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Abstract
Exposure to fine particles can cause various diseases, and an easily accessible method to

monitor the particles can help raise public awareness and reduce harmful exposures. Here

we report a method to estimate PM air pollution based on analysis of a large number of out-

door images available for Beijing, Shanghai (China) and Phoenix (US). Six image features

were extracted from the images, which were used, together with other relevant data, such

as the position of the sun, date, time, geographic information and weather conditions, to pre-

dict PM2.5 index. The results demonstrate that the image analysis method provides good

prediction of PM2.5 indexes, and different features have different significance levels in the

prediction.

Introduction
Among various air pollutants, airborne particulate matter (PM), especially fine particles with
diameters less than 2.5 micrometers (PM2.5), has a huge adverse effect on human health [1],
including increased rates of cardiovascular, respiratory and cerebrovascular diseases [2]. Vari-
ous techniques have been developed to measure the mass concentrations of PM in air. The
most popular methods include filter-based gravimetric methods [3], tapered element oscillat-
ing microbalance [4], beta attenuation monitoring [5], optical analysis [6,7] and black smoke
measurement [8]. All these methods require sophisticated equipment, which is out of reach for
most people. A simple, fast and cheap method to monitor PM in air have the potential to
increase public awareness, alert those with respiratory diseases to take proper prevention mea-
sures, and provide local air quality data that are not otherwise available.

PM pollution is often characterized by poor visibility, arising from scattering of sunlight by
airborne particles. A layperson can tell the difference between clear and hazy sky, but it is
much more difficult to distinguish if the hazy sky is caused by PM or fog, and to quantify the
degree of PM pollution. Digital cameras are widely available to provide high quality photos,
which, together with the ever-increasing computational power for sophisticated image process-
ing with even a mobile device, provide a new opportunity to qualify and analyze airborne parti-
cles based on digital photography. Wang et al. [9] examined air quality from light extinction
estimated from photographs. However, airborne PM affects a photograph via complex scatter-
ing of light, depending on angle and intensity of sunlight, position and angle of the camera,

PLOSONE | DOI:10.1371/journal.pone.0145955 February 1, 2016 1 / 14

OPEN ACCESS

Citation: Liu C, Tsow F, Zou Y, Tao N (2016) Particle
Pollution Estimation Based on Image Analysis. PLoS
ONE 11(2): e0145955. doi:10.1371/journal.
pone.0145955

Editor: Huafeng Liu, Zhejiang Univ, CHINA

Received: September 17, 2015

Accepted: December 10, 2015

Published: February 1, 2016

Copyright: © 2016 Liu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data are available from
Figshare at http://dx.doi.org/10.6084/m9.figshare.
1603556.

Funding: This study was supported by the National
Natural Science Foundation of China, grant numbers
21575062, 21327902, http://isisn.nsfc.gov.cn/
egrantweb/, Nongjian Tao. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript. Beijing
Kinto Investment Management Co., Ltd provided
support in the form of salaries for an author [YZ], but
did not have any additional role in the study design,
data collection and analysis, decision to publish, or
preparation of the manuscript. The specific roles of

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0145955&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1603556
http://dx.doi.org/10.6084/m9.figshare.1603556
http://isisn.nsfc.gov.cn/egrantweb/
http://isisn.nsfc.gov.cn/egrantweb/


distance between the objects and camera, as well as weather conditions, which are reflected in
multiple ways: obscuring the images of distant objects, discoloring the sky and reducing the
image contrast [10]. Accurate assessment of PM pollution requires us to consider multiple
image features and image recording conditions.

Here we report a method to detect and quantify PM pollution by extracting a combination
of six image features, including transmission, sky smoothness and color, whole image and local
image contrast, and image entropy. We further consider the time, geographical location, and
weather condition of each photo, to determine the correlation between PM level and various
factors. Based on these features, we build a regression model to predict PM level using photos
collected in three different cities, Beijing, Shanghai and Phoenix, about 1 year. Many of today’s
smartphones are equipped with high quality imaging and powerful computing capabilities,
which could be used to detect and quantify PM2.5 in air by analyzing the photographs of out-
door scenes.

