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Physical controllability of complex 
networks
Le-Zhi Wang1, Yu-Zhong Chen1, Wen-Xu Wang2 & Ying-Cheng Lai1,3

A challenging problem in network science is to control complex networks. In existing frameworks of 
structural or exact controllability, the ability to steer a complex network toward any desired state 
is measured by the minimum number of required driver nodes. However, if we implement actual 
control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon 
arises: due to computational or experimental error there is a great probability that convergence to 
the final state cannot be achieved. In fact, the associated control cost can become unbearably large, 
effectively preventing actual control from being realized physically. The difficulty is particularly severe 
when the network is deemed controllable with a small number of drivers. Here we develop a physical 
controllability framework based on the probability of achieving actual control. Using a recently 
identified fundamental chain structure underlying the control energy, we offer strategies to turn 
physically uncontrollable networks into physically controllable ones by imposing slightly augmented 
set of input signals on properly chosen nodes. Our findings indicate that, although full control can be 
theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the 
number of driver nodes and control cost to achieve physical control.

The past few years have witnessed great progress toward understanding the linear controllability of complex 
networks1–28. Given a linear and time-invariant dynamical system, the traditional approach to assessing its con-
trollability is through the Kalman rank condition29. However, for a complex network, it is difficult to test, both 
mathematically and computationally, the Kalman rank condition directly to determine the optimal configuration 
for control input signals1 due to the typically large network size and the complex spectrum of network topology. 
To overcome this difficulty, Liu et al. proposed in their pioneering work4 to exploit Lin’s classic theory of struc-
tural controllability30. In this framework, the fundamental issue is to determine the minimum number of con-
trollers required to steer the whole networked system from an arbitrarily initial state to an arbitrarily final state in 
finite time. It was proved and demonstrated4 that, for directed complex networks, their structural controllability 
can be established via the maximum matching algorithm31–33. In particular, based on Lin’s theory, one can deter-
mine the maximally matched set of nodes, where each and every unmatched node requires an external control 
signal. An equivalent optimization procedure was developed for undirected networks to determine the mini-
mum dominating set of nodes6. The structural controllability framework also served the base to address an array 
of issues such as edge dynamics8, lower and upper bounds of energy required for control7, control centrality34, 
optimization5, effects of the density of in/out degree nodes14, and scaling of energy cost27. In addition, based on 
the classic Popov-Belevitch-Hautus (PBH) rank condition35 from traditional control engineering, a variant of the 
structural-controllability theory, an exact controllability framework was developed10 which is universally appli-
cable to all kinds of complex networks: directed or undirected, weighted or unweighted. In terms of applications, 
the structural controllability framework has been used to characterize protein interaction networks to determine 
the key proteins responsible for certain biological functions16.

In both structural and exact controllability frameworks, the focus is to determine the minimum number of 
control signals, denoted by ND, for complex networks of various topologies. However, we have encountered an 
unexpected difficulty when using the minimal set given by either structural or exact controllability theory to 
carry out actual control of the network: convergence to the final state. In particular, given a network, once ND is 
determined, we can determine the specific control signals to be applied at various unmatched nodes by using the 
standard linear systems theory36. The surprising phenomenon is that, quite often, actual control of the system 
cannot be achieved computationally in the sense that, in any finite time, the system cannot be driven from an 
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arbitrarily initial state to an arbitrarily final state. We believe that this difficulty is fundamental, as we were not 
able to remove or even mitigate the problem of divergence despite extensive and systematic computational efforts 
in implementing various ways to optimize the numerical algorithm. This difficulty in realizing actual control 
persists for a large number of model and real world networks. While somewhat unsettling, the issue prompts us to 
hypothesize that the existing controllability frameworks are merely mathematical, as the implementation of actual 
control would often require infinite precision computations and, more seriously, an infinite amount of energy. To 
make the notion of controllability of complex networks meaningful, the issue of physical controllability must be 
addressed.

