
THE EFFECT OF SPATIAL HETEROGENEITY AND MOBILITY ON THE 1 

PERFORMANCE OF SOCIAL-ECOLOGICAL SYSTEMS 2 

 3 

Irene Pérez and Marco A. Janssen 4 
 5 

Center for the Study of Institutional Diversity 6 

School of Human Evolution and Social Change 7 

Arizona State University 8 

 9 

 10 

Corresponding author: Irene Pérez (E-mail: iperezib@asu.edu) 11 

 12 

 13 

ABSTRACT  14 

 15 
We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility 16 

on social-ecological outcomes. Our model is a stylized representation of a dynamic population of 17 

agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount 18 

close to the maximum sustainable yield) and selfish agents (those who harvest an amount greater 19 

than the sustainable yield) are simulated in the model. Three indicators of the outcomes of the 20 

system are analyzed: the number of settlements, the resource level, and the proportion of 21 

cooperators in the population. Our paper adds a more realistic approach to previous studies on 22 

the evolution of cooperation by considering a social-ecological system in which agents move in a 23 

landscape to harvest a renewable resource. Our results conclude that resource dynamics play an 24 

important role when studying levels of cooperation and resource use. Our simulations show that 25 

the agents’ mobility significantly affects the outcomes of the system. This response is nonlinear 26 

and very sensible to the type of spatial distribution of the resource richness. In our simulations, 27 

better outcomes of long-term sustainability of the resource are obtained with moderate agent 28 

mobility and cooperation is enhanced in harsh environments with low resource level in which 29 

cooperative groups have natural boundaries fostered by agents’ low mobility. 30 

 31 

Key Words: agent-based model; cooperation; heterogeneous landscape; mobility; social-32 

ecological systems; spatial heterogeneity.  33 
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We model the effect of spatial heterogeneity and mobility on social-ecological outcomes 38 
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In our agent-based model, selfish and cooperative agents harvest a renewable resource 40 

 41 

Indicators are: number of settlements, resource level, and proportion of cooperators 42 

 43 



We add resource dynamics to the study of the evolution of cooperation 1 

 2 

Higher levels of resource are obtained with moderate agent mobility 3 

 4 

Cooperation is enhanced in harsh environments 5 

 6 

 7 

1. INTRODUCTION 8 

 9 

This paper is concerned with the interlinked effect of mobility and spatial heterogeneity on the 10 

performance of social-ecological systems. Scholars have previously highlighted the effects of 11 

mobility and spatial structure on social dilemmas outcomes (e.g., prisoner dilemma game) and 12 

the evolution of cooperation (e.g., Nowak and May, 1992; Hauert and Doebeli, 2004). For more 13 

realistic approaches, however, it is important to take spatial dynamics into account in order to 14 

have a social-ecological perspective. Here, we develop an agent-based model to add a complex 15 

spatial setting to previous spatial social-dilemma models by including resource dynamics, in the 16 

form of a renewable resource, instead of the payoff matrix of social dilemma games. In doing so, 17 

we aim to analyze the levels of resource use, population growth, and cooperation in social-18 

ecological systems.  19 

 20 

The cellular automaton developed by Nowak and May (1992), in which agents interact with their 21 

neighbors in a two-dimensional spatial array, was the first attempt to include spatial structure in 22 

social dilemma games. In their model, Nowak and May found that spatial structure promotes 23 

cooperation by forming clusters and thereby reducing exploitation by defectors, in contrast with 24 

the spatially unstructured game, where defection is always favored. Subsequent studies also 25 

showed that limiting the interactions to local neighbors generally promotes the evolution and 26 



persistence of cooperation (Doebeli and Knowlton, 1998; Killingback, 1999). Under certain 1 

conditions, however, spatially structured games can be detrimental, like snowdrift-type 2 

interactions (Hauert and Doebeli, 2004; Hauert, 2006). The importance of the connectivity 3 

structure to understand the levels of cooperative behaviors has been demonstrated in a wide 4 

variety of agent-based models (for a review see Szabó and Fáth, 2007). In addition to the spatial 5 

structure, the ability of individuals to move on the lattice enhanced cooperation compared to no 6 

mobile agents (e.g., Houston, 1993; Vainstein et al., 2007; Perc and Szolnoki, 2010; Smaldino 7 

and Schank, 2012). For example, sustained cooperation in a spatially structured Prisoner’s 8 