We arrange the present paper in the following orders. First, the optical model of a hazy
image formation was described. Second, according to the model analysis, several features were
extracted from hazy images, and the support vector regression was applied to train and predict
the PM index. Finally, we evaluate the performance and discuss possible ways to improve the
accuracy of the present method.

Principle
PM in air affects an optical image in different ways, but they are all originated from the interac-
tions of light with the airborne particles, mainly via light scattering, including Rayleigh scatter-
ing and Mie scattering [11]. Light scattering causes an attenuation of light transmission in air,
which can be expressed by the Beer-Lambert law,

t ¼ e�bd ð1Þ
where β is the medium extinction coefficient, which depends on particle size and concentra-
tion, and d is the distance of light propagation. This equation indicates that if the extinction
coefficients at different wavelengths are determined, then PM concentration can be estimated.
The extinction coefficient may be determined from an observed image according to [1,12–14],

Iðx; yÞ ¼ tðx; yÞJðx; yÞ þ ð1� tðx; yÞÞA ð2Þ
where I is the observed hazy image, t is the transmission from the scene to the camera, J is the
scene radiance, A is the airlight color vector (see explanation below). As shown in Fig 1, the
first term of Eq 2 is the direct transmission of the scene radiance into the camera, which is light
reflected by the object surfaces in the scene and attenuated by air before entering the camera.
The second term (1-t(x,y))A is called airlight, which is the ambient light scattered by air mole-
cules and PM into the camera [12–15]. Wang et al. [9] applied the above formula to estimate
light attenuation. In the present work, the relationship between transmission value and PM
density was evaluated by analyzing ROIs at difference distances. Eq 2 assumes constant atmo-
spheric and lighting conditions, which, in practice, may both change with the weather and
position of the sun that vary with the time of the day and season. Additionally, both J and A
depend not only on the weather and position of the sun, but also on PM distribution and con-
centration. The present work considers these varying factors as additional features to improve
the accuracy of PM estimation based on images. Fig 1.

The above discussion did not consider color information explicitly, which can also serve as
important features for PM estimation based on light scattering consideration. Rayleigh scatter-
ing dominates when the particles (including air molecules) are much smaller than the
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wavelength of light. It is strongly wavelength dependent, and varies with wavelength (λ)
according to λ-4, which is responsible for the blue color of the sky. In contrast, Mie scattering
occurs when the size of the particles is comparable to the wavelengths of light, which tends to
produce a white glare around the sun when particles are present in air. The combination of
Rayleigh and Mie scattering affect the brightness and color saturation of an outdoor image.
Conversely, the color and brightness information contains particle concentration and size
information, and can be used as distinct features to estimate PM. The present work includes
color information as important image features for PM estimation, in addition to light
attenuation.

Materials and Method

Data acquisition
To evaluate the capability and accuracy of PM estimation based on image analysis, it is critical
to build a database. In the present work, we collected images, as well the date and time of each
image, PM2.5 index, weather data and geographic location from fixed scenes in three cities, Bei-
jing and Shanghai (China), and Phoenix (U.S.). The Beijing dataset consists of 327 photos
(Taken by one of the co-author Yi Zou) of a fixed scene, featuring Beijing Television Tower,
captured at almost the same time every morning in 2014. The Shanghai dataset contains 1954
photos of the Oriental Pearl Tower, the icon of Shanghai, from Archive of Many Outdoor
Scenes (AMOS) dataset, captured every hour from 8:00 a.m. to 16:00 p.m., fromMay to
December in 2014 [16]. The Phoenix dataset includes 4306 images from AMOS dataset [16],
captured every half hour from 9:00 a.m. to 16:30 p.m. in 2014. The PM2.5 indices of Beijing and
Shanghai were from published documents by the U.S. consulates, which monitor the air quality
of the two cities. The air quality of Phoenix was from the published data by U.S. Environmental
Protection Agency [17]. Fig 2 shows the PM2.5 index range in the three cities. The weather data
of the three cities were obtained fromWeather Underground (http://www.wunderground.
com/) andWeather Spark (https://weatherspark.com/). Precise geographical locations,

Fig 1. The radiance reaching the smartphone camera is the summation of the transmitted light from
the object and airlight from the sun after scattering by air, water and PM in atmosphere.

doi:10.1371/journal.pone.0145955.g001

Fig 2. The histogram of PM2.5 in different cities. (a) Beijing; (b) Shanghai; (c) Phoenix.

doi:10.1371/journal.pone.0145955.g002
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including longitude, latitude and altitude, were from Google map (https://www.google.com/
maps) and elevation map (http://elevationmap.net). Fig 2. (a) Beijing; (b) Shanghai; (c)
Phoenix.

