As shown in Fig. 8, the

impact of the experiment on prediction uncertainty may

depend strongly on which of the possible outcomes is realized.

The actual reduction of uncertainty from an experiment could

be much less than that predicted by the best-fit outcome, poten-

tially wasting a valuable experiment. Solving (7) measures

uncertainty under the worst-case of the possible outcomes of

the experiment, ensuring that the experiment will be useful

whatever the outcome may be.

VIII. CONCLUSIONS

Two important questions that arise when fitting nonlin-

ear dynamical systems to data are uncertainty quantification

and optimal experimental design. We presented in this paper

a prediction-centered approach for measuring uncertainty

in a dynamical system’s fit to data. Prediction deviation is

able to directly show, via the pair of prediction deviation

models, how much uncertainty remains in the prediction

problem, thus answering the uncertainty quantification ques-

tion. Solving the estimated experiment impact problem pro-

vides a priori a direct estimate of the impact that a candidate

experiment would have on uncertainty. This allows the ex-

perimenter to choose the additional experiments that are

likely to most reduce uncertainty, thus answering the ques-

tion of optimal experimental design. We used the estimated

experiment impact problem to sequentially choose 4 experi-

ments which produced nearly the same reduction in uncer-

tainty as the full set of 20 candidate experiments. In addition

to the sequential experimentation setting that was demon-

strated here, estimated experiment impact can also be used

to predict the impact of simultaneously running a number of

experiments by combining them into a single candidate.

Finally, we proved a bound that with high probability pro-

vides a direct relationship between prediction deviation and

how constrained the underlying true model is, providing a

theoretical foundation for using prediction deviation as a

metric of uncertainty.
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APPENDIX A: IMPLEMENTATION DETAILS

1. Specifying the parameter g

Observations ~x0 from candidate experiment P0 would con-

strain the prediction deviation models according to the two con-

straints zfitð�h
1
;P0; ~x0Þ � g and zfitð�h

2
;P0; ~x0Þ � g. The amount

that the fit error on the new models would be constrained, g, is

a parameter in the estimated experiment impact problem, (7).

Assuming normally distributed noise and a reasonable estimate

of the experiment noise level r2
ijt; zfitðh�;P0; ~x0Þ follows a v2

distribution whose 95% percentile provides a reasonable choice

for g. Alternatively, since observations are normalized by their

noise level when computing fit error, if all observations contrib-

ute equally to the uncertainty then g ¼ z�ujP0j=jPj provides a

reasonable choice, where jPj is the number of observations in

experiment P and z�u is the upper end of the 95% confidence

interval for the best-fit error. This is the approach we used in

our experiments, and the effect of this g through (7d) can be

seen in Fig. 5(a).

The following result provides the motivation for con-

straint (7d) in the estimated experiment impact problem.
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Proposition 1. zfitð�h
1
;P0; ~x0Þ � g and zfitð�h

2
;P0; ~x0Þ � g

imply zdevð�h
1
; �h

2
;P0Þ � 2g.

Proof.

zdevð�h
1
; �h

2
;P0Þ

¼
XJ

j¼1

X
i2Ij

X
t2Ti;j

xi t; �h
1
; mj

� �
� xi t; �h

2
; mj

� �
rijt

0
@

1
A

2

¼
XJ

j¼1

X
i2Ij

X
t2Ti;j

 
ðxiðt; �h

1
; mjÞ � ~xj

iðtÞÞ
rijt

� ðxiðt; �h
2
; mjÞ � ~xj

iðtÞÞ
rijt

!2

� zfitð�h
1
;P0; ~x0Þ þ zfitð�h

2
;P0; ~x0Þ � 2g:

The third line uses the triangle inequality, and the last line is

by supposition. �

This result allows for an approximation of the impact of

P0 that does not require knowledge of the data ~x0. The trian-

gle inequality is generally loose, and incorporating this con-

straint into a maximization problem means that the result is

the worst-case impact of ~x0. These two approximations pro-

vide room for the additional approximation made above in

choosing g. Ultimately, Fig. 7(a) shows that the approxima-

tions involved in estimating experiment impact are good

enough to be useful.