Dilemma was obtained by Meloni et al. (2009) when agents were allowed to randomly move in a 9 

two-dimensional lattice while Helbing and Yu ( 2009) found that non-random mobility, in the 10 

form of success-driven migration, is essential for the stabilization and maintenance of 11 

cooperation.  12 

 13 

Our goal here is to analyze how mobility and spatial heterogeneity affects the level of 14 

cooperation, as well as the resource and population growth, when we combined resource 15 

dynamics with spatial landscape structure and mobile agents. In ecological systems, spatial 16 

heterogeneity is essential to understand the functioning of the systems (Pickett and Cadenasso, 17 

1995). For example, increased spatial heterogeneity, causing changes in landscape connectivity, 18 

affect, among other important ecological processes, animal population structures and community 19 

composition (Pickett and Cadenasso, 1995; Salau et al., 2012). Heterogeneity in social dilemmas 20 

is crucial to understand the evolution of cooperation. Cooperation can be facilitated when some 21 

agents have access to more resources than others (Kun and Dieckmann, 2013), when there is 22 

heterogeneities amongst players (Perc and Szolnoki, 2008), or when the payoffs amongst the 23 



players is not equally distributed (Perc, 2011). In social-ecological systems, the spatial 1 

distribution of resource richness might determine the pattern of processes such as resource use, 2 

habitat selection, population growth or cooperation of human communities.  3 

 4 

We use an agent-based model to simulate a stylized representation of a dynamic population of 5 

cooperative and selfish agents moving and harvesting a renewable resource. By mobility we refer 6 

to the extent to which agents can move, which is related to the amount of information agents 7 

have about the system. Cooperative agents harvest an amount of resource close to the maximum 8 

sustainable yield while selfish agents may harvest an amount over the sustainable yield. Our 9 

main contribution to the study of the evolution of cooperation is to allow selfish and cooperative 10 

agents to harvest a renewable resource instead of the payoff matrix typically used in social 11 

dilemmas. The individual characteristics and behavior of agents determine the sustainable use or 12 

overexploitation of the resource. We analyzed the system’s outcomes (resource, agents’ 13 

occupational level, and cooperation) under several scenarios in which we vary the mobility of the 14 

agents and the landscape configuration (from homogeneous to very heterogeneous landscape).  15 

 16 

 17 

 18 

2. MATERIAL AND METHODS 19 

 20 

2.1.Model description 21 

 22 



The model is a stylized representation of a common-pool resource which is appropriated by a 1 

dynamic population of cooperative and selfish agents. The environment in which agents can 2 

move around and harvest is a renewable resource in a landscape of 50 x 50 cells (Fig. 1). Each 3 

time step, agents make decisions on movement, harvesting, storage of energy, and may 4 

reproduce or die. The agents can also imitate other agents’ attributes if other agents are observed 5 

to be doing better (Fig. 2). Parameters and variables in the model represent units of energy.  6 

 7 

Each cell contains a resource Rj, which grows by the logistic growth function.   8 

 9 

𝑅𝑗 − 𝐻𝑗 + 𝑟 ∗ 𝑅𝑗 ∗ (1 −
𝑅𝑗

𝐾𝑗
) 

Where Rj is the resource level at patch j, Hj is the total resource harvested at patch j, r is the 10 

resource growth rate, and Kj is the carrying capacity of the resource at patch j.  11 

 12 

Each patch might have from 0 to n agents (Fig. 1). Institutional arrangements, like property 13 

rights, are not included.  14 

  15 

We distinguish two behavioral types among the agents. The cooperative agents define the harvest 16 

level based on the maximum sustainable yield (MSY). The selfish agents define the harvest level 17 

based on the maximum economic yield (MEY) and harvest more from the resource. The harvest 18 

level of a cooperative agent is therefore defined as an amount near to the maximum sustainable 19 

yield (xS):  20 

 21 



𝑥𝑆𝑗 =
𝐾𝑗 ∗ 𝑟

8
𝑛𝑗⁄  

 1 

Where Kj is the carrying capacity at patch j, r the growth rate of the resource, and nj the number 2 

of agents at the patch j.  3 

 4 

Selfish agents harvest more than xS  if the desired amount of resource (HD) is higher than the xS. 5 