In this paper, we develop a physical controllability framework for complex networks to address whether actual 
control can be achieved in an experimentally or computationally feasible way. Given a complex network, we 
first use the structural controllability theory4 to determine ND and a set of unmatched nodes to which control 
signals are to be applied. Then, with a given pair of arbitrarily initial and final states as well as a finite control 
time, we calculate the optimal control signals36 and evolve the whole networked system, which is essentially a 
linear dynamical system under external driving, to determine whether the system can be driven from the initial 
state to the final state in the given amount of time. During this process, the energy required for control can be 
calculated through the standard formula in linear systems theory36,37, which expresses the energy as the integral 
of the product of a number of matrices, including the inverse of the positive-definite, symmetric Gramian matrix. 
Freedom in choosing the initial and final states and independent network realizations render feasible a statistical 
analysis of the control process. We find that, typically, there are two cases, depending on whether the network 
can be physically controlled. For the physically controllable case, the whole system, starting from the chosen 
initial condition, can actually converge to the final state in the prespecified time within a predefined precision. In 
this case, the Gramian matrix is well-behaved, meaning that both its condition number and the energy are not 
unrealistically large. For the physically uncontrollable case, the system cannot reach the final state within the pre-
defined precision in the given time. In such a case, the Gramian matrix is singular in the sense that its condition 
number can be arbitrarily large, so is the corresponding energy. Increasing the precision of the computation, e.g., 
by using special simulation packages with round-off error orders of magnitude smaller than that associated with 
the conventional double-precision computation, would convert a few uncontrollable cases into controllable ones, 
but vast majority of the uncontrollable cases remain unchanged.

The main result of this paper is a proposal of a general, probabilistic measure to characterize the physical con-
trollability for complex networks of arbitrary topology. For physically uncontrollable networks, it is important 
to develop effective strategies to make them physically controllable. To accomplish this goal, we gain insights by 
calculating the control energy for a bidirectional 1D chain and obtaining an analytical relation between energy 
E and chain length L. We then apply the result to general networked systems based on the idea of longest control 
chain (LCC)27. Optimization strategies can be derived to decrease the control energy drastically. In fact, if the sys-
tem is physically uncontrollable, a viable way to make it controllable is to increase the number of control signals 
beyond ND. Our framework of physical controllability thus contains the following essential ingredients: (1) ND, 
the minimum number of control signals determined by the existing mathematical controllability frameworks, (2) 
a measure of physical controllability, (3) control energy E determined by the Gramian matrix, and (4) augmenta-
tion of ND for physically uncontrollable networks. The existing mathematical controllability theories4,10 thus pro-
vide a base for our physical controllability framework. The quantity ND, on which the mathematical controllability 
theories focus, can effectively be regarded as the lower bound of the actual number of control signals required. To 
realize physical control, depending on the specific system and control settings, either ND control signals suffice or 
substantially more signals are needed.

Results
Definition of physical controllability. We consider the standard setting of a linear dynamical system 
subject to control input1,4,10:

= ⋅ + ⋅


A Bx x u, (1)

where x =  [x1(t), … , xN(t)]T is a vector of dynamical variables of the entire network, u =  [u1(t), … , uM(t)]T is a 
vector defining the set of control input signals, A =  {aij}N×N is the adjacency matrix with N being the number of 
nodes in the network, and = ×B b{ }ik N N D

 is control input matrix specifying the set of ND “driver” nodes4, each 
receiving a control signal that corresponds to one component of the control vector u. From the linear systems 
theory, optimal control of a linear dynamical network in the sense of minimized energy cost can be achieved 
when the input control signals ut are chosen as36,37: = ⋅ ⋅ ⋅ − ⋅− −B e W eu x x( )t

T A t t
t

At( ) 1
0

T
f

f
f , where

∫ τ≡ ⋅ ⋅ ⋅τ τW e B B e d
(2)t

t A T AT

0

f

is the Gramian matrix, a positive-definite and symmetric matrix36, which serves as the base to determine quan-
titatively if a system is actually controllable. In particular, the system is controllable only when W is nonsingular 
(invertible) for given control precision36,37. With the control input signal u, the energy cost is36

∫= ⋅E t dtu u( ) , (3)
t

t
T

tf
0

f

where control is initiated at t =  0 and ended at t =  tf.
To present concrete evidence for the existence of physically uncontrollable networks, we use the Erdos-Renyi 

(ER) type of directed random networks38 and the Barabási-Albert (BA) type of directed scale-free networks39 with 
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a single parameter Pb. The meaning of Pb is the following. Given a pair of linked nodes, i and j, the probability that 
the link points from the smaller-degree node to the larger-degree one is Pb, and the probability in the opposite 
direction is 1 −  Pb. The link direction is chosen randomly if i and j have the same degree. To determine the set of 
driver nodes, we use the maximum-matching algorithm30, which gives the control matrix B. For each combina-
tion of A and B, we first randomly choose the initial and final states. We then calculate the corresponding Gramian 
matrix W, its condition number, the input signal ut, the actual final states x*tf

, and finally the control energy E(tf). 
Repeating this process for each and every independent network realization in the ensemble enables an extensive 
statistical analysis of the control process.