Method
After building the database described above, we applied the following image processing algo-
rithm to estimate PM2.5 index. As shown in Fig 3, the algorithm mainly consists of the follow-
ing steps: regions of interest (ROI) selection, feature extraction, regression model training and
predicting. We describe the details of these steps below. Fig 3.

ROI selection. The first step is to remove the watermarks in these photos. The watermarks
indicate the date and time stamp in our images, which appear in white characters in the first or
last few rows. The second step is to build a mask of the sky region, which appears in the images
of all the three cities. Fig 4A shows three representative images, one from each city. Both the
buildings and background sky are clearly visible. The color images were converted into gray
scale images, and then further into binary images with the Otsu method. The Otsu method
converts gray scale to binary images by selecting a threshold that minimizes the intra-class var-
iance or maximizing the inter-class variance [18]. In these images, the intensity of the sky is
higher than that of the buildings, so the upper part of the binary image is mainly the sky. Fig
4B shows blue lines that mark the boundary between the sky and buildings. To remove the
noise caused by the white buildings, we applied the opening operator with a 4×4 disk structur-
ing element, and then filled the holes in the binary image. The third step is to draw the ROIs
for the distant buildings manually as shown in Fig 4C, which were used to examine the trans-
mission difference at different distances and PM densities. The ROIs were selected in one
image in each dataset and applied to the rest. Fig 4. a) Photos captured at Beijing, Shanghai and

Fig 3. PM estimation via outdoor image analysis.

doi:10.1371/journal.pone.0145955.g003

Fig 4. Sample photos in our haze detection database. a) Photos captured at Beijing, Shanghai and
Phoenix respectively. b) Boundary lines (blue lines in b) between distant buildings and sky. c) Selected ROIs
(red boxes). Reprinted under a CC BY license, with permission from [Yi Zou], original copyright [2014].

doi:10.1371/journal.pone.0145955.g004
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Phoenix respectively. b) Boundary lines (blue lines in b) between distant buildings and sky. c)
Selected ROIs (red boxes). Reprinted under a CC BY license, with permission from [Yi Zou],
original copyright [2014].

Feature extraction. According to the model described in the principle section, transmis-
sion can be used to describe the attenuation of scene radiance. To solve for the transmission
and thus the attenuation with a single hazy image, the concept of dark channel has been intro-
duced, which assumes the existence of some pixels with zero or very low intensity at least for
one color channel in all the outdoor images [13–16]. For a haze–free image J, the dark channel
is,

JdarkðxÞ ¼ min
y2OðxÞ

ð min
c2fr;g;bg

ðJcðyÞÞÞ ð3Þ

where Jc is one of the color channels of J, and O(x) is a local patch centered at x. The airlight
can be estimated from the sky or the brightest region, so the transmission can be obtained by,

� tðxÞ ¼ 1� min
y2OðxÞ

ð min
c2fr;g;bg

IcðyÞ
A

Þ ð4Þ

where Ic(y)∕A is the hazy image normalized by air-light A, and the second term on the right is
the dark channel of the normalized hazy image.

An important assumption in the present model is that the transmission decreases exponen-
tially with the distance between the object in the scene and the camera. We evaluated the trans-
mission by analyzing images of objects at different distances (Fig 5A). Fig 5B shows four ROIs
(marked by red boxes) for buildings located at different distances from the camera
(r1<r2<r3<r4). The transmission map (Fig 5C) shows the four ROIs at different distances. The
average transmission values obtained for the four ROIs are plotted in a semi-logarithmic scale,
showing exponential decrease of the transmission with distance, which confirms the validity of
the Beer-Lambert law. Fig 5. (a) Schematic illustration of transmission variation with distance.
(b) Four ROIs (r1~r4) located at increasing distances. (c) The estimated transmission map. (d)
Semi-logarithmic plots of transmission curves vs. distance under different haze conditions.

