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It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a
series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an
x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via well-
established iterative phasing algorithms. Such a technique could have a significant impact on the field of
biological structure determination since it avoids the need for a priori information from similar known
structures, multiple measurements near resonant atomic absorption energies, isomorphic derivative
crystals, or atomic-resolution data. Here, we demonstrate this phasing technique on diffraction patterns
recorded from artificial two-dimensional microcrystals using the seeded soft x-ray free-electron laser
FERMI. We show that the technique is effective when the illuminating wavefront has nonuniform phase
and amplitude, and when the diffraction intensities cannot be measured uniformly throughout reciprocal
space because of a limited signal-to-noise ratio.
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I. INTRODUCTION

Serial femtosecond crystallography (SFX) [1–3] exploits
coherent, femtosecond-duration hard x-ray pulses produced
by an x-ray free-electron laser (XFEL) to record diffraction
patterns from protein crystals on a time scale that is faster
than atomic motion [4]. This method of “diffraction-before-
destruction” allows for a delivered radiation dose (energy/
mass) that is orders of magnitude larger than the tolerable
dose using longer duration exposures because the pulse
terminates before the onset of significant atomic motion
[5], thereby bypassing some of the known limitations of
conventional synchrotron-based macromolecular crystal-
lography. Such high intensity snapshot diffraction patterns
allow for room-temperature structure determination of
radiation-sensitive biological macromolecules from crys-
tals of just a few hundred nanometers in size. In this way,
SFX has enabled the room-temperature determination of
novel structures from natively inhibited in-vivo grown
protein microcrystals [6] and G protein-coupled receptor
micro-crystals grown in lipidic cubic phase [7], and it
permits atomic-resolution structure determination in static
[8] and time-resolved studies.

SFX requires the averaging of many snapshot diffraction
patterns from different crystals in order to measure reliable
diffraction intensity to high resolution. These averaged data
suffer from the same phase problem as encountered in
conventional crystallography. Existing methods for deter-
mining diffraction phases require either a known structure
of sufficient similarity to produce initial phase estimates [9]
or high-resolution data in conjunction with either (1) small
molecular structures (about 1000 atoms or less) [10],
(2) isomorphous derivative crystals labeled with heavy
atoms [11], (3) diffraction data recorded near resonant
conditions [12], or (4) other physical modifications of the
structure (e.g., by inducing radiation damage [13]). Most of
the aforementioned phasing methods are likely applicable
to SFX data [14], though some modifications may be
necessary in cases of extremely high x-ray fluence [15].
The method we demonstrate here differs from all of them
and may be applied to SFX data from submicron crystals
without restrictions on resolution.
The genesis of SFX is, in part, due to the advances in

x-ray coherent diffractive imaging (CDI) [16,17], which
has previously shown that lenseless imaging could be
performed on single-shot XFEL images taken before the
object was destroyed [18]. CDI works on the basis that a
fine sampling of the continuous coherent diffraction pattern
contains enough information to determine the phases of the
recorded far-field diffraction amplitudes [19]. This infor-
mation may be used to produce an image of the illuminated
object without the use of a lens, at a resolution limited, in
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principle, only by the wavelength of the radiation and the
maximum recorded diffraction angle.
As Sayre pointed out [20], traditional crystallographic

diffraction data only measure the diffraction intensity at
reciprocal lattice points that satisfy the Bragg condition,
which is a factor of 2 less than the critical sampling rate
needed to recover an unaliased autocorrelation function of
the crystal unit cell. For that reason, the common iterative
phasing strategies associated with CDI have only rarely
been applied directly to crystallographic data in situations
of especially high solvent fraction [21,22]. Work by Perutz
carried out decades ago [23] aimed to determine over-
sampled molecular transforms by physically modifying the
unit-cell size of haemoglobin crystals, but this approach has
not developed into a practical phasing strategy so far.
However, early SFX experiments demonstrated strong
diffraction from submicron protein crystals that exhibited
measurable intensities sampled between Bragg spots with-
out any need to modify the crystals [1]. More recent work
has shown that the average over tens of thousands of
diffraction patterns, each from a different crystal, into a
finely sampled three-dimensional average intensity map
contains a recoverable signal between Bragg reflections
at medium resolutions [24]. This is remarkable evidence
that SFX data allow one to bridge the divide between
the crystallographic phase problem and the continuous
Fraunhofer diffraction phase problem. A variety of iterative
phasing strategies that have been developed in the context
of CDI [25–27] can be applied to this three-dimensional
average intensity, as suggested previously and demon-
strated in simulations [28]. Additional simulation studies
have been performed that extend the original concept to
include the effects of disorder [29–31] and have explored
the sensitivity of the method to noise [32,33]. Furthermore,
the effects of different crystal-edge truncations have been
investigated to find that they can greatly influence the
diffracted intensity between Bragg spots. This turns out to
be an important consideration when attempting iterative
phasing, and methods to account for it have been sug-
gested [31,34].
The possibility of directly imaging finite crystals via