The desired harvest level HD is:  6 

 7 

𝐻𝐷𝑖 = 𝑚𝑒𝑡 ∗ (1 + 𝑆𝑖) 

 8 

Where met is the energy spent in the metabolism. Agents vary in the amount they desired to 9 

harvest above the metabolism rate. The parameter Si is between 0 and 1 so that the agent will 10 

meet the strict metabolism value with Si = 0, or a maximum of double the metabolism rate with 11 

Si = 1. HD, met, and S represent units of energy. 12 

 13 

With a certain probability (pc), defined as a model parameter, agents who harvest more than xS 14 

are caught and pay a penalty fee (Fi). 15 

 16 

𝐹𝑖=(𝐻𝐷𝑖 − 𝑥𝑆𝑗) ∗ 2 

 17 

The value of Fi is 0 if agent i is not caught or harvests an amount equal or less than xS. Thus, pc 18 

affects the amount of energy storage by the cheater. As we will describe later, this affects the 19 

reproduction capacity of these agents.  20 



 1 

Every time step, agents consider whether to stay or not within their cell. If the harvested amount 2 

does not satisfy their desired harvest level (HD), agents may move to the nearest cell with the 3 

highest resource level. Besides movement due to dissatisfaction, agents can move to another 4 

random patch with a fixed probability (pm). Movement costs the agent energy. Every time step an 5 

agent changes its location, its accumulated energy (Et) is reduced a certain amount (Cmov). 6 

 7 

Agents store energy that is not used for basic metabolism, movement or reproduction:  8 

 9 

𝐸𝑡𝑖 = 𝐸𝑡−1𝑖 + 𝑥𝑖𝑡 − 𝐹𝑖𝑡 −𝑚𝑒𝑡 − 𝐶𝑚𝑜𝑣 − 𝐶𝑟𝑒𝑝 

 10 

Where, xi is the amount of resource harvested by agent i in time step t, Fi is the fee imposed to 11 

agent i, met is metabolism, Cmov is the cost of movement and Crep the cost of reproduction. 12 

 13 

If the energy stored by an agent becomes 0 or lower, the agent will die. With a birth rate (br), 14 

agents will reproduce. Agents give birth to one offspring. Birth rate depends on the stock of 15 

energy of agents and a reproduction rate (𝜇) of 0.03: 16 

 17 

𝑏𝑟 = 𝜇 ∗ (
𝐸𝑡

100
) 

 18 

Offspring will reproduce the attributes of its parent. Parent and hatchling share the stock of 19 

energy from parent. Offspring will be allocated at the nearest patch (hrmax) with the highest 20 

resource level.    21 



 1 

Every time step, agents can change their desired harvest level by imitating agents with the 2 

highest amount of accumulated energy located in their same cell. Whether an agent is 3 

cooperative or selfish can switch due to a small mutation with probability pm.   4 

 5 

Simulations are initialized with 5000 agents randomly allocated to cells on the landscape, with 6 

half of the population being selfish agents and half cooperative agents.  An online appendix with 7 

the model code and model documentation using the ODD (overview, design concepts and 8 

details) protocol for describing individual- and agent-based models (Grimm et al., 2006; Grimm 9 

and Railsback 2005; Grimm et al., 2010) can be found at 10 

http://www.openabm.org/model/3976/version/1/view. The model is implemented in NetLogo 5.0 11 