Image contrast is another feature related to PM concentration in air. In fact, human visual
perception of air quality is related to image contrast, or visibility [19, 20]. The effect of PM on
image contrast can be understood based on Eq 2. As PM concentration increases, the airlight
term (second term of Eq 2) arising from light scattering by PM increases. Airlight does not con-
tain information of the scene, which leads to a decrease in the image contrast due to PM.

Fig 5. The transmission decreases as the distance or PM2.5 index increases. (a) Schematic illustration of
transmission variation with distance. (b) Four ROIs (r1~r4) located at increasing distances. (c) The estimated
transmission map. (d) Semi-logarithmic plots of transmission curves vs. distance under different haze
conditions.

doi:10.1371/journal.pone.0145955.g005

Particle Pollution Estimation Based on Image Analysis

PLOS ONE | DOI:10.1371/journal.pone.0145955 February 1, 2016 5 / 14



Because transmission decreases with the distance between an object and camera, the airlight
term contribution also increases with the distance, so the higher is the PM concentration, the
lower is the image contrast.

There are many ways to quantify the contrast of an image. A simple way is to use the root
mean square (RMS) of an image to describe image contrast. This approach has been found to
match with human perception of image contrast [21]. RMS contrast is defined as the standard
deviation of the image pixel intensities,

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XN
i¼1

XM
j¼1

ðIij � avgðIÞÞ2
vuut ð5Þ

where Iij is intensity at (i,j) pixel of the image with sizeM by N, and avg(I) is the average inten-
sity of all pixels in the image. RMS contrast does not depend on the spatial frequency content,
nor convey any information about the spatial distribution of image contrast.

Another image feature that can possibly provide PM information is image entropy, which
quantifies information contained in an image, and is related to image texture. Image entropy is
defined as,

entropy ¼ �
XM
i¼1

pi log2 pi ð6Þ

where pi is the probability that the pixel intensity is equal to i, andM is the maximum intensity
of the image. As the PM concentration increases, the image increasingly loses its details, and
the image entropy decreases.

To determine the image contrast and entropy, we first converted a color images into a gray
scale image, and then calculated the image entropy and RMS contrast for the entire image. For
comparison, we also determined image contrast of distant buildings by calculating RMS of the
selected ROI. Fig 6A–6D show the image of the Oriental Pearl Tower of Shanghai recorded on
different days with increasing PM2.5. As the PM2.5 level increases, the visibility deceases, which
is especially clear in a zoomed-in region (red box). The RMS contrast and image entropy both
decreases with PM2.5 index (Fig 6E). Note that the RMS values of the entire image and the ROI
show similar results.

Sky region also carries useful information, such as weather condition. Due to light scatter-
ing, the sky is blue on a clear day and gray or white on a hazy or cloudy day. The presence of
cloud in the sky can be directly detected from the image, which can be used to differentiate it
from the hazy sky. By combining the color and smoothness features, we have attempted to
determine clear, partly cloudy, cloudy and hazy days. This information, together with the
online weather data, help minimize errors in the estimation of PM due to weather conditions.

Fig 6. Image features variation with PM index. (a~d): Hazy images showing that the contrast of the
building region decreases with the PM index, where the lower panel shows the zooming-in images of the
regions marked by the red boxes. (e) The normalized features vs. PM2.5 index plot, including ROI RMS
contrast (blue), image entropy (black), and image RMS contrast (red).

doi:10.1371/journal.pone.0145955.g006
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The color of the sky in our study is presented by the average value of the blue component of
RGB channels in sky region. The blue channel and sky mask were used to extract the blue com-
ponent of the sky image (Fig 7). The average of the blue component describes the color of the
sky. Fig 7. (a) Sunny day; (b) Partly cloudy/sunny day; (c) Hazy day; (d) Cloudy day.