oversampled diffraction was considered prior to the work of
Spence et al. [35]. As shown by the simulations of Miao
et al., iterative phase-retrieval methods may be applied
directly to individual (appropriately sampled) finite-crystal
diffraction patterns in the same way as they are applied to
noncrystalline targets. In practice, the recovery of a three-
dimensional structure by such means would require (1) a
signal-to-noise ratio in single diffraction patterns that is
sufficient to support image recovery, (2) a reciprocal-space
sampling frequency corresponding to the size of the whole
crystal, (3) a resolution limited by the projection approxi-
mation (for given wavelength), and (4) tomographic
assembly of many real-space images after iterative phase
retrieval is applied to an equal number of diffraction

patterns, each of which introduces errors into the final
real-space structure. The method we (and colleagues)
proposed previously [28] avoids all of the aforementioned
challenges. As we discuss in the following section, the key
difference in our proposed technique is that we decouple
the underlying unit-cell transform from the average finite-
lattice transform. By decoupling these terms, we open the
possibility to average many patterns from size- and shape-
varying crystals directly in the translationally insensitive
three-dimensional reciprocal space. The phase problem
may then be solved for the entire data set in a single
phase-retrieval step performed directly on a reciprocal-
space volume sampled according to the unit-cell size (not
the whole crystal size), with signal-to-noise ratio limited, in
principle, only by the number of available diffraction
patterns. Recent experimental work has indicated the need
to merge tens or hundreds of thousands of XFEL diffraction
patterns in order to observe intensities between protein-
crystal Bragg reflections at moderate resolutions [24]; the
low signal detected in individual patterns from protein
crystals continues to be the primary challenge to directly
applying iterative phasing on a pattern-by-pattern basis.
Radiation damage makes this approach particularly chal-
lenging at synchrotron sources [36].
In this paper, we present the first proof-of-principle

experimental demonstration of the direct determination of a
crystal unit-cell structure via the oversampled average over
many coherently illuminated nonidentical crystal diffrac-
tion patterns, using soft x-ray FEL diffraction data collected
from artificial two-dimensional crystal targets. A theoreti-
cal description of the method will be given, followed by a
description of the samples, experimental apparatus, and a
detailed description of the data reduction procedure and
phasing algorithm employed. The paper concludes with
an analysis of the recovered structures and a discussion of
the results.

II. METHOD FOR PHASING SIZE- AND
SHAPE-VARYING FINITE CRYSTALS

Consider a finite crystal with real-space unit-cell density,
ρðrÞ, that repeats at the periodically positioned real-space
lattice points Rj, so that the whole-crystal density of the nth
crystal may be written as

ρnðrÞ ¼
X
j

ρðr − RnjÞ: ð1Þ

Under the far-field kinematic diffraction approximation, the
complex-valued diffraction amplitudes ~ρnðqÞ correspond-
ing to the nth crystal are proportional to the Fourier
transform of ρnðrÞ:

~ρnðqÞ ∝
X
j

~ρðqÞeiq·Rnj ; ð2Þ
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where the scattering vectors are defined as
q ¼ 2πðs − s0Þ=λ, with s and s0 the outgoing and incoming
wave vectors and λ the monochromatic illumination wave-
length, and the tilde symbol denotes the n-dimensional
Fourier transform of a function:

~fðuÞ ¼
Z

∞

−∞
fðxÞe−iu·xdnx: ð3Þ

Note that we have neglected multiplicative terms such as
the beam polarization factor, detector solid angle, and
incident fluence, since these parameters and functions
are known and can be corrected for at the data reduction
stage if the need arises.
Under the assumption that the crystal is constructed

entirely by repeating a common unit-cell density, the unit-
cell transform in Eq. (2) can be moved out of the
summation so that the diffraction amplitude can be written
as the product of the unit-cell transform and the finite-
lattice transform:

~ρnðqÞ ∝ ~ρðqÞ
X
j

eiq·Rnj : ð4Þ

The measured diffracted intensity is proportional to the
modulus square of the diffracted amplitude, which we may
write as

InðqÞ ∝ j~ρðqÞj2SnðqÞ ð5Þ

where

SnðqÞ ¼
����
X

j
eiq·Rnj

����
2

: ð6Þ

If we choose two points q, q0 in reciprocal space that
are shifted with respect to each other by an integer
combination of reciprocal-lattice vectors q0 ¼ qþ ghkl,
where ghkl ¼ ha� þ kb� þ lc� and a�, b�, c� are recipro-
cal-lattice vectors, it is clear that the SðqÞ ¼ Sðqþ ghklÞ
since Rj · ghkl ¼ m2π, where m is an integer. In other
words, the squared modulus of the finite-lattice transform
is periodic about the reciprocal-space lattice vectors.
Moreover, since there is inversion symmetry about the
origin, SðqÞ ¼ Sð−qÞ, it follows from the periodicity that
there is inversion symmetry about every lattice point:
Sðghkl þ qÞ ¼ Sðghkl − qÞ.
We now consider the average over many diffraction

patterns, which produces the intensity

hInðqÞin ∝ j~ρðqÞj2hSnðqÞin: ð7Þ

If a sufficient number of patterns contribute to this average,
hSnðqÞin will possess the same symmetry properties as
SnðqÞ. Spence et al. [28] suggested that the average squared
finite-lattice transform can be determined from the average