Mathematically, if the Gramian matrix W is singular, the energy diverges. Through extensive and systematic 
numerical computations, we find that, even when W is non-singular in the mathematical sense, for typical com-
plex networks its condition number can be enormously large, making it effectively singular as any physical meas-
urement or actual computation must be associated with a finite precision. Say in an experiment the precision of 
measurement is ε. In a computational implementation of control, ε is effectively the computer round-off error. 
Consider the solution vector X of the linear equation: W · X =  Y, where Y is a known vector. Let CW be the condi-
tion number of W. The accuracy of the numerical solution of X, denoted by eX =  10−k (k is a positive integer), is 
bounded by the product between CW and ε40. We see that, if CW is larger than ε ≡− C10 /k

W , it is not possible to 
bring the system to within 10−k of the final state at finite control cost, so physically control cannot be achieved in 
finite time.

For a large number of networks drawn from an ensemble of networks with a pre-defined topology, the condi-
tion numbers of their Gramian matrices are often orders of magnitude larger than CW. Figure 1 shows the corre-
lation between the condition number CW and the control error eX. We observe that, within a certain range of CW, 
an approximate scaling relation exists between CW and eX, as shown in panels (a, c, e, g). However, the scaling 
disappears outside the range where the Gramian matrix W is ill conditioned, leading to considerable errors when 
computing the matrix inverse. In principle, the scaling regime can be extended with improved computational 
precision, but not indefinitely. For the networks with an ill conditioned Gramian matrix, not only is the control 
vector unable to drive the system to the target state, but the associated energy can be extremely large. These obser-
vations suggest the following criterion to define physical controllability in terms of the control energy cost: a 
network is controllable with respect to a specific control setting if and only if the condition number of its Gramian 
matrix is less than CW , a critical number determined by both the measurement or computational error and the 
required precision of control. For a given set of network parameters (hence a given network ensemble) and con-
trol setting, the probability that the condition number of the Gramian matrix is less than CW , P C( )W , can effec-
tively serve as a quantitative measure of physical controllability. Increasing the precision of the computation, e.g., 
by using special simulation packages with round-off error orders of magnitude smaller than that associated with 
the conventional double-precision computation, would convert a few uncontrollable cases into controllable ones, 
but vast majority of the uncontrollable cases remain unchanged.

Note that, physical controllability is characterized by the condition number of the Gramian matrix W, which 
is defined by the adjacency matrix A, the control matrix B, and the control time from t0 to tf. The adjacency matrix 
A totally defines the structure of the underlying network and, in the absence of control, solely determines the 
evolution of the system from an initial state. The purpose of control is to design the control matrix B so that the 
Gramian matrix is numerically to ensure that the system is physically controllable, which can be accomplished 
regardless of whether the matrix A is stable or unstable.

We also note that, in a linear dynamical system, the Gramian matrix W is determined by the network struc-
ture, the control configuration, and the control time; it does not depend on the dynamical trajectory. As a result, 
additive noise of reasonable amplitude does not affect the physical controllability of the network.