The smoothness of the sky is defined by the average of the gradient amplitude in the sky
region. The image gradient is defined as,

rI ¼ @I
@x

x̂ þ @I
@y

ŷ ð7Þ

where I is the intensity of the sky region in the image, @I/@x is the gradient in x direction, and
@I/@y is the gradient in y direction. The average of the gradient amplitude is defined as,

avgðjrIjÞ ¼ 1

MN

XN
i¼1

XM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@I
@x

Þ2 þ ð@I
@y

Þ2
s

ð8Þ

where avg(�) is the average value of the two-dimensional image of sizeM by N. As shown in
Fig 7, the blue component in sunny and partly cloudy images is higher than those in the cloudy
and hazy images. The averages of the gradient amplitude in the sky regions are higher in cloudy
day images than those in sunny and hazy day images.

Both Rayleigh and Mie scattering depend strongly on the angle of sunlight reaching the
object, which is determined by the position of the sun for a given scene (Fig 8A). For example,
different angles produce different images, such as sunrise and sunset shown in Fig 8B. In the
present study, both the scenes and cameras are fixed in positions, so the variation of the scatter-
ing is mainly due to the angle of incident illumination, which is determined by the position of
the sun. Fig 8. (a) Definition of solar zenith angle. (b) Sample images show that the sky near
horizon is red during sunrise and sunset on the same day compared with noon time.

The zenith angle of the sun as shown in Fig 8A indicates the elevation of the sun above the
horizon. It is a function of the observer local time, date, longitude, latitude and altitude. In our
study, we used solar position algorithm to calculate the solar angle [22]. The main steps include
calculations of (1) the earth heliocentric longitude, latitude, and radius with local information,

Fig 7. Sky gradient and blue component provide weather information, such as cloud formation. (a)
Sunny day; (b) Partly cloudy/sunny day; (c) Hazy day; (d) Cloudy day.

doi:10.1371/journal.pone.0145955.g007
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(2) the geocentric longitude, latitude and the aberration correction, (3) the Greenwich apparent
sun longitude and sidereal times, (4) the geocentric sun declination and observer local hour
angle, and (5) the topo-centric sun position and solar angle. The solar zenith angle is defined
as,

ys ¼ arccosðsin φsin dþ cos φcos d coshÞ ð9Þ

where φ is the local latitude, δ is the sun declination, and h is the local hour angle. In this study,
we obtained the longitude, latitude, altitude, coordinated universal time, local date and local
time of the captured image. This information is available online, and can also be obtained from
the built-in GPS and gyroscope features of smartphones.

Support vector regression. After defining the image features that are possibly related to
PM concentration, we determine the relationship between the extracted features and PM con-
centration using nonlinear support vector machine and kernel to predict the PM concentra-
tion. Support vector machines (SVM) [23] have been widely applied in a large number of fields
[24–26], including prediction and regression [27, 28]. SVM can also be used to solve nonlinear
regression estimation problems, called support vector regression (SVR). In this paper, we used
SVR to predict PM2.5 index.

The basic idea of SVR is to map input data to a higher dimensional feature space via a func-
tion,F. A linear function f in the high dimensional feature space formulates nonlinear relation-
ship between input and output data. The regression function can be expressed as,

f ðw; bÞ ¼ w � FðxÞ þ b ð10Þ

where f(w,b) is the forecasting values, w and b are the function parameter vectors, and F is a
nonlinear transformation from x to high-dimensional space. The goal of SVR is to minimize
function,

Rregðf Þ ¼
1

N

XN

i¼1
Yεðyi;wTFðxÞ þ bÞ ð11Þ

where Θε is the ε-insensitive loss function and defined as,

Yεðy; f ðxÞÞ ¼
jf ðxÞ � yj � ε; if jf ðxÞ � yj � ε

0; if jf ðxÞ � yj < ε
ð12Þ

(

where ε is a measure of training error, called the radius of the insensitive tube.
In addition, Θε is used to determine the optimal hyper plane in the high dimensional space

and minimize the training error between the input data and the ε-insensitive loss function.