(Wilensky 1999; http://ccl.northwestern.edu/netlogo/).  12 

 13 

2.2.Model experiments 14 

 15 

The dynamics of the model are explored by a series of experiments in which we vary the 16 

mobility of agents and the landscape structure. We ran 100 iterations for each experiment and 17 

each simulation runs for a period of 5000 time steps. Early exploration of our model revealed 18 

that around 100 simulations are necessary to reduce the variability of our statistics to an 19 

acceptable level. We used as indicators the average of settlements (i.e., percentage of occupied 20 

patches by at least one agent), resource levels, and proportion of cooperative agents in the 21 

population, over the 100 iterations during the last 1000 time steps. Previous simulations showed 22 

a high correlation between settlements and population level (i.e., number of agents), thus we 23 

http://www.openabm.org/model/3976/version/1/view


used the number of settlements as an indicator of the outcome of the simulation instead of 1 

population (i.e., number of agents) because its value is comparable among different resource 2 

richness distributions. Fig. 4 shows the high correlation between population and settlements.  3 

 4 

2.2.1. Mobility 5 

 6 

To analyze how the mobility of agents affects the indicators, we compared the results when we 7 

ran the model for different move capacities of the agents. Move capacity (armax) is the size of the 8 

radius that defined the possible set of patches an agent can move to. We ran the model for an 9 

armax of one, five, and 25. One means that agents can move to the neighboring patches, while a 10 

move capacity of 25 means that agents can move to any patch of the system. Previous 11 

simulations with move capacities of three and ten indicated linear relationship between one-12 

three-five and between five-ten-25. 13 

 14 

2.2.2. Landscape structure 15 

 16 

We run our model for different landscape configurations, i.e., differences in the carrying capacity 17 

(K) of the resource between patches. We considered four different statistical distributions of K: 18 

homogeneous, uniform, normal, and exponential. In the homogeneous landscape, all patches are 19 

settled to the same K. To settle the rest of the landscape configurations, we first assigned a value 20 

to each cell according to a uniform, normal or exponential distribution. Then, we grouped the 21 

resulting values in five equal intervals.  Finally, we assigned to these categories of cells a 22 

specific value of very low, low, medium, high and very high K. To compare outcomes between 23 



landscapes configuration, we adjust these values so the total amount of resource on the entire 1 

landscape remains the same for the four landscape configurations (Fig. 3). We imported those 2 

results from the R statistical package (R Development Core Team, 2008) using the NetLogo 3 

extension r (Thiele and Grimm, 2010).  4 

 5 

2.3.Sensitivity analysis 6 

 7 

In the sensitivity analysis we varied the values of parameters from low to high values (Table 1) 8 

and ran the simulations for the different distribution of the resource richness considered. In 9 

particular, we varied the values of i) the probability of agents copying (Ia), ii) the probability of 10 

catching a cheater (pc) and iii) the size of the lattice (W) (Table 1). We use as indicator the 11 

average occupied patches, resource level, and number of cooperators over the last 1000 time 12 

steps of the 100 runs. We compared these results with results of the default models. 13 

 14 

 15 

3. RESULTS  16 

 17 

Fig. 5 shows the value of settlements, resource, and cooperators in a typical round of the 18 

different landscape configuration. As Fig. 5 shows, systems with agents with a move capacity of 19 

one need more time to stabilize the system and after 3500 time steps all simulated systems are 20 

stabilized. We can observe some differences in the emergent parameter values based on both the 21 

move capacity of the agents and the landscape structure and that certain landscapes seem more 22 

sensitive than others to the mobility of the agents. Figs. 6-8 show how the mean value of the 23 



percentage of occupied patches (i.e., settlements), the resource level as well as the percentage of 1 

cooperators in the population varies between move capacities of the agents (Figs. 6 and 7) as 2 

well as landscape heterogeneity (Figs. 6 and 8).  3 

 4 

3.1.The effect of mobility  5 

 6 

In heterogeneous landscapes, lower occupation (i.e., number of settlements) and resource levels 7 

are obtained with high move capacity (armax = 25). With the same resource level, a low (armax = 8 

1) and moderate (armax = 5) move capacity are able to support higher occupation levels in all the 9 

landscape configurations (Figs. 6 and 7). The highest percentage of occupied patches is obtained 10 

with a move capacity of five (Fig. 7). The resource level decreases as the move capacity of 11 

agents increases for all landscape configurations except for the homogeneous landscape, which 12 

ended with slightly higher levels of resource with a move capacity of 25 than with a move 13 

capacity of five (Fig. 7).  14 

 15 

Low move capacity of agents ended with a low percentage of occupied patches and high 16 

resource level, meaning that agents are not able to reach potential expansion areas (Fig. 7). 17 

