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Abstract In this paper, we present a Bayesian analysis for the Weibull proportional hazard (PH) model
used in step-stress accelerated life testings. The key mathematical and graphical difference between the
Weibull cumulative exposure (CE) model and the PH model is illustrated. Compared with the CE model,
the PH model provides more flexibility in fitting step-stress testing data and has the attractive mathemat-
ical properties of being desirable in the Bayesian framework. A Markov chain Monte Carlo algorithm with
adaptive rejection sampling technique is used for posterior inference. We demonstrate the performance
of this method on both simulated and real datasets.

Keywords Step-stress accelerated life test · Proportional hazard model · Cumulative exposure model ·
Weibull distribution · Bayesian inference

1 Introduction

Accelerated life testing (ALT) is often used for making reliability prediction because it collects failure
data quickly and reduces the cost of testing greatly. To hasten the process of failure, the testing involves
physical stresses at some higher levels than the stress level that the product would experience at its use
condition. Step-stress ALT (SSALT) is a special kind of ALT in which the stress on each specimen is
increased step-by-step over time. The goal of statistical inference for step-stress ALT is to predict the
product failure behavior under the use condition by using the failure data obtained under elevated test
conditions.

There are two different ways of modeling SSALT in general. One assumes that the effect of varying
stress shortens or expands the product’s lifetime depending on the degree of increase or decrease of stress
level. This is the tampered random variable (the product lifetime) model (TRV) proposed by DeGroot
and Goel (1979). Doksum and Hoyland (1991) brought forth a tampered lifetime model from the decay
process point of view. Alternatively, Nelson’s cumulative exposure model (CE), which has a significant
influence in engineering applications, assumes that the remaining life of test units depends only on the
current cumulative fraction failed and current stress, and it has nothing to do with the way of cumulation
(Nelson, 1980). It can be shown that the CE model coincides with the TRV model if the product life
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distributions under different stresses belong to the same location-scale parametric family (Wang and
Fei, 2004). As most of the commonly used distributions in reliability engineering, such as exponential,
Weibull and lognormal distributions, belong to log-location-scale families, in practice, there is no difference
of modeling SSALT using TRV or CE model.

The other type of SSALT model assumes that the effect of varying stress applies on the hazard function
of the product’s lifetime. In particular, the Cox’s proportional hazard (PH) (Cox, 1972) assumption
states that the ratio of hazard functions under two constant stresses is an exponential function of the
difference of the two stress levels, i.e. the hazard (or failure rate) function at the stress level x is given by
h(t;x) = h0(t)e

xβ , where h0(t) is a baseline hazard function. It is well known that the parameter β is the
effect of stress, and the baseline hazard function does not require a specific form; therefore, the PH model
provides flexibilities in modeling lifetime data. In fact, many physical failure acceleration models correlate
the effect of physical stress to the failure rate of the product, instead of the failure time. For examples,
in the Arrhenius temperature acceleration model, the product failure rate is a log-linear function of the
proportional inverse of temperature in degree Kelvin; in the Peck humidity acceleration model, the failure
rate is a log-linear function of the logarithm of the relative humidity. Although in a constant stress testing,
when the failure time has a Weibull distribution, the CE model can be reparameterized as a proportional
hazard (PH) model (Lawless, 2003), and this is not true for other distributions or nonconstant stress
testings. Therefore, it is necessary to study the statistical inference method of PH-SSALT model for
engineering applications where the acceleration model is a failure rate function.

Alternatively, Weibull CE model has been widely studied for SSALT in the past few years. Lee
and Pan (2008) described the Bayesian inference of the log-linear failure rate acceleration function for a
two-step SSALT when failure time is exponentially distributed (a special case of Weibull distribution).
A Bayesian approach to analyzing varying-stress reliability tests using the exponential and Weibull CE
models was presented by Dorp and Mazzuchi (2004, 2005). The mathematical intractability of likelihood
function of CE model makes statistical inference extremely difficulty, even for exponential random failure
time (Dorp and Mazzuchi, 2004). Khamis and Higgins (1998) proposed an alternative model to the Weibull
CE model, that is, Weibull proportional hazard model (Weibull PH model) although they did not call
this name, and presented a maximum likelihood estimation for statistical inference. This PH model have
certain analytical advantages over the CE model in terms of modeling flexibility and computational
simplicity. This is particularly desirable for Bayesian analysis.

In this article, we develop a Bayesian inference procedure for the SSALT parameter estimation using
Weibull PH model. In Section 2 we review the Weibull PH model and discuss the common ground and
differences between this model and the Weibull CE model. We describe the Bayesian approach and the
MCMC procedure in Section 3. In Section 4 we assess the performance of the method on simulated
datasets and real problems. Finally we conclude the article with a brief discussion in Section 5.

