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1/ f noise from the laws of thermodynamics for finite-size fluctuations
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Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by
Boltzmann’s factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann’s factor is
extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains
maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs’ paradox
that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable
particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy
is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly
obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes
from its ability to match the measured temperature dependence of the spectral-density exponents in several metals
and to show non-Gaussian fluctuations characteristic of nanoscale systems.
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Low-frequency noise degrades many technologies [1–7],
but it also defines the slow response of most materials [8–23].
Three types of noise were first measured about 90 years ago
during the development of electronic amplifiers: shot noise,
white noise, and 1/f noise [24–26]. Shot noise comes from
the statistics of single-particle events. White noise comes from
Gaussian fluctuations using standard Boltzmann statistics;
whereas a general mechanism for 1/f noise has not yet been
established. Here we present a fundamental mechanism for
1/f noise from non-Gaussian fluctuations when a Taylor-
series expansion of local alignment entropy in Boltzmann’s
factor is extended to include the exact contribution from
every configuration. One consequence is that this nonlinear
correction makes nearby particles statistically indistinguish-
able, thereby ensuring extensive entropy and avoiding Gibbs’
paradox [27]. Another result is that the nonlinear correction
restores conservation of energy when an instantaneous con-
tribution from the local entropy is included [28,29]. Finally,
the nonlinear correction maintains maximum entropy during
thermal fluctuations, thereby strictly preserving the second law
of thermodynamics. Thus, a common mechanism for 1/f noise
may be thermal fluctuations, similar to white noise but with a
non-Boltzmann distribution characteristic of indistinguishable
particles that interact on interatomic length scales. The
mechanism applies when finite-size fluctuations contribute
significantly to the equilibrium energy of the system.

The central-limit theorem yields Gaussian fluctuations for
the properties of large systems with a well-defined mean value,
but here we study small systems with large fluctuations that
show non-Gaussian behavior on relatively short times, before
the mean value is well defined. Other fluctuation theorems
have given new insight into the behavior of systems that are
far from equilibrium [30–32]. These theorems generally rely
on the Boltzmann distribution, characteristic of systems that
are (or were) weakly coupled to an effectively infinite heat
bath. Here we study equilibrium fluctuations in small systems
that may also be far from equilibrium. More importantly we
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include a type of reversible coupling between the system and
its bath that influences the fluctuations.

We are guided by the principles of small-system ther-
modynamics that were developed to describe the behavior
of individual molecules and isolated nanosystems [33]. We
adopt these ideas to treat independently fluctuating regions
inside bulk samples [27–29] as is found for the primary
response of most materials [34–37]. A key feature of this
“nanothermodynamics” is the subdivision potential E , which
facilitates conservation of energy for finite-size systems. E can
be understood by comparison to the chemical potential μ. μ

is the change in energy to take a single particle from a bath of
particles into the system, whereas E is the change in energy
to take a cluster of interacting particles from a bath of clusters
into the system. In general a cluster of N interacting particles
does not have the same energy as N isolated particles due to:
surface terms, length-scale effects, and thermal fluctuations.
Thus E contains all nonextensive contributions to energy,
including fluctuations in configurational entropy that do not
couple linearly to the interaction energy in Boltzmann’s
factor.

We use Monte Carlo simulations of the Ising model to study
thermal fluctuations. Although the Ising model was originally
developed to describe ferromagnets, it remains one of the most
widely used models for investigating thermal properties of
interacting particles. A quadratic correction to Boltzmann’s
factor has been found to improve agreement between the
Ising model and the measured susceptibility of ferromagnetic
materials and critical fluids [28] as well as nanometer-sized
dynamical correlations in the structure of LaMnO3 [29]. Here
we extend the nonlinear correction to all orders and show that
it yields 1/f noise similar to many systems.

A useful interpretation of entropy is that it comes from
missing information. Specifically, Boltzmann’s entropy can
be written as S = kB ln(�), where kB is Boltzmann’s constant
and � is the number of microstates that yield the observed
macrostate. Here we study the alignment entropy of regions
containing n binary degrees of freedom (“spins”) where each
spin may be up or down. If the alignment of every spin in a
region is fixed so that no information is missing, then � = 1
and S = 0. If instead the region is fully isolated so that all
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information is missing with no constraints on the alignment,
then � = 2n and S = n kB ln(2). Between these extremes
lies the usual alignment entropy of the Ising model Sm =
kBln{n!/[ 1

2 (n + m)]![ 1
2 (n − m)]!} found from the binomial

coefficient for the number of ways that n spins can yield the
net alignment m.