Under this condition, cooperative agents persist more than selfish agents. The highest proportion 18 

of cooperators in the population is obtained with a move capacity of one. The less cooperative 19 

population is obtained with a move capacity of five (Fig. 7). Low mobile agents need to adapt to 20 

the local conditions since they have less chances to get to high resources patches. As move 21 

capacity of the agents increases, cooperation decreases. However, higher levels of cooperators do 22 

lead to higher resource levels and lower number of settlements. Since cooperative agents don’t 23 



overharvest they can only move around the landscape in a sustainable manner if the resource 1 

levels remain high giving them sufficient extra sustainable harvest to pay for the movement 2 

costs. A higher population pressure will reduce the ability of cooperators to pay for its mobility.   3 

 4 

Figs. 9 and 10 show the value of the evolved parameters for different richness values of the 5 

patches (k) when the resource is uniformly distributed in the landscape. With a move capacity of 6 

one and five, agents select to settle in patches with high k value (k > 3). With a move capacity of 7 

five, the occupation level of those patches is close to 100%, while with a move capacity of one, 8 

the limited information of agents makes it more difficult for them to reach the best patches. 9 

However, with a move capacity of 25, patches with high k value (k > 3) had significantly lower 10 

levels of resource and occupation than patches with smaller k value. Agents with full information 11 

tend to move to patches with very high k value, hence those patches have lower stability because 12 

of overcrowding and overexploitation of local resources. On the contrary, patches with small 13 

values of k are more sustainable because they don’t attract many agents. As Fig. 10 shows, in 14 

those patches where cooperation is lower, there is a worse performance. On the contrary, with a 15 

move capacity of one, the cooperation level is higher in very rich patches. With a move capacity 16 

of five, cooperation increases as does the richness of patches. 17 

 18 

 19 

 20 

3.2.The effect of landscape heterogeneity 21 

 22 



As we will show below, the effect of landscape configuration on the evolved value of 1 

cooperation and resource levels highly depend on the combined effect of landscape and the move 2 

capacity of the agents (Fig. 8). In general, we observe that uniform and normal distributions of 3 

resource richness ended in the higher level of settlements but moderate levels of resource (Figs. 6 4 

and 8). In addition, the effect of landscape configuration on cooperation levels is, although 5 

statistically significant, not as important as in the rest of indicators (Figs. 6 and 8). In general, 6 

higher cooperation levels are obtained in homogeneous or exponential landscapes when the 7 

move capacity of the agents is high or moderate. In contrast, cooperation decreases as landscape 8 

heterogeneity decreases when the move capacity of the agents is low (Figs. 5 and 8, see below).  9 

 10 

3.3.The combined effect of mobility and landscape configuration 11 

 12 

With low and high move capacity of the agents, landscapes with moderate resource 13 

heterogeneity had a moderate performance in terms of resource level (Figs. 6 and 8). The 14 

resource level is higher in exponential distributions of resource richness when the move capacity 15 

of the agents is low and higher in homogeneous landscape when the move capacity of the agents 16 

is very high.  17 

 18 

Fig. 11 shows the relationship between the evolved variables for the different landscape 19 

configurations and move capacities of the agents and help in the understanding of the dynamics 20 

of the model. In general, Fig. 11 shows that the number of occupied patches increases as the 21 

resource does but higher resource levels do not lead to higher levels of cooperation. In addition, 22 

cooperation increases as the settlements decreases. 23 



 1 

When the move capacity of the agents is high, the effect of landscape configuration decreases 2 

(Fig. 11). As shown in Fig. 11, the value of the evolved variables when agents have a high move 3 

capacity is more similar than when the move capacity decreases. Although statistically different 4 

(Fig. 8), when agents have a high move capacity, the effect of landscape heterogeneity on the 5 

occupational level is not as important as it is with a low, and especially with a moderate move 6 

capacity. With low or moderate move capacity of agents, landscapes with moderate resource 7 

distribution heterogeneity (uniform and normal) leads to a higher occupational level (Figs. 6 and 8 