diffracted intensity directly by taking the average of
hInðqÞin over all translations q → q − ghkl:

hhInðq − ghklÞinihkl ∝ hj~ρðq − ghklÞj2hSnðq − ghklÞinihkl:
ð8Þ

If the terms j~ρðqÞj2 and hSnðqÞin are uncorrelated with each
other, then the average product is equal to the product of
averages, and hence

hhInðq − ghklÞinihkl ∝ hj~ρðq − ghklÞj2ihklhSnðq − ghklÞin:
ð9Þ

Spence et al. further postulated that the periodic average
over the isolated unit-cell transform would likely produce a
flat function, so one might assume the approximation

hhInðq − ghklÞinihkl ∝ hSnðq − ghklÞin: ð10Þ

The operation described by Eq. (10) is the periodic average
over reciprocal-space intensities, which can be accom-
plished by computing the average peak profile over all
reciprocal-space Wigner-Seitz cells (i.e., the smallest
primitive unit cell that can be constructed) and then
replicating the average profile throughout reciprocal space.
With the squared finite-lattice determined directly from the
diffraction data in this way, the finely sampled squared
unit-cell transform may be expressed as

j~ρðqÞj2 ∝ hInðqÞin=hhInðq − ghklÞinihkl; ð11Þ

for which the phases may be determined via well-
established iterative phasing algorithms [27]. Spence et al.
[28] demonstrated this method through simulated diffrac-
tion data—here, we extend the proof of principle for this
technique by using experimental data from artificial two-
dimensional crystals under realistic conditions.
It is important to note that Eq. (11) takes a different form

if the crystal density, defined in Eq. (4), does not have
identical unit-cell content throughout. As discussed in
previous work [30,31], for space groups other than P1,
it is possible that incomplete unit cells exist at the
boundaries of the crystal. If such defects are present, a
reformulation of the reconstruction algorithm is required
because such crystals do not have a well-defined physical
unit cell. In this situation, a reconstruction algorithm might
instead seek to determine the molecular asymmetric unit of
the crystal, but conventional phasing algorithms developed
in the context of CDI are not effective. While a general
solution to this problem has not yet been proposed, an
approximate solution that works in limited cases has been
demonstrated through simulations of crystals bounded by
randomized partial unit cells [31]. In this paper, crystals
bounded by partial unit cells are not considered, although
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we demonstrate that it is the physical crystal boundary that
determines the recovered unit cell, as previously postulated.

III. SAMPLE DESIGN AND FABRICATION

In order to perform a controlled experiment on well-
characterized targets, we designed finite periodic patterns
of Pt islands consisting of simple unit cells containing four
symmetry-related elliptical objects, as shown in Fig. 1. The
ellipses were positioned with sufficient space between them
so as to avoid any complications during fabrication. We
designed four different unit-cell configurations, in order to
demonstrate the importance of the edge truncation of the
crystals. Note that internal densities within each crystal are
essentially identical and that the differing unit-cell defi-
nitions are distinguished only by the way the edges of the

crystals terminate. As we will show, the edge termination
determines which unit cell is reconstructed by the iterative
phasing procedure described later. For each of the four unit
cell configurations, we designed 20 different crystals of
rectangular shape with randomly chosen dimensions rang-
ing from 5 to 12 unit cells along an edge.
We fabricated our two-dimensional crystals by deposi-

tion with a focused ion beam (FIB). Patterns were deposited
in Pt onto 30-nm-thick Si3N4 membranes supported by a Si
frame with 100 × 100 μm windows. Pt was deposited via a
gas injection system (ðCH3Þ3PtðCpCH3Þ with an electron
beam current of 43 pA at an energy of 5 keV. The crystal
unit-cell size was approximately 1.25 × 1.25 μm2 and the
deposition thickness (Pt content of approximately 16%)
was about 20 nm. Eighty targets were fabricated in total, an
example of which is shown in Fig. 1.

IV. INSTRUMENTATION AND DATA
COLLECTION

Measurements were carried out at the coherent diffrac-
tion imaging (CDI) experimental station at the DiProI
beamline [37] of the FERMI@Elettra FEL [38–40]. We
chose to perform our investigations at an FEL source so that
the relevant effects of shot-by-shot wavefront phase and
intensity variations would be present in our data. Compared
to FELs that operate through self-amplified spontaneous
emission, the FERMI FEL x-ray pulses are seeded and
thus nearly monochromatic. The narrow spectral width
(Δλ=λ ≈ 5 × 10−4) [39] is ideal for our experiments since,
strictly speaking, the lattice transform recovered by our
method is periodic only for a monochromatic beam.
The experimental station hosts all necessary components