2 Weibull Proportional Hazard Model

Khamis and Higgins (1998) presented a model (KH model) based on a time transformation of the
exponential CE model, where the cumulative distribution function (cdf) of failure time w in SSALT is
given by

F (w) = 1−


exp{−θ1wδ} 0 ≤ w < τ1
exp{−θ2(wδ − τ δ1 )− θ1τ

δ
1 } τ1 ≤ w < τ2

...
exp{−θk(wδ − τ δk−1)− ...− θ2(τ

δ
2 − τ δ1 )− θ1τ

δ
1 } τk−1 ≤ w <∞

(1)

where τ1, ..., τk−1 are the time points of changing stress levels. Without loss of generality, we assume that
stress levels, xi’s, are arranged in an increasing order, i.e., x1 < x2 < ... < xk. Note that when δ = 1 the
above function becomes the cdf of SSALT with exponential distribution. The parameter θi is related to
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(a) Cumulative Hazard Functions of Constant-
Stress ALTs
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(b) Cumulative Hazard Function of SSALT

Fig. 1 Proportional Hazard Model

stress level xi through a log linear function, log(θi) = β0+β1xi, i = 1, ..., k, where the β0, β1 are unknown
regression parameters. It is easily seen that the failure rate function of KH model is given by

h(w) =


δθ1w

δ−1 0 ≤ w < τ1
δθ2w

δ−1 τ1 ≤ w < τ2
...
δθkw

δ−1 τk−1 ≤ w <∞

(2)

This is a Weibull failure rate function at each stress with different scale parameters θi’s and a common
shape parameter δ. The ratio of two failure rates under two different stress levels is a constant over time
since hi(w)/hj(w) = θi/θj = eβ1(xi−xj) with hi(w) = δθiw

δ−1, i = 1, ..., k. Hence, it has the desirable
proportional hazard property as outlined in Lawless (2003), and we call it the Weibull proportional hazard
model. Essentially, KH model relates the effect of physical stress to the hazard rate of the product. The
cumulative failure rate of the Weibull PH model with Hi(w) = θiw

δ, w > 0 is

H(w) =


H1(w) 0 ≤ w < τ1
H2(w)− (H2(τ1)−H1(τ1)) τ1 ≤ w < τ2
...
Hk(w)− (Hk(τk−1)−Hk−1(τk−1))− · · · − (H2(τ1)−H1(τ1)) τk−1 ≤ w <∞

(3)

The function Hi(w) is the cumulative hazard function of Weibull distribution under a constant stress.
Mathematically, one may take the segments of Hi(w)’s at their respective time intervals and vertically
shift them to form a continuous cumulative hazard function for the Weibull PH SSALT model. An
illustration of such function is shown in Figure 1.

In contrast, the CE model forms a composite failure distribution function by assuming the
product lifetime is shifted at the time of stress level change such that the survival functions of the change
time are the same under two different stress levels. For Weibull CE model, under the same time frame,
the cdf of failure time is given by

F (w) = 1−


exp{−θ1wδ} 0 ≤ w < τ1
exp{−θ2(w − τ1 + s1)

δ} τ1 ≤ w < τ2
...
exp{−θk(w − τk−1 + sk−1)

δ} τk−1 ≤ w <∞

(4)
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(a) Cumulative Hazard Functions of Constant-Stress
ALTs
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(b) Cumulative Hazard Function of SSALT

Fig. 2 Cumulative Exposure Model
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(a) CE Hazard Rate Function
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(b) PH Hazard Rate Function

Fig. 3 Hazard Rate Functions

where si is an equivalent starting time under the ith stress level satisfying θi(τi−τi−1+si−1)
δ = θi+1s

δ
i , i =

1, 2, ..., k − 1 with s0 = 0 and τ0 = 0. The corresponding cumulative failure rate function is

H(w) =


H1(w) 0 ≤ w < τ1
H2(w − τ1 + s1) τ1 ≤ w < τ2
...
Hk(w − τk−1 + sk−1) τk−1 ≤ w <∞

(5)

with Hi(w) = θiw
δ, w > 0. The failure rate function at the ith stress level becomes hi(w) = δθi(w−τi−1+

si−1)
δ−1, τi−1 ≤ w < τi. Graphically, for the Weibull CE model, the composite cumulative failure rate

is made by horizontally shifting the individual cumulative hazard function segment as shown in Figure
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2; while in the Weibull PH model, the shift is made vertically as shown in Figure 1. Their corresponding
failure rate functions under the same time frame are displayed in Figure 3. When δ = 1, the failure time
under each stress level is exponentially distributed and the curves of Hi(w) become straight lines, so
that the composite cumulative failure rates of the two models coincide with each other. Empirically, PH
models correlate the effect of physical stress to the failure rate of the product while CE models to the
failure time. As shown in Khamis and Higgins (1998), the Weibull PH model appears to be as flexible
as the Weibull CE model in the fitting step-stress test data and has major computational advantages
due to its mathematical simplicity. Moreover, the attractive mathematical properties will make Bayesian
inference much convenient for the Weibull PH model than the Weibull CE model (presented in Dorp and
Mazzuchi (2005)). Khamis and Higgins (1998) presented a simple Bayesian analysis in the case of known
shape parameter δ. Here we provide a “fully” Bayesian inference assuming all three parameters β0, β1, δ
unknown in the following section.