Structural controllability does not imply physical controllability. We present evidence that struc-
tural and physical controllabilities are not necessarily compatible with each other. Figure 2(a,b) show the percent-
age of driver nodes, nD ≡  ND/N, versus the directional link probability Pb. We see that nD is minimized for 
Pb =  0.5, indicating a maximal (optimal) level of structural controllability because only a few control signals are 
needed to control the whole network4. But can physical controllability be achieved in the same parameter regime 
where structural controllability is optimized? Figure 2(c,d) show the corresponding physical controllability 
P C( )W  versus the network parameter Pb. We see that, in both regimes of small and large Pb values where structural 
controllability is weak [corresponding to relatively high values of nD in Fig. 2(a,b)], the physical controllability is 
relatively strong. In the regime of small Pb values, most directed links in the network point from small to large 
degree nodes. In this case, the network is more physically controllable, in agreement with intuition. The striking 
result is that, in the regime of intermediate Pb values (e.g., Pb around 0.5) where the number of driver nodes to 
control the whole network is minimized so that structural controllability is regarded the strongest, the physical 
controllability is in fact the weakest, as the probability of the condition number P C( )W  being small is close to zero. 
For example, for the random networks in Fig. 2(c), for 〈 k〉  =  4, the minimum value of P C( )W  is only about 0.1 for 
Pb ≈  0.6, while for 〈 k〉  =  6 and 〈 k〉  =  8, the minimum values are essentially zero. Surprisingly, near zero values of 
P C( )W  occur in a wide range of the parameter Pb, e.g., [0.3, 0.8] and [0.2, 0.9] for 〈 k〉  =  6 and 〈 k〉  =  8, respectively, 
as shown in Fig. 2(c). This indicates that the network is physically uncontrollable for most cases where structural 
controllability is deemed to be strong. BA scale-free networks behave similarly, as illustrated in Fig. 2(d). Another 
finding from Fig. 2 is that ND is symmetric about Pb =  0.5, but the symmetry is broken for P C( )W , indicating that 
there is no simple linear correlation between ND and P C( )W . It is thus necessary to find the fundamental struc-
tural properties responsible for the smallness of P C( )W . Through a detailed analysis of the energy cost associated 
with controlling a simple one-dimensional chain and a double chain network ( Methods) and of the energy  
scaling27, we identify the longest control chains (LCCs), the shortest paths through which the control energy is 
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“flowed” to all nodes in the network, as the fundamental structural component responsible for the control energy. 
The longer the LCCs, the more singular the Gramian matrix, and the smaller the probability P C( )W . The maximal 
LCC is effectively the control diameter of the network27.

Physical controllability of an electrical circuit network and a strategy to balance control 
energy and extra inputs. To further illustrate the concept of physical controllability, we consider a real 
one-dimensional cascade parallel RC circuit network, as schematically illustrated in Fig. 3(a). The network can 
be represented by a bidirectional 1D chain with self-loops for all the nodes, as shown in Fig. 3(b) (see Methods). 

Figure 1. Condition number CW versus control precision eX for random and scale-free networks. Network 
size is N =  100 for (a–d) and 200 for (e–h), average degree is 〈 k〉  =  6 for ER random networks [(a), (b), (e) and 
(f)] and 8 for BA scale-free networks [(c), (d), (g) and (h)]. Directional link probability between any pair of 
nodes is Pb =  0.1. Panels (a), (c), (e) and (g) show the scaling relation between the condition number CW and 
the control precision eX. Panels (b), (d), (f) and (h) show the fraction RCW of the networks with a certain CW 
number. The scaling relation holds within some CW-eX region with boundaries specified as the black dashed 
lines. The eX values are not physically meaningful outside the boundaries that are defined according to the 
precision limit of computation. The thresholds of CW and eX used in the computations are 1012 and 10−4, 
respectively, which are indicated as the blue dashed lines. The threshold values are chosen to lie within the 
physical boundaries so that the calculations for all CW values are meaningful.
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The network size can be enlarged, say by one unit, by attaching an additional branch of resistor and capacitor at 
the right end of the circuit. The state ui(t) of node i at time t is the voltage of capacitor i, and the input voltage u(t) 
represents the control signal. The purpose of control is to drive the voltages of the capacitors from a set of values 
to another within time tf through the input voltage u(t). The control energy can then be calculated by Eq. (3). The 
actual energy dissipated in the circuit during the control process is given by

∫= ⋅E U t I t dt( ) ( ) , (4)
t

real
0

f

where U(t) ≡  u(t) and I(t) are the input voltage and current at time t, respectively, and Ereal is in units of Joule. 
By making the circuit equivalent to a 1D chain network, we have three types of energy: the control energy of the 
actual circuit calculated from Eq. (3), the dissipated energy of the circuit from Eq. (4), and the control energy of 
the 1D equivalent network. Figure 3(c) shows that the control energy and the dissipated energy of the circuit do 
not differ substantially from the energy calculated from the unidirectional 1D chain. Among the three types of 
energy, the energy cost associated with the control process calculated from Eq. (4) is maximal.