and diagnostics for beam cleaning and sample positioning.
The 32.5-nm wavelength FEL beam was focused with a
Kirkpatrick-Baez (KB) mirror system [41] and entered the
chamber through a circular aperture of 5 mm diameter in
order to reduce the stray radiation coming from the
beamline. The focus of the KB optical system was
optimized to a spot size of about 25 μm full width at half
maximum using scintillator phosphorus screen and inden-
tations on a Poly(methyl methacrylate) coated silicon wafer
placed at the sample plane. The average incoming FEL
pulse energy was approximately 27� 5 μJ, with root-
mean-square shot-to-shot fluctuations of about 20% during
our measurements. The number of pulses incident on the
sample was controlled by a fast shutter with pulse inten-
sities controlled with a gas cell and Al filters that allow
beam attenuation of up to 4 orders of magnitude. For each
exposure (both in single-shot mode and in multishot
accumulative mode), the beam intensity and spectrum were
acquired shot by shot.
Diffraction patterns were collected using a detection

system in an indirect configuration where the scattered x
rays were reflected onto a CCD (Princeton Instrument
MTE2048B; 2048 × 2048 pixels, each 13.5 μm in size) by

FIG. 1. Top figures: Illustration of the four different crystal
types that were designed for the diffraction experiment. The unit-
cell contents for each type are indicated in red. The full-size
crystals used in the experiment had randomly chosen edge
lengths ranging from 5 to 12 unit cells, with the two dimensions
varying independently of each other (allowing for rectangular
crystals). Bottom figure: SEM image of an actual sample, with
distance scale indicated in red.
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a 45° multilayer mirror, mounted on a motorized optical
gimbal, with a central hole to allow the passage of the direct
beam [42]. A schematic of this geometry is shown in Fig. 2.
At our operational conditions, the 16-bit detector is
saturated at approximately 20,000 photons per pixel. In
order to improve the signal-to-noise ratio of detected
diffraction, a 200-nm Al filter (transmission of 30%, taking
into account a 7-nm Al2O3 oxide layer on both sides) was
placed upstream of the focusing optics in order to remove
the contamination of the 260-nm seeding laser.
The samples were optically aligned onto the FEL beam

path using a four-axis manipulator motor stage and a long-
range optical microscope. Diffraction patterns were first
obtained in accumulative mode, using an attenuated x-ray
beam in order to center each target using low-intensity
exposures of less than 5 mJ=cm2. We verified that there
were no signs of significant radiation damage at this
intensity by comparing a series of successive diffraction
patterns. Best centering was determined by inspecting the
Bragg reflections in each exposure and seeking the position
that produced the greatest degree of inversion symmetry.
The breakdown of inversion symmetry about Bragg reflec-
tions indicates that the incident wavefront had a nonuni-
form phase, and we observed that nearly all patterns
contained some degree of deviation from ideal inversion
symmetry, even when centering was optimized. This is
likely because the maximum size of the crystals was
15 μm× 15 μm, so even the well-centered 25-μm beam
did not provide uniform illumination over the crystal. Once
the targets were centered, we collected a diffraction pattern
at full fluence, which destroyed the target. The final 1=3 of
the diffraction patterns were captured at full fluence
without careful centering because of time constraints

(we captured diffraction from all 80 targets over the course
of about one day).
Figure 3 shows a typical raw diffraction pattern at full

fluence, along with three additional shots at lower fluence.
The typical number of pixels between Bragg reflections
was approximately 105. This detector sampling was suffi-
cient to reveal the interference fringes from our largest
crystal targets, although, as we describe in the following
sections, we did not require these fine features in our
analysis. In addition to the effects of the nonuniform

FIG. 2. Schematic illustration of the experiment. After passing
through the optics and beam-cleaning aperture, the ∼25-μm
focused FEL beam illuminates the SiN sample window. The
direct FEL beam passes through a hole in the 45° multilayer
mirror that reflects the diffracted x rays to the CCD camera. The
inset at the top left shows the approximate illumination profile of
the FEL beam on a typical microcrystal target.
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FIG. 3. (a) Single full-fluence shot of a 2D crystal target on a
logarithmic intensity scale. The red rectangular box within the
full pattern indicates the zoomed regions shown in panels (b-e).
Panel (b) corresponds to that in the full pattern (a), while the
additional three zoomed regions (c-e) were recorded from the
same target but at lower fluence and with the target shifted by a
few microns between shots. The breakdown of inversion sym-
metry, and its sensitivity to beam position, is evident. The
prominent central streaks of intensity, which are due to edge
scatter from the Si window, were ignored throughout our data
analysis.
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illuminating wavefront, apparent Bragg peak asymmetries
are partly caused by the underlying unit-cell transform,
which can be thought of as a modulation of the finite lattice
transform according to Eq. (5).