Thermal fluctuations in a local region of a large sample are
governed by the probabilities w ∼ e(�Sm+δS∗)/kB [38]. Here
δS* is the relatively small change in entropy of the bath,
whereas �Sm = Sm − S0 is the offset in entropy of the region
from its maximum value S0 = kB ln{n!/[( 1

2n)!]2}. Boltzmann’s
factor w ∼ e−δE/kBT comes from the fundamental equation
of thermodynamics for the bath at temperature T , δS* =
δE*/T , with conservation of energy between the region and
the bath δE* = −δE. Gaussian fluctuations come from
the lowest-order (quadratic) offset in entropy of the region
�Sm � −m2. Superficially these fluctuations might seem
to violate the second law of thermodynamics, but there are
at least three possible explanations: (1) total entropy may
decrease temporarily if the system is small enough [39]; (2)
entropy should be calculated using Gibbs’ ensembles that are
independent of time; or (3) the entropy of the bath could
increase to balance �Sm < 0 in the region. Explanation (1)
may apply to isolated systems, but here the region couples to
its environment so that Sm is not the total entropy. Explanation
(2) suggests that the expression for entropy depends on the
situation; S = kB ln(�) increases as a system evolves towards
equilibrium, whereas Gibbs’ formula avoids violating the
second law during thermal fluctuations [40,41]. Here we
assume explanation (3): changes in entropy of the region
are compensated by changes in entropy of the bath, thereby
maintaining maximum entropy and retaining Boltzmann’s
definition. Thus, we assume that the entropy of the bath can be
changed in two ways, from changes in energy and alignment of
the region, so that successful inversion of a spin involves two
criteria. The first criterion yields the Metropolis algorithm,

e−δE/kBT > [0,1), (1)

where the step is accepted if Boltzmann’s factor is larger than
a random number between 0 and 1. The second criterion is the
nonlinear correction to Boltzmann’s factor,

e(Sm−S0)/kB > [0,1), (2)

which yields 1/f noise in our model.
A similar (but not identical) nonlinear correction has been

found to improve agreement between the Ising model and
the measured critical scaling in high-purity crystals [28]. One
difference is that here we calculate the nonlinear correction in
Eq. (2) to all orders using the exact expression for Sm−S0, not
just the lowest-order (quadratic) term. The other difference is
that Eq. (2) was bypassed in Ref. [28] when δE = 0. Indeed,
one reason for bypassing Eq. (2) was to avoid low-frequency
fluctuations, whereas here we focus on these fluctuations.
Another reason is that, unlike high-purity crystals 1/f noise
may require defects [42], which reduce the likelihood of
δE = 0 between states. 1/f noise can also be enhanced
by nonequilibrium effects [43]. Here we present equilibrium
fluctuations of the standard Ising model on simple-cubic
lattices using either Eq. (1) or both Eqs. (1) and (2) in every

region, only briefly describing simulations where Eq. (2) is
bypassed when δE = 0 in a subset of regions.

Our assumption that Eq. (2) comes from maintaining max-
imum entropy can be justified in other ways. One mechanism
involves an additional change in energy of the bath from
the offset in alignment entropy as in adiabatic magnetization
or demagnetization [44,45]. For n noninteracting spins with
magnetic moment μB in an external field B, the internal
energy is [46] Em = T Sm − nkBT ln[2 cosh(μBB/kBT)].
Here, the free energy (logarithmic term) comes from the
thermal average over both states of each spin. Letting B

→ 0 the free energy becomes constant so that the offset
in energy from its maximum is �Em = T �Sm. This �Em

enhances the energy reduction when a region fluctuates into
its low-entropy state, increasing the energy of the bath and
furthering the fluctuation, consistent with Eq. (2). Another
mechanism uses Sm as a local bath of alignment entropy [28].
Specifically, high-entropy regions (Sm � S0) have many states
available facilitating fast spin flips; whereas low-entropy
regions (Sm � 0) have few states available inhibiting spin
dynamics, consistent with Eq. (2). Thus this mechanism
is a type of entropic force, similar to Boltzmann’s factor
where the low entropy of a low-temperature bath inhibits
transitions to higher energy. In any case, thermal fluctuations in
small regions should obey small-system thermodynamics [33],
which includes nonextensive thermal properties to all orders.
Additional justification for Eq. (2) comes from the statistics of
indistinguishable particles, as described below.