Our extensive computations reveal that many structurally controllable networks are not physically control-
lable due to a combination of the ill-conditioned Gramian matrix and the finite computational or experimental 
error. Our analysis of the chain model (Methods) suggests a simple but effective strategy to reduce the energy 
significantly so as to enhance the physical controllability of the network: to place extra control signals along 
the LCCs to break the chains into shorter subchains. (In Methods, we show how the redundant control input 
can be planted in a circuit network.) To be illustrative, we consider a unidirectional 1D chain and add an extra 
control input at the ith node. As shown in Fig. 3(d), the magnitude of the control energy is reduced dramatically. 
The optimal location to place the extra control should be near in the middle of the chain so as to minimize the 
length of the LCC using a minimal number of extra control signals. In Fig. 3(d), the red circles represent a 1D 
chain and indicate that this simple strategy of adding one redundant control signal near the middle can reduce 

Figure 2. Structural and physical controllability measures in directed networks. Structural controllability 
measure nD versus directional edge probability Pb for (a) ER random networks and (b) BA scale-free networks 
of size N =  1000 and three values of the average degree (〈 k〉  =  4, 6, and 8). The dash-dotted lines represent the 
results obtained from the cavity method4,5, and the squares, triangles, and circles are simulation results from the 
maximum matching algorithm4. (c,d) Measure of physical controllability P C( )W  for ER random and BA scale-
free networks of size N =  100, respectively, where P C( )W  is the probability that the condition number of the 
Gramian matrix is less than some physically reasonable threshold value. Comparing (a) with (c), or (b) with (d), 
we observe the striking phenomenon that, in the parameter regime where the number of driver nodes is 
minimized so that the corresponding networks are deemed to be most structurally controllable, they are 
physically uncontrollable. The phenomenon persists regardless of the network size and type. All nodes are self-
loop free. The qualitative behavior is robust against variations in the value of CW.
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dramatically the required energy. For the circuit network in Fig. 3, the redundant control input can be realized 
by inducing external current input into a capacitor. In Fig. 3(d), the real energy is represented by green triangles, 
which reaches the minimum when the extra input is putting around the middle. Applying a single redundant 
control input can thus be an extremely efficient strategy to make the one-dimensional chain network physically 
controllable.

Control energy optimization of complex networks. For a complex network, there often exist multiple 
LCCs, requiring multiple redundant control inputs. With insights from the RC circuit example, we see that a 
strategy is to place one redundant control input at the middle of each LCC. In this case, each LCC in the network 

Figure 3. Illustration of parallel R-C circuit and optimization of control energy. (a) A cascade parallel R-C 
circuit with L =  7 resistors (R1, R2, … , and RL, each of resistance 1Ω) and 7 capacitors (C1, C2, … , and CL, each 
of capacitance 1F). External voltage input u(t) is applied from the left side of the circuit, and the voltage of 
capacitor Ci is ui(t)(1 ≤  i ≤  L). An extra external current input ie(t) serves as a redundant control input injected 
into the capacitor C3, where i3 and i4 denote the currents through resistors R3 and R4, respectively. In absence of 
the extra current input, i3(t) −  i4(t) is the current through the branch of C3. (b) Network representation of the 
circuit in (a) as a bidirectional 1D chain network of seven nodes, where the external voltage input u(t) is injected 
into node 1 (yellow driver node, the controller). The dynamical state of node i is described by the voltage of its 
capacitor, ui(t). Links (blue) between nodes are bidirectional and have uniform weight 1 in either direction. 
Each node has a self-link (red) of weight − 2, except the ending node (node 7) whose self-link has weight − 1. 
The extra external current input ie(t) serves as a redundant control input injected into node 3 of the network in 
(b). Now there are two driver nodes (yellow) in the network, nodes 1 and 3. (c) Energy required for controlling 
a unidirectional chain (red circle) and the corresponding circuit (blue square) as well as the dissipated energy 
(green triangle) of the circuit calculated from Eq. (4) versus chain length L. (d) Control and dissipated energies 
in presence of a redundant control signal to node i (i >  1), which breaks the chain into two subchains of lengths 
i and L − i, respectively.
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is broken into two subchains. Figure 4(a) shows the effect of this optimization strategy on the energy distribution. 
For comparison, the same number of redundant control inputs are also applied randomly throughout the net-
work. The reduction ratio between the control energy under optimization strategy, Δ E, and the original control 
energy E characterizes the effectiveness of the optimization process. In particular, if the distribution of Δ E/E is 
concentrated on large values of Δ E/E, then the corresponding optimization strategy can be deemed to be effec-
tive. As shown in Fig. 4(a), for relatively large Δ E/E values, P(Δ E/E) as a result of optimization has values that 
are systematically larger than those under random control signal augmentation, while the opposite situation is 
observed for regions with relatively smaller Δ E/E. Thus, our optimization strategy outperforms the random strat-
egy. The networks requiring proper optimization to be physically controlled are typically those with large control 
diameters. Figure 4(b) show that this is indeed the case: for networks with larger values of DC, the performance of 
our optimization strategy is significantly better than that with random placement of extra controllers.