V. DATA ANALYSIS AND REDUCTION

Our data-processing pipeline began with a visual inspec-
tion of all patterns. We rejected frames that were clearly
damaged or contaminated by foreign debris. We saw no
obvious need to mask any malfunctioning pixels, but we
ignored the central cross-shaped region of the detector
shown in Fig. 3 throughout our analysis since it was
contaminated by scatter from the sample Si frame. We
also ignored the central region of the diffraction patterns
since no intensities were observed because of the hole in the
45° mirror that the direct beam passed through. We
assumed the beam center to be the point about which an
image had maximum inversion symmetry, which we
determined by computing the cross correlation between
the image and a copy of itself inverted about its center. (The
vector pointing to the peak of this cross-correlation
function is twice the length of the vector pointing to the
inversion center.) The detector distance of 56.7 mm was
determined from the known unit-cell size of the targets.
Since the orientations of each target varied slightly from

one to the next, we determined the crystal reciprocal-lattice
vectors (relative to the laboratory reference frame) for each
pattern via an “auto-indexing” algorithm similar to that
described by Steller et al. [43] (details can be found in the
Appendixes A and B). Our auto-indexing routine was not
vulnerable to indexing ambiguities because we knew
a priori the approximate orientation of each target—we
would have otherwise needed to include the peak intensity
information in the reciprocal-lattice determination [44].
Using the crystal reciprocal-lattice vectors, we remapped

the raw intensity data onto a symmetric orthogonal grid by
averaging pixel intensities according to their nearest frac-
tional Miller indices h; k. By remapping intensities accord-
ing to only two Miller indices, we effectively projected the
intensities onto a plane in reciprocal space, which is
justified for our targets because they are known a priori
to be thin; we expect no significant reciprocal-space
intensity variation along the normal to the crystal plane.
We found that it was also necessary to correct for slight
distortions in the 45° mirror that reflected diffraction
patterns to the CCD. Details of the remapping procedure
are discussed in the Appendix C, and a typical resulting
pattern along with predicted and found peaks is displayed
in Fig. 4.
The intensity division step in Eq. (11) was found to be

highly sensitive to the background signal that was present
in our data. Moreover, the subtraction of a background
estimated from blank Si3N4 targets was not sufficiently
accurate for our purposes because the targets had varying
amounts of debris that scattered onto the detector, and

because the background arising from both optical and x-ray
photons was slightly dependent on the position of the
sample stage. In order to estimate backgrounds on a frame-
by-frame basis, we fit a polynomial function to the
intensities averaged within small regions centered at the
diagonal midpoints between neighboring Bragg reflections,
where we expect little diffraction signal from the crystals.
The polynomial functions were used to generate an
estimate for the background throughout each entire pattern,
which was subsequently subtracted.
For each of the crystal types 1–4 shown in Fig. 1, we

averaged a total of 12, 11, 6, and 16 full-fluence

(a)

(b)

FIG. 4. Comparison between found and predicted Bragg peaks
(a) and remapped diffraction intensities projected onto a plane in
reciprocal space, after correcting minor distortions caused by the
45° mirror (b). The majority of remapped patterns appeared
qualitatively similar to this one, with peaks well centered within
the predicted locations.
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background-subtracted diffraction patterns, respectively.
These counts were lower than the total of 20 patterns that
we recorded from each type due to the fact that many full-
fluence patterns had a large number of saturated peaks,
many of them contained diffraction from debris on the
Si3N4 membranes, and a few of them were damaged. Each
of the four unit-cell transforms were extracted from their
averaged crystal diffraction patterns according to Eq. (11),
as shown in Figs. 5 and 6. Average lattice transforms were
constructed by first identifying the reciprocal-space coor-
dinates of each pixel relative to the center of the nearest
Wigner-Seitz cell (specifically, these coordinates are
h − h0, where h0 is rounded to the nearest integer),
averaging the peak profile contained within all Wigner-
Seitz cells and then distributing the resulting intensity
profile periodically about the full diffraction field (the
result of this procedure is shown in Fig. 5). When
calculating the average reciprocal-lattice transform, we
ignored pixels falling nearby the direct beam and the
streaks caused by the edges of the Si sample support frame
(the central cross shown in Fig. 3). We found that the
inclusion of patterns with saturated peaks degraded the
resulting unit-cell transforms because the resulting trun-
cated Bragg peaks biased the extracted reciprocal-space
lattice transforms.

VI. RECONSTRUCTION OF THE UNIT CELLS

Defining UðqÞ as the squared unit-cell transform j~ρðqÞj2
that we extracted from the data as described in the previous
section (we have one for each of the four crystal types), we
employed two projection operators in the iterative phase-
retrieval process. The intensity projection ~PI has the action
of bringing the magnitudes of the ith estimate of the
unit-cell transform, ~ρiðqÞ, into correspondence with the
measured intensities:

~PI ~ρiðqÞ ¼
8<
:

~ρiðqÞ
ffiffiffiffiffiffiffiffiffiffiffi
UðqÞ
j~ρiðqÞj2

q
if q ∈ M

~ρiðqÞ otherwise;
ð12Þ

whereM is the set of constrained intensities (those assumed
to be reasonably accurate). The support projection ~PS sets
the real-space densities to zero in the regions outside of the
support S and enforces real and positive values in real
space:

~PS ~ρiðqÞ ¼ FPSF−1 ~ρiðqÞ; ð13Þ

(a)

(b)

FIG. 5. Extraction of the unit-cell transform. (a) The average
over eight diffraction patterns with unit-cell type 4. The inten-
sities in the red box show the extracted average reciprocal-lattice
transform, generated by averaging over all Wigner-Seitz cells of
the average pattern. A single Wigner-Seitz cell that contributed to
this average is indicated by the smaller blue box. (b) The unit-cell
transform that results from dividing the average pattern by the
average reciprocal-lattice transform. Note that the gridlike
patches of noisy pixels are due to the relatively low diffraction
signal in those regions.