Figure 1(a) depicts all possible alignments for a region
containing two spins n = 2. The left diagram shows that
S+2 = 0 because there is only one way to have both spins
up. Similarly, the right diagram has S−2 = 0. The middle
diagram shows that there are two ways to have one spin up
and the other spin down yielding S0 = kB ln(2), at least if the
spins are distinguishable.

The dashed line in Fig. 1(b) indicates how the alignment
entropy of the region might fluctuate as a function of time
between S0 = kB ln(2) for m = 0 and Sm = 0 for m = ±2.
The dotted line shows how the entropy of the bath changes
due to the nonlinear correction if total entropy is to remain
maximized. Specifically, as the entropy of the region goes
down the entropy of the bath goes up, and vice versa, so that
the total entropy of the region plus bath is constant (solid line).

Figure 1(c) shows one consequence of using Eq. (2). When
the entropy of the region is low the entropy of the bath is
high so that the aligned states tend to live longer. Specifically,
the nonlinear correction favors aligned states when entropy
is transferred to the bath, similar to how Boltzmann’s factor
favors low-energy states when energy is transferred to the
bath. Here, the nonlinear correction causes each aligned state
to live twice as long as Boltzmann’s factor alone so that each
aligned state is as likely as both unaligned states. In general,
as T → � where Eq. (1) can be ignored, Eq. (2) gives an
average lifetime of each state τm � 1/e(Sm−S0)/kB , yielding a
likelihood for each alignment that is independent of m [28]
eSm/kB τm ∼ eS0/kB = n!/[( 1

2n)!]2.
Figure 1(d) shows an alternative interpretation of the

nonlinear correction to Boltzmann’s factor [28]. The central
figure depicts how two configurations might be combined into
a single m = 0 state with each site containing a superposition
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FIG. 1. (Color online) Sketch of possible states in a two-spin
region. (a) For distinguishable spins there is one way to have both
spins up (�+2 = 1) or down (�−2 = 1) but two ways to have zero net
alignment (�0 = 2). (b) During thermal fluctuations the Boltzmann
entropy of the spins [kB ln(�)] goes up and down (dashed line).
To maintain maximum entropy we assume that the entropy of a
thermal bath must go down and up (dotted line) so that the combined
entropy of the system plus the bath is constant (solid line). (c)
When the bath has high entropy each low-entropy state in the region
persists twice as long as expected from the Boltzmann factor alone.
(d) Alternatively, zero alignment may come from a single state that
contains a superposition of spins, consistent with delocalized particles
that are indistinguishable in the region.

of up and down spins so that this unaligned state is as likely
as each aligned state. For n = 2, these three alignments corre-
spond to the triplet state of spin- 1

2 particles with the singlet state
missing from this basic picture. Thus the nonlinear correction
may be a simplistic way to simulate quantumlike statistics
in an otherwise classical model. Indeed, a related nonlinear
correction has been shown to restore extensive entropy and
to remove Gibbs’ paradox from computer simulations of the
Ising model [27,29], similar to how indistinguishable particles
remove Gibbs’ paradox in an ideal gas.

We simulate the Ising model on simple-cubic lattices of
N spins with interaction energy J between nearest-neighbor
spins and periodic boundary conditions on all external sur-
faces. Large lattices are often subdivided into smaller regions,
each containing n � N lattice sites. Figure 2(a) shows the
total magnetization as a function of time M(t) from three
sample sizes at two temperatures. Here M(t) is multiplied by√

N , scaling the amplitudes and showing that the sample-size
dependence is consistent with thermal fluctuations. Note that
the dynamics changes abruptly at t = 0. For t < 0 spin
flips are governed by Boltzmann’s factor alone [Eq. (1)],
showing Gaussian fluctuations characteristic of white noise.
For t � 0 the nonlinear correction [Eq. (2)] is added, yielding
behavior characteristic of 1/f noise. Specifically, M(t) shows
large-amplitude wandering if the sample contains multiple
regions (uppermost set of data); whereas M(t) exhibits sharp
jumps if the sample contains a single region (lower two sets of
data). Similar on-off intermittency with varying time duration
is known to yield 1/f noise in mathematical models [47,48].
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FIG. 2. (Color online) (a) Time sequence of magnetization per
site from simulations on three lattice sizes at two temperatures as
given in the legend. Note that M(t) is multiplied by