8). Also, the percentage of cooperators in the population is the same for all the landscape 9 

configurations but slightly lower for the uniform distribution of the resource (Fig. 8).   10 

 11 

In general, uniform and normal distributions ended in similar results (Fig. 11). With these 12 

landscape configurations, the best relationship between settlement and resource is obtained. 13 

Move capacity of one leads to a high variability of results, even with situations of very high 14 

resources and very low settlements (Fig. 11) because there are less chances to occupy high 15 

resources patches. 16 

 17 

3.4.Sensitivity analysis 18 

 19 

We found that an increase in the frequency of imitation of agents (Ia) has a negative effect on the 20 

outcomes of the model (Table 2). For all landscape configurations, when Ia increases the number 21 

of occupied patches, the resource level and the proportion of cooperators in the population 22 

decreases (Student's t-test; p < 0.001). On the contrary, a change in the probability of catching a 23 



cheater (pc) has positive consequences on the outcomes of the system (Table 2). In all landscape 1 

configurations, if the value of pc is increased, then the number of settlements, the resource level 2 

and the proportion of cooperators in the population increases (Student's t-test; p < 0.001). 3 

Finally, an increase in the lattice size (W) has a significant effect on the outcomes of the system 4 

(Student's t-test; p < 0.001) (Table 2). If the value of W is increased, then the number of 5 

settlements increases in the exponential distribution, while the resource level increases in the 6 

uniform distribution. Also, when W increases, cooperation also increases for all the landscape 7 

configurations but for the homogeneous distribution of the resource. The relationship between 8 

resource level and landscape configuration is the same for both lattice size. However, when the 9 

value of W is increased, the number of settlements and cooperators are higher in the exponential 10 

and normal or uniform distribution of the resource and not in the homogeneous distribution as in 11 

the default model. Higher population increases allowed by a larger landscape, causes the 12 

depletion of the resource in the homogeneous distribution of the resource. Better outcomes in the 13 

heterogeneous distribution are obtained because population is able to stabilize since isolated 14 

settlements with cooperative solutions can persist.   15 

 16 

 17 

4. CONCLUSIONS 18 

 19 

We developed a stylized model of a social-ecological systems composed of agents moving in a 20 

variety of landscapes. Our purpose was to analyze the effects of mobility and landscape 21 

heterogeneity in a set of social-ecological indicators (i.e., agents’ occupational level, resource 22 

level, and proportion of cooperators in the population). Our paper adds a more realistic approach 23 



to previous studies on the evolution of cooperation (e.g., Nowak and May, 1992) by considering 1 

a social-ecological system in which agents move in a heterogeneous landscape to harvest a 2 

renewable resource instead of the payoff matrix of social dilemma games.  3 

 4 

We observe that the effect of both parameters (mobility and landscape heterogeneity) is highly 5 

intertwined. Therefore, the effect of landscape configuration on the evolved value of cooperation 6 

and population and resource levels is highly dependent on the combined effect of the landscape 7 

and the move capacity of the agents. Earlier studies with static social dilemma games showed 8 

that spatial structure increases cooperation in the prisoner dilemma game (Nowak and May, 9 

1992) but inhibits cooperation in the snowdrift game (Hauert and Doebeli, 2004; Hauert, 2006). 10 

In accordance with previous studies of dynamic payoffs (Szabó and Fáth, 2007), we found that 11 

natural resource dynamics have an important role in explaining levels of cooperation and 12 

resource use in social-ecological systems.  13 

 14 

Our model shows that, in general, moderate agent mobility originated the best relation between 15 

settlements and resource, i.e., both high resource and high occupational levels are obtained. 16 

However, the resulting presence of cooperators in the population is low. Previous studies have 17 

shown a positive impact of resource adversity on cooperation due to resource unpredictability 18 

(Andras et al., 2007). In our simulations, cooperation is enhanced in harsh environments (i.e. low 19 

resource level) in which cooperative groups have natural boundaries fostered by agents’ low 20 

mobility. Specifically, higher level of cooperation is obtained with low or high mobility and with 21 

homogeneous landscapes or in landscapes with an exponential distribution of resource richness. 22 