FIG. 6. Extracted unit-cell transforms (on a logarithmic scale)
and corresponding unit-cell density reconstructions (linear scale,
without an applied support). Iterative phasing was performed on
re-binned intensity maps, rather than the finely sampled maps
shown here. The gridlike appearance of regions with large errors
is caused by the lack of a strong diffraction signal in those
regions. Only the intensities where either of the Miller indices are
nearly integer-valued were used as Fourier-amplitude constraints,
while the remaining intensities with larger errors were allowed to
float. Each of the reconstructions shown are the averages over
250 individual images, which were selected from the total of 500
phasing trials via pairwise correlations.
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where F is the Fourier transform operator and F−1 its
inverse. The real-space component of the projection oper-
ator is

PSρiðrÞ ¼
�
maxðRefρiðrÞg; 0Þ if r ∈ S

0 otherwise;
ð14Þ

where Refg is the function that returns the real part of a
complex number, and the max function returns the maxi-
mum of its two input values. With the two projection
operations ~PI and ~PS, we utilized the update rule of the
hybrid input-output (HIO) algorithm [26],

~ρiþ1ðqÞ ¼ ð1þ ~PS½ð1þ βÞ ~PI − 1� − β ~PIÞ~ρiðqÞ; ð15Þ

along with the update rule of the error-reduction (ER)
algorithm [25],

~ρiþ1ðqÞ ¼ ~PS
~PI ~ρiðqÞ: ð16Þ

Prior to phasing, we rebinned our unit-cell-transform
intensities with a coarse sampling corresponding to four
points between each pair of Bragg reflections, producing
5 × 5-pixel Wigner-Seitz cells. This down-sampling step,
which reduced noise levels as well as computing time, is
justified because the unit-cell transform varies over longer
distance scales than the finite-lattice transform. We ignored
noisy intensities by forming a meshlike mask M that
rejected pixels with noninteger values for either the h or
k Miller indices. (We found that a thicker mesh, as well as
circular regions surrounding Bragg reflections, reduced
success rates in our phasing trials, presumably because the
thin mesh provided the best compromise between number
and accuracy of intensities.) We used a value β ¼ 0.9 and
alternated between HIO and ER, beginning with HIO. Each
cycle ran for 20 iterations, with 15 HIO steps followed by 5
ER steps, with the support S updated using the Shrinkwrap
algorithm [45] at the end of each cycle. The updated
support was generated by applying a threshold to the real-
space image estimate ρiðqÞ after convolution with a
Gaussian kernel, where the width of the Gaussian smooth-
ing kernel was gradually reduced after each cycle. The
initial support estimate was generated from a threshold
applied to the autocorrelation function F−1IðqÞ, and the
initial estimate ~ρ1ðqÞ was taken to be the square root of
the full set of measured intensities UðqÞ with uniformly
random phases. Each phasing trial ran for 1000 iterations.
Typical reconstructions are shown in Fig. 6. An example

of the mesh of constrained intensities along with the
final retrieved floating intensities is shown in Fig. 7.
Approximately 50%–100% of all phasing trials produced
reconstructions that appeared to be accurate. Cell types 1
and 4 produced the best results (nearly 100% for both),
perhaps because these two cells were determined from the
greatest number of averaged patterns. For cell types 1, 2,

and 4, we also found reasonable convergence without the
assertion of a real, positive-valued object, though the
apparent quality and fraction of accurate reconstructions
was reduced in the absence of these assertions.
We first quantified the errors in our phasing trials using

an R factor defined as

R ¼
P

i∥~ρðqiÞj2 −UðqiÞjP
iUðq0iÞ

; ð17Þ

where i are the indices that correspond to the unmasked
intensities. The resulting histograms are shown in Fig. 8
and were formed from 500 independent phasing trials. We
note that the highest and lowest mean R factors correspond
to the cell types with the fewest and greatest number of
contributing patterns, respectively, as one might expect.
We further quantified the quality of our reconstructions

with the phase-retrieval transfer function defined as

PRTFðqiÞ ¼ jhexpðiϕðqiÞÞiij ¼
����
�

~ρðqiÞ
j~ρðqiÞj

�
i

����; ð18Þ

which effectively measures the consistency of the recov-
ered phases. The phase-retrieval transfer function (PRTF) is
sensitive to phase ramps that result from the relative shift of
each reconstruction in the image plane. Therefore, prior to
computing the PRTF, we shifted each reconstruction to best
match a template (the first reconstruction) via the up-
sampled cross-correlation procedure described in Ref. [46].
Since as many as 50% of the reconstructions were visibly
inconsistent with the others, we calculated the PRTFs only

(a)

(b)

FIG. 7. The down-sampled mesh of intensities used as intensity
constraints during phase iterative retrieval (a), and the combined
intensity constraints and retrieved floating values (b). Intensities
are displayed on a logarithmic scale.