2. Simulation and optimization

SloppyCell24,25 was used to integrate the model ODE sys-

tem. In addition to integrating the model, SloppyCell integrates

the forward sensitivity system, which provides gradients of the

model trajectories with respect to the parameters,rhxiðt; h; mjÞ.
From these gradients, it is a straightforward calculation to

obtain the gradients of the objectives and constraints for the

three optimization problems in this paper: the data fitting prob-

lem, the prediction deviation problem, and the estimated

experiment impact problem. All optimization problems were

solved using random restarts of gradient-based optimization

methods, with each optimization problem solved from 20

random initializations. The data fitting problem is an uncon-

strained minimization problem and was solved using the Scipy

implementation of the Newton conjugate-gradient algo-

rithm.26,27 The prediction deviation and estimated experiment

impact problems are constrained maximization problems and

were solved using the logarithmic barrier method [Ref. 27,

Framework 17.2]. This method solves the constrained problem

via a sequence of unconstrained problems, each of which was

solved using the Newton conjugate-gradient method. The com-

putational difficulty of each of these unconstrained problems is

similar to that of the data-fitting problem. Solving (5) and (7)

should thus scale in a similar way as the data fitting problem

and have similar challenges. Feasible initial values for the pre-

diction deviation and estimated experiment impact optimiza-

tion problems were obtained using a Gaussian random walk

from the best-fit parameters (which are always feasible), reject-

ing infeasible steps.

3. Experimental data

The data for the experiment on IFNa dynamics were

those provided by Browne et al.9 There, two parameters

were measured separately from these data, and we followed

and treated these parameters, as well as all initial conditions,

as known. One of the known parameters was the IFNa decay

rate, and so IðtÞ was thus known. The estimation done in this

paper was then on a space of 7 parameters and 5 variables.

The noise variance estimate used for weighted least squares

and for prediction deviation, r2
ijt, was taken as the average

over time of the sample variances across the four replicates

at each time point, separately for each set of variables and

IFNa level. This is equivalent to the maximum likelihood

estimate under a model where the noise is normally distrib-

uted with a variance that differs across variables and IFNa
levels but is constant across time points.

APPENDIX B: PROOF OF THE THEORETICAL RESULT

The result of Theorem 1 provides a theoretical founda-

tion for using prediction deviation as a metric of uncertainty

by showing that it relates directly to bounds on the behavior

of the underlying true model. The theorem requires the fol-

lowing assumptions:

Assumption 1. The observed data are the output of a true
model htrue, plus noise: ~xj

iðtÞ ¼ xiðt; htrue; mjÞ þ �ijt.

Assumption 2. The random variables �ijt are independent.
Assumption 3. The probability density function of �ijt is
symmetric about 0 and unimodal, meaning the distribution
function F�ijt

ðxÞ is convex for x � 0 and concave for x � 0.

Assumption 4. Let h� be the best-fit model under a particu-
lar realization of the observations and z�u fixed. Then,
assume P~xðzfitðh�;P; ~xÞ � z�uÞ � 1� a.

Assumption 2 requires independence, but does not

require �ijt to be identically distributed, thus the noise level

may vary across different observations. Assumption 3 is

quite general: it is satisfied by the normal distribution, as

well as by other heavy-tailed distributions. In Assumption 4,

the model h� is held constant and the randomness is over dif-

ferent realizations of �ijt, and thus different realizations of ~x.

This assumption is about how the best-fit to one realization

of the data generalizes to other realizations of the data, and

requires that z�u, used in constraints (5b) and (5c), actually

provides a 1� a upper bound for the fit error.

For the proof of Theorem 1, we define notation to

describe the squared residuals. Let Rtrue
ijt ¼ ðxiðt; htrue; mjÞ

�~xj
iðtÞÞ

2
be the squared residuals under the true model and

R�ijt the squared residuals under the best-fit model, h�. Let

bijt ¼ xiðt; h�; mjÞ � xiðt; htrue; mjÞ be the bias of the best-fit

model.

The following result shows that intervals of the noise

distribution centered on 0 contain the most probability mass.