Low mobility makes population more cooperative but the low mobility leaves agents unable to 23 



expand to new rich areas, making the evolved resource level very high but the occupational level 1 

very low. Intermediate levels of cooperators are obtained with a high move capacity but the 2 

resource level is low compared with a moderate occupation level. This high move capacity is 3 

more threatening for the richest areas. Poorer areas were more sustainable because they didn’t 4 

attract many agents. As a consequence, the resulting agents’ distribution was opposite of the 5 

expected ideal free distribution (Fretwell, 1972) and rich areas ended with lower resource levels 6 

due to the less sustainable behavior of agents. This selection process and differential agent 7 

behavior among resource conditions can lead to spatial pattern formation (Smaldino, 2013).  8 

 9 
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Fig. 1. Example of views of the default model at time step zero and 2500. A) Resource: Initially 1 

all the patches are settled to half of the carrying capacity. The image at the top left corner show 2 

the homogeneous landscape at time step zero. Darker green means higher resource level; B) 3 

Population. Darker pink means higher density of agents. Initially 5000 agents are randomly 4 

allocated. Dots are agent.  5 
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Fig. 2. Activity diagram (for a legend of parameters and variables see Table 1). 1 

 2 



Fig. 3. Landscape structure. Graphs show the number of patches in the system for each carrying 1 

capacity of the resource (k). The mean is given in red and the standard deviation for 100 runs is 2 

given in blue. The right side of the figure shows the resource view of the model at time step zero 3 

for each landscape structure.  4 
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Fig. 4. Relationship between population level and settlements. Landscape heterogeneity: 1 

Cross=Homogeneous, Star=Uniform, Circle=Normal, Triangle=Exponential. Move capacity: 2 

light colors=1, intermediate colors=5, dark colors=25. 3 
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Fig. 5. Emergence value of settlments, resource level and percentage of cooperators in the 1 

population in one typical run of the model for the different landscape configurations. Lighter 2 

colors means a lower move capacity of the agents. Move capacities of 1, 5, and 25 are 3 

represented.  4 
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Fig. 6. Value of evolved attributes of the system over the last 1000 time steps of 100 runs for 1 

different move capacities of the agents and landscape configuration.  2 
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Fig. 7. Peer comparison (Student's t-test) of the average value of evolved parameters over the last 1 

1000 time steps of 100 runs for different move capacities of the agents and landscape structure. 2 

Numbers represent the ratio between compared peers with the smaller move capacity over the 3 

greater. ***p<0.001; **p<0.01; *p<0.05; 
n.s.

p≥0.05 4 
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Fig. 8. Peer comparison of landscape structure with different move capacities of the agents. 1 

Results of the Student's t-test of the average value of evolved parameters over the last 1000 time 2 

steps of 100 runs are shown. Numbers represent the ratio between compared peers with the 3 

smaller landscape heterogeneity over the higher. ***p<0.001; **p<0.01; *p<0.05; 
n.s.

p≥0.05.  4 
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Fig. 9. Percentage of occupied patches, resource level, and proportion of cooperators in the 1 

population in patches with each value of K. Simulations are for a uniform distribution and move 2 

capacity of five. Lines represent the standard deviation. The first 4000 time steps are omitted. 3 
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Fig. 10. Peer comparison of patches with different k values (resource carrying capacity) in a 1 

uniform distribution. Results of the Student's t-test of the average value of evolved parameters 2 

over the last 1000 time steps of 100 runs are shown. Numbers represent the ratio between 3 

compared peers with the smaller k over the higher. ***p<0.001; **p<0.01; *p<0.05; 
n.s.

p>0.05. 4 
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Fig. 11. Relationship of evolved variables. Landscape heterogeneity: Cross=Homogeneous, 1 