Fig 8. Sky color dependence on solar zenith angle. (a) Definition of solar zenith angle. (b) Sample images
show that the sky near horizon is red during sunrise and sunset on the same day compared with noon time.

doi:10.1371/journal.pone.0145955.g008
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Then, SVR minimizes the overall errors,

minw;b;x� ;xð
1

2
wTwÞ þ C

XN
i¼1

ðx�i þ xiÞ ð13Þ

with the constraints, yi-(w�F(x)+b)�ε+ξi, (w�F(x)+b)- yi�ε+ξi
�
, ξi

�
,ξi�0, i = 1,2,. . .,N, where

ξi and ξi
�
are slack variables, and C is the cost constant. The training vector xi are mapped to a

higher dimensional space with F. The radial basis function (RBF) kernel is a popular kernel
function used in regression and classification, which can handle the nonlinear relationship
well, which is defined as,

Kðxi; yjÞ ¼ expð�gjxi � xjj2Þ ð14Þ

where γ is a kernel parameter. The parameters that dominate SVR are the cost constant, C, and
kernel parameter, γ. We performed grid search [28] to determine the optimal values of C and γ
(C = 28, γ = 22). We used the toolbox LIBSVM in MATLAB R2013a and 2-fold cross validation
as the regression strategy. We have also performed leave one out cross validation, and found
similar results.

Results and Discussion
To predict the PM2.5 index with the regression model, we randomly selected half of the samples
as training data, and the other half as the testing data, and then we considered the second half
as training data and first half as the testing data. For each city’s data, we used the 2-fold cross
validation and obtained the prediction results. Fig 9 plots the real PM2.5 index vs. predicted
PM2.5 index. The prediction error was evaluated with root mean square error (RMSE), R-
squared and F-test. RMSE is defined as,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � ŷ iÞ2
s

ð15Þ

where ŷ i is the i
th forecast value, and yi is the i

th observed value, i = 1,2,. . .,N. R-squared is
given by

R2 ¼ 1�
XN

i¼1
ðyi � ŷ iÞ2XN

i¼1
ðyi � avgðyÞÞ2

ð16Þ

where ŷ i is the i
th forecast value, avg(y) is the average value, yi is the i

th observed value,
i = 1,2,. . .,N. R-squared increases with the agreement between the model prediction and actual
result with a maximum value of 1, corresponding to perfect match of the prediction and the
actual result. F-test evaluates the null hypothesis that all regression coefficients are equal to
zero vs. the alternative that at least one does not. A significant F-test indicates that the observed
R-squared is reliable. Fig 9. (a) Beijing; (b) Shanghai; (c) Phoenix.

Fig 9. Real PM2.5 index vs. predicted PM2.5 index plot. (a) Beijing; (b) Shanghai; (c) Phoenix.

doi:10.1371/journal.pone.0145955.g009
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Fig 9 shows that the predictions for the Beijing and Shanghai data correlate well with the
actual PM2.5 indices. In contrast, the correlation for Phoenix is less obvious, which is mainly
caused by that PM2.5 index in Phoenix falls within a narrow range (0–40). The PM2.5 indices in
Beijing and Shanghai can reach as high as 340 and 204, respectively, while the PM2.5 index in
the Phoenix can only reach 38, far below those in Beijing and Shanghai. Table 1 lists RMSE val-
ues, which shows that RMSE in Beijing is larger than that in Shanghai, which is caused by the
prediction error for high PM2.5 index data (over 120), as shown in Fig 9A. R-squared values in
Beijing and Shanghai are better than that in Phoenix due to the reason discussed above. F-test
in Table 1 shows that R-squared values are reliable.

Weather conditions
In the present work, the effect of different weather conditions was also taken into consider-
ation in PM2.5 index prediction. Rainy and snowing days were rare in these datasets, we thus
focused on two weather conditions: clear and cloudy days. In the Beijing dataset, 139 and 181
photos were captured on clear and cloudy days, respectively. In the Shanghai dataset, 548
and 1275 photos were captured on clear and cloudy days, respectively. For each weather con-
dition and city, we used the same regression method and 2-fold cross validation as described
above.

As shown in Table 2, the prediction error on cloudy days is larger than that in clear days.
This is mainly caused by the water droplets in the air, which also scatter light. High humidity
can significantly increase the effect of air pollution on visibility. For example, PM attracts
water molecules leading to hygroscopic growth in ambient atmosphere [29]. When relative
humidity reaches 80%, particles can grow to sizes that cause large increase in light scattering
[30].