DIRECT PHASING OF FINITE CRYSTALS ILLUMINATED … PHYS. REV. X 5, 011015 (2015)

011015-8



for the 50% of patterns that correlated best on average with
all of the other patterns, as determined by the Pearson
correlations computed from all pairs of reconstructions for
a given unit-cell type. The PRTFs are shown in Fig. 9,
which maintain values of greater than 0.5 to resolutions
better than 150 nm.

VII. DISCUSSION AND CONCLUSIONS

The results presented here provide the first experimental
proof-of-principle demonstration of the method for phasing
coherently illuminated crystals originally proposed by
Spence et al. [28]. We have demonstrated that this method
for decoupling the average crystal-lattice transform from
the underlying unit-cell transform is effective when the
phase and intensity of the illuminating wavefront is notice-
ably nonuniform and varies from one crystal to the next. We
have also demonstrated that the method works in the
presence of noise, to the extent that many of the intensity
data are completely unreliable and must be ignored. The
subset of data at high signal-to-noise ratio nonetheless
provided sufficient information for accurate object recon-
structions. A data-processing strategy that copes with
nonuniform background signal was described.

Despite the fact that all four crystal types that we
fabricated were identical in their internal structures, the
significance of the crystal boundaries was clearly demon-
strated by the four different unit-cell configurations that we
reconstructed from each type. As noted in previous work
[31,47], the situation becomes more complicated if the finite
crystals are not composed of identical real-space unit cells.
While we did not consider crystals bounded by partial unit
cells here, the present results suggest that methods for
coping with partial unit cells such as the special case
presented by Kirian et al. [31] will also work with
experimental data of quality similar to those considered here.
It is important to note that our crystal targets have a high

“solvent” fraction (regions of uniform density) that gen-
erously exceeds 50%, in which case there is sufficient
information to solve the phase problem using only the
integrated Bragg peak intensities. We indeed found this to
be true for simulations of our data, as we were able to
reconstruct a unit cell from the Bragg intensities alone
using a combination of the HIO [26] and Shrinkwrap [45]
algorithms. Likely, we could also obtain reasonable results
with real data, though our attempts thus far have not
produced accurate reconstructions. However, as discussed
elsewhere [31], a high solvent fraction is not a requirement
of the presented phasing method; the principle advantage of
having access to a continuous, oversampled intensity
function is that it overdetermines the phase problem in
general, without restrictions on resolution or solvent
fraction. The approach presented also allows for a good
initial estimate of the object support through the autocor-
relation function, whereas previous work has required prior
knowledge of a molecular envelope when applying the HIO
algorithm to Bragg intensity data from protein crystals with
a high solvent fraction [21].
Improvements beyond our present results can be

expected if we include knowledge of noise levels in our
phasing, as discussed in Refs. [48–50]. Experimental errors
are an important challenge in SFX data analysis in general,
and it will likely be necessary to address this in future work
aimed at phasing protein-crystal targets that have more
complex electron densities and where the signal-to-noise
ratios are far lower than in the data considered here. An
alternative approach to phasing has been suggested by Elser
[51], where only the strong intensities located at the Bragg
conditions and the associated intensity gradients are uti-
lized for phase determination. In simulations, this algorithm
was shown to be effective at high resolution and at
signal-to-noise ratios of 2 in the intensity gradients.
It should also be noted that the interactive target

positioning that we carried out at low doses for the majority
of our data collection is not possible using existing
technology for delivering protein nanocrystals to the
XFEL beam [52,53]. However, in a protein SFX experi-
ment, a small-angle detector may be used to inspect
finely sampled shape transforms, as demonstrated by

11 12 13 14 15 16
0

50

100

150

R−factor (%)

C
ou

nt
s

R−factor Histograms

type 1

type 2

type 3

type 4

FIG. 8. R-factor histograms formed from 500 independent
phasing trials.
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Chapman et al. [1]. If necessary, poorly positioned targets
that are intercepted at severely distorted regions of the
illuminating wavefront can be rejected prior to merging the
diffraction data. As we have demonstrated here, minor (but
clearly observable) phase and amplitude distortions can
likely be neglected in most situations where the focal spot
size spans several unit cells. This might be understood by
the fact that the intensities recovered by averaging many
patterns with a randomly positioned, nonuniform wave-
front are equal to the convolution between the modulus-
squared wavefront transform and the modulus-squared
object transform. The procedure we have applied here
would then produce a convolved unit-cell transform. Real-
space reconstructions are possible without the need to
incorporate knowledge of the wavefront, provided that this
convolution is not severe (i.e., that the beam size is not
severely distorted and that it is large enough to span many
unit cells).
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APPENDIX A: CRYSTAL LATTICE
DETERMINATION