√
N to scale the

amplitudes, and the data from N = 123 and 963 are offset for clarity.
At t < 0 the spin-flip rate is governed by Boltzmann’s factor alone,
Eq. (1), yielding white noise. At t � 0 both Eqs. (1) and (2) are used,
yielding 1/f -like noise. (b) Histograms from noise in simulations
(symbols) and measurements (lines). Symbols are from the N = 123

lattice, similar to (a) at t � 0 but over a much longer time range. The
top pair of lines comes from a spin glass at two temperatures [15].
The next line comes from ionic conduction through a nanopore [23].
The bottom pair of lines comes from a colloidal particle
in two different double-well potentials [49].

In our model the jumps are due to entropic trapping from
Eq. (2). Specifically, as the entropy of the region decreases
(due to increased alignment) the entropy of the bath increases,
prolonging the lifetime of these highly aligned states. When
the region eventually fluctuates back to high entropy, the time
spent near m = 0 is brief because the bath has low entropy.

Figure 2(b) shows histograms from simulations of the
N = 123 lattice (symbols) and from measurements on various
systems (lines). Note that at high temperatures our model
yields trimodal behavior from the maxima in entropy of the
spins (central peak) and the bath (peaks near the end points).
Similarly, fluctuations in a spin glass [15] and the ionic current
through a nanopore [23] also yield significant probability at
the center between the end points, unlike the purely bimodal
behavior of a double-well potential [49].

Figure 3 shows power spectral densities as a function
of frequency S(f ), obtained from simulations of M(t) sim-
ilar to those in Fig. 2 but over much longer times for
a wider frequency range. M(t) is converted to the power
spectral density using a discrete Fourier transform: S(f ) =
| 1
j

∑j−1
t=0 M(t) exp(−2πif t/j )|2. The spectra are smoothed

by linear regression using a sliding frequency range where
the spectral density at frequency f0 comes from a linear
least-squares fit to all data over the frequencies −0.2 � 10
log10(f /f0) � 0.2. To obtain spectra over the entire frequency
range without excessively large data files, we use a weighted
average to combine independent simulations with different
dwell times. Specifically, each simulation yields 217 = 131 072
data points, with dwell times of 100 to 105 sweeps between
each data point. For convenience, all spectra are shifted so that
log10(f) = 0 when t = 10 × 217 sweeps.
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FIG. 3. (Color online) Frequency dependence of spectral density
(in decibels) from simulations at kBT/J = 50 and 500, similar
to those in Fig. 2. Note that S(f ) is multiplied by N to scale
different lattice sizes (given in the legend) and log10(f ) is multiplied
by 10 to match the decibel scale. Also note that the temperature
dependence is relatively weak due to effective cancellation of the
linear-T dependence of thermal fluctuations and the nearly inverse-T
dependence of the magnetic susceptibility at high T . The spectra
exhibiting white noise (bottom) come from using Eq. (1) alone.
Spectra that exhibit 1/f -like behavior (diagonal) come from the same
model using both Eqs. (1) and (2). Over a broad range of frequencies
these simulations can be characterized by S(f )�1/f α(T ) with
α(T ) � 1.0 for kBT/J = 500 (solid line) and α(T ) � 1.15 for
kBT/J = 50 (dotted line). Diamond-shaped symbols, which show
1/f noise at low frequencies and white noise at higher frequencies,
come from a heterogeneous system described in the text.

The solid sets of symbols in Fig. 3, which show nearly
constant spectral density (white noise), are from simulations
using Eq. (1) alone. The open sets of symbols that show
1/f -like behavior are from simulations using both Eqs. (1)
and (2). Over a wide range of frequencies these spectra
are accurately characterized by S(f ) � 1/f α(T ) with a
temperature-dependent spectral-density exponent α(T ).