Since the relationships between particle concentration, relative humidity and visibility are
complicated, relative humidity was added as a feature to build the regression model in the fol-
lowing test. Results with and without humidity taken into account as one of the features are
shown in Table 3. We can see that the prediction improved after adding the humidity feature
for both datasets, especially in the case of Shanghai. This observation correlates with the fact
that there are more images captured on cloudy days than that on clear days in Shanghai than
in Beijing, and also Shanghai is usually more humid than Beijing. Considering that many of
today’s newer smartphones are incorporating humidity sensors (e.g. Samsung S4), it is possible
to include the humidity as a key feature to estimate PM2.5 index.

Table 1. Assessment of the support vector regression.

dataset RMSE R squared F test

Beijing 42.69 0.65 p<0.0001

Shanghai 19.23 0.57 p<0.0001

Phoenix 2.89 0.22 p<0.0001

doi:10.1371/journal.pone.0145955.t001

Table 2. Regression results for different weather conditions.

dataset RMSE R squared F test

Clear Cloudy Clear Cloudy Clear Cloudy

Beijing 38.90 58.52 0.55 0.45 p<0.0001 p<0.0001

Shanghai 13.11 25.18 0.58 0.48 p<0.0001 p<0.0001

doi:10.1371/journal.pone.0145955.t002
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Feature assessment
To evaluate the features used in the current method, we calculated the distance correlation
(DC) and Pearson correlation (PC) between each extracted feature and PM2.5 index. The dis-
tance correlation is a measurement of dependence between random vectors. DC varies between
0 and 1, representing low and high correlation between an extracted feature and PM2.5 index.
PC is a measure of linear relationship between two vectors, which varies from -1, indicating a
perfect negative linear relationship, to 1, indicating a perfect positive linear relationship.

As shown in Table 4, the transmission has one of the largest correlations with PM2.5 index,
which is an important indicator of PM concentration. The ROI contrast, whole image contrast
and image entropy also show good correlations with PM2.5 index, supporting human visual
perception that the visibility decreases with increasing PM2.5 index. The sky smoothness and
color analysis have some correlations with PM2.5 index. As for solar zenith angle, the DC and
PC values are low, indicating little correlation of the quantity with PM2.5 index. The statistical
analysis shows that transmission, image contrast and sky features are good features for PM2.5

estimation. We also calculated the PC between solar angle and other features. The DC and PC
between solar zenith angle and sky smoothness are 0.38 and 0.22 respectively, and the DC and
PC between solar zenith angle and sky color are 0.24 and 0.23 respectively. The solar angle
shows correlations with sky smoothness and color. The normalization of the related image fea-
tures with the solar zenith angle could improve the prediction accuracy.

In this study, two feature optimization methods were used to evaluate the feature redun-
dancy and achieve the optimized regression performance. The first one is principle component
analysis (PCA) [31]. The second one is sequential backward feature selection (SBFS) [32], and
the criterion is RMSE. All eight features were included in the datasets: transmission, ROI con-
trast, image entropy, image contrast, sky smoothness, sky color, solar zenith angle and relative
humidity. We used PCA on the datasets to reduce the dimensions, and then perform the train-
ing and regression with 1~7 principle components (PC) respectively. The PCA-SVR results are
shown in Fig 10. Compared with the previous results, the regression error in Beijing’s dataset
(RMSE: 39.08, R squared: 0.69) is smaller using the first 5 PCs. For Shanghai’s dataset, the

Table 3. Regression results with and without humidity as a feature.

dataset RMSE R squared F test

Without With Without With Without With

Beijing 42.69 40.43 0.65 0.68 p<0.0001 p<0.0001

Shanghai 19.23 14.05 0.57 0.72 p<0.0001 p<0.0001

doi:10.1371/journal.pone.0145955.t003

Table 4. The features and their correlations with PM2.5 index in our dataset.