Discussion
As stated in ref. 4, the ultimate proof that one understands a complex network completely lies in one’s ability to 
control it. However, we find that strong structural controllability is no guarantee that the network can be physi-
cally controlled. To resolve this paradox, We develop a physical controllability framework in terms of the control 
energy cost and the number of external input signals. To illustrate the framework, we focus on the situation where 
the structural controllability theory yields a minimum number of external input signals required for full control 
of the network, and determine whether in these situations the control energy is affordable so as to realize actual 
control. Our systematic computations and analysis reveal a rather unexpected phenomenon: due to the singu-
lar nature of the control Gramian matrix, in the parameter regimes where optimal structural controllability is 
achieved in the sense that the number of driver nodes is minimized, energy cost can be physically impossible to 
accommodate. To obtain a systematic understanding, we focus on a bidirectional 1D chain and study the relation-
ship between energy and chain length. We then apply the 1D chain model to complex networks based on the idea 
of LCCs. In fact, the simple chain model captures the scaling behavior of energy distribution found in random 
networks23,27. The chain model also provides a guiding principle to articulate optimization strategies to reduce the 
control energy, which are tested using a RC circuit network and model complex networks.

An intuitive picture of the interrelation between mathematical controllability4,10 and our physical controlla-
bility is the following. In a fictitious world where the Gramian matrix is not singular (regardless of its condition 
number) and the computer round off or experimental errors are absolutely zero, using ND controllers as deter-
mined by the structural controllability theory can bring the networked system from any initial state to any final 
state in a given time. However, in the physical world, the inevitable measurement or computational errors will 
have a devastating consequence in the execution of actual control as the Gramian matrix is typically effectively 
singular with an arbitrarily large condition number. The dynamical interplay between the error and the singular 
Gramian matrix makes the system uncontrollable in the sense that it cannot be driven to the final state in finite 
time within the desirable precision and the energy required in the process diverges. Often, to realize physical 
control, many more control signals than those determined by the structural controllability theory are needed.

Our work indicates the difficulty of achieving actual control of complex networks associated with even linear 
dynamics. Although the mathematical controllability theories4,10 offer theoretically justified frameworks to guide 
us to apply external inputs on a minimum set of driver nodes, when we implement control to steer a system 
to a desired state, the energy consumption is likely to be too large to be affordable. For nonlinear dynamical 

Figure 4. Effects of redundant control inputs. (a) For control diameter DC =  4, distribution of the normalized 
energy reduction Δ E/E with redundant control in an ensemble of 10000 ER-random networks (〈 k〉  =  6, 
Pb =  0.1). Results from the LCC-breaking optimization and random control augmentation are marked by “mid” 
(red circles) and “R-mid”(blue squares), respectively. For each network, a corresponding number of additional 
random control inputs are applied to the system 10 times to average out the statistical fluctuations. Panel (b) 
shows the Δ E/E distributions for networks with control diameter DC =  5.
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networks, we continue to lack a general controllability framework and an understanding of required control 
energy, although progress has been made22,41–46, in spite of the fact that for specific types of systems, e.g., gene 
regulatory networks, controllability can be defined in terms of the coexisting attractors (final destinations) of the 
system45. Unlike linear networked systems, controllability of a nonlinear network depends on both the network 
structure and the system dynamics. We speculate that the physical controllability of a nonlinear dynamical net-
work, if it can indeed be defined, would depend on both the structural controllability and the system dynamics. At 
the present we still know very little about controlling complex networks hosting nonlinear dynamics, and further 
effort is needed to address this challenging but greatly important problem shared by a wide range of fields.

Methods
Control energy of one-dimensional chain model. To gain insights into how a network’s structure 
affects the control energy, we rewrite Eq. (3) as = ⋅ ⋅−E t Hx x( ) T

f 0
1

0, where = ⋅ ⋅− −H e W eAt A tT
f f . Since H is 

positive definite and symmetric like W, its inverse H−1 can be decomposed in terms of its eigenvectors  
as H−1 =  Q · Λ  · QT, where Q =  [q1, q2, … , qN] is composed of the orthonormal eigenvectors that satisfy 
Q · QT =  QT · Q =  I, and Λ  =  diag{λ1,λ2, … , λN} is the diagonal eigenvalue matrix of H−1 in a descending  
order. Numerically, we find that λ1 is typically much larger than other eigenvalues. We thus have 

λ λ= ⋅ ⋅ Λ ⋅ ⋅ = ∑ ⋅ ≈ ⋅=E t Q Q q qx x x x( ) ( ) ( )T T
i
N

i i
T T

f 0 0 1 0
2

1 1 0
2.