Star=Uniform, Circle=Normal, Triangle=Exponential. Move capacity: light colors=1, 2 

intermediate colors=5, dark colors=25.  3 
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Table 1. Variables and parameter definitions of the model and parameter values of the default 1 

setting. 2 

 3 

Parameter Description Value 

XS Sustainable harvest level  0-k 

armax 

Maximum distance around the patch where agent is 

located in which agent can set its potential 

destination 

1,5,25 

𝜇 Reproduction rate of agents 0.03 

Cmov Cost of mobility 0.6 

Crep Cost of reproduction Et / 2 

HD Desired harvest level of agents 0-1 

Et0 Initial energy level of an agent 10 

Et Accumulated energy of agents >0 

H Total resource harvested at each patch 0-n 

hrmax 
Radius around patches as potential destinations for 

offsprings’ settles 
5 

Ia 
Probability of agents copying the attributes of other 

agents in the same patch 
0.2 

k Carrying capacity of resource 

100 for the 

homogeneous 

landscape 

met Metabolism of agents 0.3 

n Number of agents in patch 0-n 

F Amount paid by cheaters  0-1 

P(0) Initial population size 5000 

pc Probability of catching a cheater 0-1 

pm Probability of random movement of agents 0.2 

R Resource level of each patch 0-k 

r Growth rate of resource 0.075 

S Storage level of agents 0-1 

W Size of the lattice 50x50,100x100 

 Initial probability of being selfish 0.5 
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Table 2. Results of the sensitivity analysis. Average frequencies of settlements, resource level, 1 

and cooperators over the last 1000 time steps of 100 runs for different parameter (see Table 1) 2 

and initial conditions combinations and comparison with the simulations in different landscape 3 

configurations and with agents’ move capacity settled to 5. 4 

 5 

   Settlements Resource Cooperators 

Parameter Value 
Resource 

distribution 
Mean Sd Mean Sd Mean Sd 

Ia 

 

0.01 

Homogeneous 0.85 0.00 0.65 0.00 0.38 0.00 

Uniform 0.74 0.00 0.65 0.00 0.39 0.00 

Normal 0.76 0.03 0.66 0.01 0.38 0.00 

Exponential 0.54 0.05 0.62 0.02 0.40 0.00 

0.2 

Homogeneous 0.52 0.08 0.38 0.05 0.15 0.03 

Uniform 0.63 0.00 0.50 0.00 0.12 0.00 

Normal 0.63 0.01 0.48 0.01 0.12 0.00 

Exponential 0.34 0.04 0.48 0.05 0.13 0.02 

0.7 

Homogeneous 0.00 0.00 0.00 0.00 0.00 0.00 

Uniform 0.60 0.01 0.48 0.01 0.07 0.00 

Normal 0.56 0.07 0.44 0.05 0.07 0.01 

Exponential 0.32 0.04 0.47 0.05 0.07 0.02 

pc 

0.01 

Homogeneous 0.00 0.00 0.00 0.00 0.00 0.00 

Uniform 0.00 0 0.00 0 0.00 0 

Normal 0.00 0.00 0.00 0.00 0.00 0.00 

Exponential 0.00 0.00 0.00 0.00 0.00 0.00 

0.3 

Homogeneous 0.52 0.08 0.38 0.05 0.15 0.03 

Uniform 0.63 0 0.50 0 0.12 0 

Normal 0.63 0.01 0.48 0.01 0.12 0.00 

Exponential 0.34 0.04 0.48 0.05 0.13 0.02 

0.7 

Homogeneous 0.77 0.00 0.91 0.00 0.33 0.00 

Uniform 0.74 0 0.87 0 0.27 0 

Normal 0.73 0.01 0.89 0.01 0.28 0.01 

Exponential 0.60 0.04 0.92 0.01 0.33 0.02 

W 

50x50 

Homogeneous 0.52 0.08 0.38 0.05 0.15 0.03 

Uniform 0.63 0 0.50 0 0.12 0 

Normal 0.63 0.01 0.48 0.01 0.12 0.00 

Exponential 0.34 0.04 0.48 0.05 0.13 0.02 

100x100 

Homogeneous 0 0 0 0 0 0 

Uniform 0.19 0 0.89 0 0.16 0 

Normal 0.47 0.15 0.43 0.09 0.16 0.08 

Exponential 0.35 0.07 0.43 0.08 0.14 0.05 
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