Figure 4 shows α(T ) as a function of T /T1, where T1 is the
temperature at which α(T ) extrapolates to 1. The solid symbols
are from measurements [9] on various metallic films, given in
the legend. The open symbols (connected by solid lines) come
from simulations using both Eqs. (1) and (2). These α(T )’s
give the magnitude of the slope when plotted as in Fig. 3,
determined by linear least-squares fits over one decade [10
log10(f ) = 20–30] with error bars from the standard deviation
of three sets of simulations. Note that all simulations are at
temperatures above the ferromagnetic transition kBT/J > 20
(T /T1 > 0.2) and that this transition is much higher than for
the Ising model using Eq. (1) alone (kBT/J � 4.5) because
highly aligned states are favored by the increased entropy of
the bath.

Figure 4 shows that α(T ) decreases with increasing T

for measurements and simulations. A linear least-squares fit
to the simulations at T /T1 � 1 yields α(T ) = 1.43–0.43
(T /T1) (dot-dashed line), showing good agreement with the
temperature dependence of the measured α(T ). Indeed, the
slope of this least-squares fit (−0.43 ± 0.02) is within
experimental uncertainty of the average slopes from the four
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FIG. 4. (Color online) Spectral-density exponent as a function
of normalized temperature T /T1, where α(T ) → 1 as T → T1.
Solid symbols are from measurements [9] on four metallic films.
Open symbols connected by solid lines are from simulations using
Eqs. (1) and (2). Specifically α(T ) is the magnitude of the slope
from simulations similar to those that lie along the diagonal in Fig. 3.
The dot-dashed line shows a linear least-squares fit to α(T ) from the
simulations at T /T1 � 1.

metallic films −0.41 ± 0.19. At higher temperatures, however,
the simulations show α(T ) � 1, whereas the data have
α(T ) < 1. An explanation may come from the fact that we
find α(T ) � 1 for simulations with antiferromagnetic coupling
between neighboring spins (not shown). Thus a more-detailed
model that includes other interactions, such as dipolar fields
or antiferromagnetic coupling between next-nearest neighbors,
will be necessary to characterize the measured spectral-density
exponents at high temperatures.

Although Fig. 3 shows 1/f -like behavior over a wide range
of frequencies, small regions exhibit saturation in their spectral
density at low frequencies. Specifically, for both sets of data
having n = 27 the noise saturates below 10 log10(f ) � −10,
remaining constant down to lowest frequencies. Thus these
fluctuations have a well-defined mean value if averaged over
long enough times. Assuming that the maximum number of
steps for 1/f behavior comes from the maximum entropy of
the region, n!/[( 1

2n)!]2 = 2.04 × 107 steps for n = 27. Indeed,
for n = 27 Fig. 3 shows that 1/f noise extends to about
7 orders of magnitude below the average attempt frequency.
Similarly, smaller regions (n = 8, 12, and 18 spins, not shown)
exhibit 1/f noise over smaller frequency ranges, consistent
with n!/[( 1

2n)!]
2
. Furthermore, for n= 64 where n!/[( 1

2n)!]
2 =

1.83 × 1018 steps, Fig. 3 shows no saturation over the full
frequency range of our simulations, providing an explanation
for the fact that saturation in 1/f noise at low frequencies is
rarely observed in real systems. Thus, our model predicts a
low-frequency limit to 1/f noise in every finite system, but
because of the factorials in the entropy this limit can be at
extremely low frequencies.

We have shown that a nonlinear correction to Boltzmann’s
factor yields 1/f noise in simulations of a simple model, but
most materials also show white noise at higher frequencies.
One explanation is that many regions in real systems may
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have sufficient symmetry to yield nearly degenerate states
that cause Eq. (2) to be bypassed as found for critical
scaling in high-purity crystals [28]. Evidence that 1/f noise
involves defects comes from many measurements, including
the dependence on electron irradiation [42]. The diamond-
shaped symbols that lie below the other 1/f spectra in Fig. 3
show simulations from a heterogeneous system with one
region using Eqs. (1) and (2), whereas the other 26 regions
have Eq. (2) bypassed when δE = 0. The combination of 1/f

noise at low frequencies and white noise at higher frequencies
is similar to equilibrium measurements showing that both types
of noise usually coexist [50]. Thus, both white noise and 1/f

noise may come from thermal fluctuations with 1/f noise
requiring a nonlinear correction to Boltzmann’s factor from
the local entropy.
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