In an undirected network, the adjacency matrix A is positive definite and symmetric. We can decompose A 
into the form A =  V · S · VT, where the columns of V constitute the orthonormal eigenvectors of A and S =  diag{s1, 
s2, … , sN} is the diagonal eigenvalue matrix of A in a descending order. We thus have

= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .− − − −H e W e V e V W V e VAt A t St T St TT
f f f f

Let

λ λ λ λ λ λΛ = … = …−{ } }diag , , , diag{1/ , 1/ , , 1/H H H H N N 1 1N1 2

be the eigenvalue matrix of H in a descending order. The energy can be expressed as

λ λ≈ ⋅ = ⋅ .−E t q qx x( ) ( ) ( ) (5)
T

H
T

f 1 1 0
2 1

1 0
2

N

We consider a bidiretional 1D chain network and provide an analytical calculation of the relationship between 
control energy and chain length L. In the undirected chain, the adjacency matrix is defined as

=






















×







A

0 1
1 0

1 1
0 1
1 0

,

L L

the control matrix is B =  [1, 0, … , 0]T, and the eigenvalues and eigenvectors of A are, respectively,

π
=



 +



 = …s

L
i i L2 cos

1
, 1, , ,

(6)i

π
=

+



 +



 = … .V

L L
ij i j L2

1
sin

1
, , 1, ,

(7)j
i( )

Recall that ∫= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− −H V e e V B B V e t e V( d )St t St T T St St T
0

f f f . Substituting this in Eqs (6) and (7), 
after some algebraic manipulation, we obtain

=
+

⋅ ⋅ ⋅ ⋅H
L

V D P D V1
1

,
(8)

T

where D =  diag{sin(θ), sin(2θ), … , sin(Lθ)}. and ∫= θ θ− +P e tdjk
t j k t

0

2 [cos( ) cos( ) ]f  with θ =  π/(L +  1), j, k =  1, … , L.
The Rayleigh-Ritz theorem can be used to bound P as:

λ λ≤
⋅ ⋅
⋅

≤
Py y

y y
,P

T

T PL 1

and y =  [y1, y2, … , yL]T is an arbitrary nonzero column vector, λP L
 and λP1

 are the maximal and minimal eigenval-
ues of P, respectively. Letting T =  2tf, we have
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∫
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, 1 0
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1

[cos( )]

1
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with ∫ τ≡f g fg, dT

0
. Letting = θ−b ej

jcos( ) and performing a Taylor expansion on bj
t around t =  0, we obtain 

θ θ= ∑ − + −=
−b j j[ cos( )] [ cos( )]j

t
k
L k t

k
L t

L0
1

! !

k j
L

, with tj ∈  [0, T]. Now letting θ= ∑ −=
−q t j( ) [ cos( )]j k

L k t
k0

1
!

k
, we have 

θ= + − ⋅b q t j t L( ) [ cos( )] ( / !)j
t

j
L

j
L . Consequently, the numerator in the Rayleigh quotient can be expressed as
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Since y =  [y1, y2, … , yL]T is an arbitrary nonzero column vector, for each L and T, we can choose y =  ym insofar 
as K1 and K2 are relatively small compared with K3. We can normalize ⋅y ym

T  to arrive at

∑λ ≤
⋅ ⋅

⋅
=










∼








=

P T
L

y y T T
L

y y

y y ! ( !)
,

(11)
P

m
T

m

m
T

m

L

j k

L

m m

L2

, 1

2

2L j k


where λP L
 is the smallest eigenvalue of P. Since P is symmetric and positive definite, using Cholesky decomposi-

tion we can obtain its factorization40 as P =  UT · U, where U is the upper triangular matrix with its diagonal being 
the square roots of eigenvalues of P. Equation (8) can then be written as = ⋅ ⋅ ⋅ ⋅ ⋅

+
H V D U U D V

L
T T1

1
. Since 

orthonormal transform does not change the eigenvalues of a matrix, H has the same eigenvalues as 
= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

+ +
R D U U D D U D U( )