We first determined Bragg peak positions by convolving
each image with a function consisting of a positive-valued
top hat and negative-valued concentric annulus. The values
of the top hat and annulus were chosen such that the
resulting map was equivalent to locally averaged intensities
with local background subtracted. Peaks were identified as
the centroids of regions in which several connected pixels
had local average intensities above a threshold (all tunable
parameters were determined by visual inspection of the
results). The reciprocal-space vectors corresponding to
Bragg peaks, pm where m is the peak number, were
determined according to

pm ¼ 2π

λ
ðv̂imjm − b̂Þ; ðA1Þ

where v̂imjm is the vector pointing from the sample to the
peak centroid (which has noninteger pixel coordinates

im; jm), and b̂ points in the incident beam direction. The
auto-indexing algorithm identified unit vectors d̂ω that
maximized the periodicity of the histograms HωðxÞ formed
from the projected values xm ¼ jd̂ω · pmj. This criterion is
met when the first peak (excluding the origin) of the Fourier
transform of HωðxÞ is maximized within the limited
angular search space ω (within 10 degrees of the guessed
value). A second vector d̂ω0 was found in an angular search
space assumed to be nearly orthogonal to the first. The
reciprocal lattice vectors were taken to be a� ¼ d̂ω=ηΔx
and b� ¼ d̂ω0=η0Δx, whereΔx is the bin size ofHωðxÞ and η
is the noninteger bin number corresponding to the center of
the peak position.
It is useful to place the result of the auto-indexing routine

into a 3 × 3 reciprocal-lattice matrixU with column vectors
equal to ½ a� b� c� �. The third lattice vector is chosen to
be c� ¼ a� × b�=ja� × b�j for convenience, though its
magnitude is arbitrary because of the lack of periodicity
along the third direction.

APPENDIX B: PEAK PREDICTION

Three-dimensional reciprocal-space coordinates are
mapped to detector pixels with indices i; j according to
the formula

qij ¼
2π

λ
ðv̂ij − b̂Þ; ðB1Þ

where λ is the wavelength, b̂ is the incident beam direction,
and v̂ij is the unit vector pointing from the x-ray-target
interaction point to the center of pixel i; j:

vij ¼ tþ if þ js: ðB2Þ

The vector t points from the interaction point to the center
of the corner detector pixel, f points along rows of pixels,
and s points along columns of pixels. We found that the
assumption of mutually perpendicular f , s, and b̂ was
satisfactory in our data reduction scheme.
The reciprocal-lattice vectors allow reciprocal-space

peak positions to be predicted by finding the intersection
between the points ϵ on the Ewald sphere that satisfy

jϵþ s0j2 ¼ s20 ðB3Þ

and a line corresponding to Miller indices h; k defined as

ϵ ¼ ohk þ lhk; ðB4Þ

where the vector ohk ¼ U · h, U is the 3 × 3 reciprocal-
lattice matrix containing the column vectors ½ a� b� c� �,
h is the column vector ½ h k 0 �, and lhk is the vector
pointing in the direction of c� ¼ a� × b�. The two possible
solutions to this system of equations are
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l�hk ¼ −l̂hk · ðohk þ s0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl̂hk · ðohk þ s0ÞÞ2 − ðohk þ s0Þ2 þ s20

q
; ðB5Þ

and thus the predicted peak location is

p0hk ¼ minðU · hþ l�hkÞ; ðB6Þ

where the min function selects the vector with minimum
length (this is appropriate for our data, where the vector
normal to the sample plane was nearly parallel to the
incident beam direction). The coordinates ihk; jhk of the
predicted peaks in the detector plane are equal to

ihk ¼
�

λ

2π
p0hk þ b̂ − t

�
· f̂ ; ðB7Þ

jhk ¼
�

λ

2π
p0hk þ b̂ − t

�
· ŝ: ðB8Þ

APPENDIX C: INTENSITY REMAPPING

We remapped the raw intensity data Iij onto a symmetric
orthogonal grid I0hk by averaging values in Iij according to
their nearest fractional Miller indices h; k. The mapping
from the native detector indices to the Miller indices is
given by the expression h ¼ U−1qij, where U is the 3 × 3
reciprocal-lattice matrix determined by the auto-indexing
routine and h is the column vector ½h k l �.
As shown in Fig. 4, there are systematic errors between

the predicted and found Bragg peaks in our patterns, which
were nearly identical for all diffraction patterns. We
concluded that the observed systematic errors were likely
caused by small slope errors in the 45° mirror that reflects
the diffracted x rays to the CCD because we found no
experimental geometry that could reproduce the patterns
with reasonable accuracy throughout the detector plane. In
order to rectify the discrepancies between predicted and
found peak locations, we noted that the offsets between
peaks could be reasonably well described with smoothly
varying functions. We assumed that the correct indices i0; j0
(those corresponding to measurements made in the absence
of mirror distortions) could be related to the native detector
coordinates with the formula ði0; j0Þ ¼ ½iþ f1ði; jÞ;
jþ f2ði; jÞ�, where fnði; jÞ are two-dimensional fifth-order
polynomial functions. The polynomial coefficients were
determined via linear least-squares minimization using the
observed residuals Δim ¼ i0m − im, where i0m was taken to
be the prediction corresponding to the found peak m. The
rectified reciprocal-space vectors are equal to q0ij ¼ qi0j0 .
This method of determining mirror slope errors, based on
diffraction from a periodic calibration object, would also be
useful for other coherent diffractive imaging experiments
that utilize a similar experimental geometry.
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