Lemma 1. For x � 0 and for a 2 R; F�ijt
ðxþ aÞ

�F�ijt
ð�xþ aÞ � F�ijt

ðxÞ � F�ijt
ð�xÞ.

Proof. This result follows from Assumption 3. When

x¼ 0 the result is trivial. For x> 0, we first consider the case

where a � x. For all x � 0; F�ijt
ðxÞ is concave, and thus
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F0�ijt
ðxÞ is monotonically non-increasing. This means

@
@a F�ijt

ðxþ aÞ � F�ijt
ð�xþ aÞ

� �
� 0 8a � x, and this quantity

is maximized when a¼ x. Thus,

F�ijt
ðxþ aÞ � F�ijt

ð�xþ aÞ
� F�ijt

ð2xÞ � F�ijt
ð0Þ

� 2ðF�ijt
ðxÞ � F�ijt

ð0ÞÞ
¼ F�ijt

ðxÞ þ 1� F�ijt
ð�xÞ � 2F�ijt

ð0Þ
¼ F�ijt

ðxÞ � F�ijt
ð�xÞ;

which is the statement of the lemma. The second line follows

directly from the concavity of F�ijt
ðxÞ and the third line uses

the symmetry F�ijt
ðxÞ ¼ 1� F�ijt

ð�xÞ. When a � �x, the

same argument holds using the convexity of F�ijt
ðxÞ for

x � 0.

For the remaining case, jaj < x,

F�ijt
xð Þ � 1

2
F�ijt

xþ að Þ þ F�ijt
x� að Þ

� �
by the concavity of F�ijt

ðxÞ on the interval ½x� a; xþ a�.
From the symmetry, it then follows that

1þ F�ijt
ðxÞ � F�ijt

ð�xÞ � F�ijt
ðxþ aÞ þ 1� F�ijt

ð�xþ aÞ:

After rearranging, this proves the lemma. �

An important concept for the proof of Theorem 1 is that

of a stochastic ordering, which we now define and then use

to prove the theorem.

Definition 1. For random variables X and Y, X � Y if
PðX > xÞ � PðY > xÞ8x.

Lemma 2. Rtrue
ijt � R�ijt.

Proof.

PðR�ijt � xÞ ¼ Pðð�ijt � bijtÞ2 � xÞ
¼ F�ijt

ð
ffiffiffi
x
p
þ bijtÞ � F�ijt

ð�
ffiffiffi
x
p
þ bijtÞ

� F�ijt
ð
ffiffiffi
x
p
Þ � F�ijt

ð�
ffiffiffi
x
p
Þ

¼ PðRtrue
ijt � xÞ;

using Lemma 1. �

The next result comes from Shaked and

Shanthikumar,28 Theorem 1.A.3(b).

Lemma 3. For independent random variables X1;…;Xn

and Y1;…; Yn, let X ¼
Pn

i¼1 wiXi and Y ¼
Pn

i¼1 wiYi with
non-negative weights w1;…;wn. If Xi � Yi8i, then X � Y.

Corollary 1. zfitðhtrue;P; ~xÞ� zfitðh�;P; ~xÞ.
Proof. The fit error is a weighted sum of the squared

residuals, with weights 1
r2

ijt

, so this result follows directly

from Lemmas 2 and 3, and Assumption 2. �

Theorem 1. With probability at least 1� a

zdevðhtrue; �h
1
;YÞ � zdevð�h

1
; �h

2
;YÞ and

zdevðhtrue; �h
2
;YÞ � zdevð�h

1
; �h

2
;YÞ:

Proof. By Corollary 1 and Assumption 4

Pðzfitðhtrue;P; ~xÞ � z�uÞ � Pðzfitðh�;P; ~xÞ � z�uÞ � 1� a:

Thus with probability at least 1� a; ðhtrue; �h
1Þ is a feasible

solution to problem (5). The proof of the theorem is then

by contradiction: If zdevðhtrue; �h
1
;YÞ > zdevð�h

1
; �h

2
;YÞ, then

ð�h1
; �h

2Þ cannot be an optimal solution to problem (5).

However, ð�h1
; �h

2Þ are defined to be optimal solutions, and so

the theorem holds. The same argument simultaneously holds

for ðhtrue; �h
2Þ. �
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