Features Beijing Shanghai Phoenix

DC PC DC PC DC PC

Transmission 0.81 -0.78 0.60 -0.60 0.32 -0.32

ROI contrast 0.82 -0.76 0.40 -0.40 0.28 -0.29

Image entropy 0.63 -0.54 0.42 -0.46 0.24 -0.24

Image contrast 0.43 -0.43 0.52 -0.55 0.13 -0.12

Sky smoothness 0.34 -0.29 0.32 -0.31 0.28 -0.30

Sky color 0.43 -0.43 0.20 -0.21 0.09 -0.08

Solar zenith angle 0.13 -0.01 0.12 -0.11 0.10 -0.04

doi:10.1371/journal.pone.0145955.t004
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regression performance is also better using the first 6 PCs than that without PCA optimization
(RMSE: 13.76, R squared: 0.76). From the above results, we can see that with more information,
by including combined image features, weather and geographic information, the PM2.5 index
prediction can be improved. To optimize the feature combination, the PCA-SVR method is
efficient to reduce the computation burden and improve the PM2.5 index prediction. Fig 10. (a)
RMSE. (b) R-squared.

To search for an optimal feature subset, SBFS method was used. Considering there are 8 fea-
tures in the initial dataset, the method mainly includes: (1) remove the 1st feature in the dataset
D8, and obtain the regression error e81; (2) remove the ith feature in D8, and obtain the regres-
sion error e8i; (3) repeat the above process, so we can get the errors {e81,e82,. . .,e88}; (4) the min-
imum error e8j in {e81,e82,. . .,e88} corresponds to the optimized feature subset of 7 dimensions,
called D7, and the j

th feature is considered as the least important one in D8; (5) remove the fea-
ture sequentially and repeat steps (1)~(4), so we can get the feature subsets, {D1,D2,. . .,D8},
which are considered the optimized feature subset for each dimension; (6) in these feature sub-
sets {D1,D2,. . .,D8}, the optimal subset is the one with the minimized regression error. In Bei-
jing and Shanghai’s datasets, the optimal features include transmission, ROI contrast, image
entropy and sky smoothness. Shanghai has a humid subtropical climate, thus, the relative
humidity is one of the most important features. From the regression errors, we can see the fea-
ture selection method improves the prediction accuracy. Both PCA and SBFS methods can
reduce the feature redundancy and improve the regression with comparable regression errors
(Table 5). The PCA method converts the original features into PCs with orthogonal transfor-
mation, so PCs not more than the original number of variables can be chosen to be used in the
PM2.5 index prediction. SBFS method selects an optimal feature subset in the original feature
space, so we can improve our understanding in feature contribution and potentially develop
new features based on the optimal subset.

The method presented here has several limitations that may be improved in the future. 1)
More image features can be included and analyzed, and an optimal combination of different
features can be developed with genetic algorithms or particle swarm optimization methods
[33], 2) better algorithm, such as deep convolutional neural network can take advantage of the
two-dimensional structure of an input image and be used to perform machine learning task, 3)
Additional information, such as magnetometer, gyroscope, and thermometer, could be used to
determine the camera angle and meteorological parameters.

Fig 10. PCA-SVR results for Beijing and Shanghai’s dataset. (a) RMSE. (b) R-squared.

doi:10.1371/journal.pone.0145955.g010

Table 5. The performance comparison between all the features and the optimized feature subsets for Beijing and Shanghai’s dataset.

Dataset All the features PCA SBFS

RMSE R squared RMSE R squared RMSE R squared

Beijing 40.43 0.68 39.08 0.69 38.28 0.70

Shanghai 14.05 0.72 13.76 0.76 13.65 0.76

doi:10.1371/journal.pone.0145955.t005
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Conclusions
We have developed an image-based method to estimate PM2.5 index in air. We have extracted
various image features, including transmission, image contrast and entropy, sky smoothness
and color, and studied their correlations with the reported PM2.5 indices in Beijing, Shanghai
and Phoenix. We have also examined the effects of solar zenith angle, and weather conditions
on the accuracy of the predictions. Using the image and non-image features, we have analyzed
a large number of images captured in Beijing (327 images, one per day for 327 days), Shanghai
(1954 images, and 8 images per day for 245 days), and Phoenix (4306 images, and 16 images
per day for 270 days), and concluded that the method can provide reasonable prediction of
PM2.5 index over a wide PM2.5 index range. We do not expect that the present method will
replace the gold standard particle counting apparatus, however, its simplicity and smartphone
readiness can help promote air pollution awareness, and alert people with serious respiratory
diseases to stay away from suspected polluted air.
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