L
T

L
T T T1

1
1

1
. Suppose λ λ λΛ = …{ }diag , , ,P P P P L1 2

 is the diagonal 
eigenvalue matrix of P in a descending order. We then have

λ λ λ θ λ= =
+

≤
+L

k
L

1
1

(sin ) 1
1

,H R P P
2

j j j j

where j and k run from 1 to L. For arbitrary but fixed x0, the control energy E(tf) can be approximated as

λ∼ =




+






−E t L L
t

( ) ( ) ( 1) ( !) ,
(12)

H Lf
1

2

f
2L

 

where we see that E(tf) increases faster than exponential with L. As shown in Fig. 5(a), the energy required to 
control a unidirectional 1D chain nearly overlaps with that of a bidirectional one with identical weights. From 
Fig. 5(b–d) we see that Eq. (12) provides a reasonably accurate estimate of the control energy.

Furthermore, we find numerically that Eq. (5) holds for random and scale-free networks. As shown in Fig. 6, 
there is a strong correlation between the average network control energy, 〈 E〉 , and the smallest eigenvalue of the 
H-matrix, λ −H

1
N
, for ER random and BA scale-free networks, indicating that the network control energy is essen-

tially determined by the smallest eigenvalue of its H-matrix.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:40198 | DOI: 10.1038/srep40198

Network representation of a circuit system. We consider a cascade parallel R-C circuit consisting of 
three identical resistors and capacitors as an example to illustrate how the circuit can be abstracted into a directed 
network, as shown in Fig. 7. For convenience, we set R1 =  R2 =  R3 =  R and C1 =  C2 =  C3 =  C, and denote the cur-
rents through R1, R2, and R3 as i1(t), i2(t), and i3(t), respectively. The equations of the circuit are

Figure 5. Control energy for 1D chain. (a) Energies required to control a unidirectional chain Euni (purple 
circles) and a bidirectional one Ebi (green squares) versus chain length L. (b), (c) and (d) Control energies of 
bidirectional chain calculated by simulation (red squares), λ −H

1
L
 (azure triangles), and chain length L as shown in 

Eq. (12) (navy crosses) for different values of the control time tf =  0.3, 0.5, 1, respectively.

Figure 6. Correlation between network control energy and the smallest eigenvalue of H-matrix. Network 
size is N =  100, directional link probability between any pair of nodes is Pb =  0.1, and average degree is (a)  
〈 k〉  =  6 for ER random networks and (b) 〈 k〉  =  8 for BA sale-free networks.
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After some algebraic manipulation, we have
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Figure 7. Controlling and optimizing a cascade parallel RC circuit system and the corresponding network 
presentation. (a) A cascade parallel R-C circuit with 3 resistors (R1, R2, and R3, each of resistance 1Ω) and 3 
capacitors (C1, C2, and C3, each of capacitance 1F), where u(t) is the external input voltage, u1(t), u2(t), and u3(t) 
are the voltages on the capacitors C1, C2, and C3, and i1(t), i2(t), and i3(t) are the currents through the resistors 
R1, R2, and R3, respectively. (b) Network representation of the circuit in (a). (c) Circuit with an extra external 
current input ie(t) into the capacitor C2. (d) The extra external current input ie(t) serves as a redundant control 
input injected into node 2 of the network in (b). There are two driver nodes (yellow) in the network: 1 and 2.
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Setting R =  1Ω and C =  1F, we have
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where
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A

2 1 0
1 2 1
0 1 1 (17)

is the adjacency matrix of the network representing the circuit, and

=











B

1
0
0 (18)

is the control input matrix. The circuit has thus been transferred into a 3-node bidirectional 1D chain network 
with adjacency matrix A.

Implementation of extra control input in the circuit system. Without loss of generality, we inject an 
extra external current input ie(t) into the capacitor C2, and the circuit equations become:
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The state equations are
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where

=











B

1 0
0 1
0 0 (21)

e

is the control input matrix of the circuit under the original control input u(t) on node 1 and a redundant control 
input ie(t) to node 2. Similarly, the redundant control input can be injected into any capacitor.

It is necessary to keep all other nodes unaffected while introducing exactly one extra control input into the 
circuit. However, any additional voltage change in any part of the circuit can lead to voltage changes on all the 
capacitors. A change in the current through a capacitor will not affect the currents in other components of the 
network, since only the time derivative of its voltage is affected. Thus, a meaningful way to introduce an extra con-
trol signal input to one node of a circuit’s network is to inject current into one particular capacitor in the circuit.
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