3 Bayesian Analysis

3.1 Likelihood Function

Suppose that the observational data D = {(wij ,mi), i = 1, ..., k, j = 1, ..., ni} with wij being the jth

failure time, mi the number of right censored units, and ni the number of failed units at the ith stress
level. Let n =

∑k
i=1 ni and m =

∑k
i=1mi, so there are totally n +m units initially placed on the test.

The test starts with the first stress level x1 and run until time τ1 when the stress level is changed to x2,
and so on. The test is completed on the stress level xk at the termination time τk. With the Weibull PH
model, the probability density function (pdf) is given by

f(w) =


δθ1w

δ−1 exp{−θ1wδ} 0 ≤ w < τ1
δθ2w

δ−1 exp{−θ2(wδ − τ δ1 )− θ1τ
δ
1 } τ1 ≤ w < τ2

...
δθkw

δ−1 exp{−θk(wδ − τ δk−1)− ...− θ2(τ
δ
2 − τ δ1 )− θ1τ

δ
1 } τk−1 ≤ w < τk

(6)

leading to the likelihood function L(θ1, ..., θk, δ|D) =
∏k
i=1{

∏ni

j=1 f(wij)(Si(τi))
mi} where the ith survival

function Si(τi) = exp{−θi(τ δi − τ δi−1) − ... − θ2(τ
δ
2 − τ δ1 ) − θ1τ

δ
1 }. By introducing the log-linear function

of θi, log(θi) = β0 + β1xi, it becomes

L(β0, β1, δ|D) = δn exp{nβ0 + (
k∑
i=1

nixi)β1 −
k∑
i=1

eβ0+β1xiui(δ)} (7)

×
k∏
i=1

ni∏
j=1

wδ−1
ij

where ui(δ) =
∑ni

j=1(w
δ
ij − τ δi−1)+ (n+m−

∑i
l=1 nl−

∑i−1
l=1 ml)(τ

δ
i − τ δi−1), i = 1, 2, ..., k− 1 with τ0 = 0,

and uk(δ) =
∑nk

j=1(w
δ
kj − τ δk−1)+mk(τ

δ
k − τ δk−1). This likelihood function is applicable to type-I censored

(Bai et al., 1989), type-II censored (Xiong, 1998) and right censored testings. If we treat wδij and τ δi as
the transformed failure time and censoring time, respectively, then ui(δ) is the total transformed testing
time of all test units experienced at the ith stress level. In fact, if δ is known and let v = wδ, then v
will be exponentially distributed at each stress level with failure rate of θi and the likelihood function is
exactly the same as that of an exponential SSALT.
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3.2 Bayesian Inference Procedure

Now we present a Bayesian inference for the Weibull PH Model. We adopt independent priors for
the parameters β0, β1 and δ. The joint posterior density function will be proportional to the product of
the likelihood function and the priors

f(β0, β1, δ|D) ∝ L(β0, β1, δ|D)f(β0)f(β1)f(δ) (8)

From the functional form of the posterior distribution, we notice that the conjugate prior of β0 is a
log-Gamma(κ0, γ0) or generalized extreme value distribution with the hyper-parameters shape κ0, and
scale γ0, i.e. f(β0) ∝ exp{κ0β0 − γ0e

β0}. It results in a log-Gamma(κ∗0, γ
∗
0 ) for the conditional posterior

of β0

f(β0|β1, δ,D) ∝ L(β0|β1, δ,D)f(β0) ∝ exp{κ∗0β0 − γ∗0e
β0} (9)

with the updated shape κ∗0 = κ0 + n and scale γ∗0 = γ0 +
∑k
i=1 e

β1xiui(δ). There are no conjugate priors
existed for the other two parameters β1 and δ. However, we notice that the conditional likelihood of β1 is

L(β1|β0, δ,D) ∝ exp{(
k∑
i=1

nixi)β1 − eβ0

k∑
i=1

ui(δ)e
xiβ1} (10)

Hence we may consider a prior of β1 having a “similar” form as its conditional likelihood function, and

choose β1 = log(Z)
η1

where Z ∼ Gamma(κ1

η1
, γ1) with the hyper-parameters κ1, η1, γ1. So the prior density

function f(β1) ∝ exp{κ1β1 − γ1e
η1β1} and the full conditional posterior becomes

f(β1|β0, δ,D) ∝ L(β1|β0, δ,D)f(β1)

∝ exp{(κ1 +
k∑
i=1

nixi)β1 − (γ1e
η1β1 + eβ0

k∑
i=1

ui(δ)e
xiβ1)} (11)

Similarly, with considering δ > 0, we choose δ = log(Z)
η2

where Z ∼ truncated Gamma(κ2

η2
, γ2) with Z > 1

and the hyper-parameters κ2, η2, γ2, so that the prior f(δ) ∝ exp{κ2δ − γ2e
η2δ} with truncation δ > 0.

Thus the conditional posterior is

f(δ|β0, β1,D) ∝ L(δ|β0, β1,D)f(δ)

∝ δn exp{(κ2 +
k∑
i=1

ni∑
j=1

log(wij))δ − (γ2e
η2δ +

k∑
i=1

eβ0+β1xiui(δ))} (12)

In practice, the vague or noninformative log-Gamma priors can be chosen with smaller hyperparameter
values for the shape (κi

ηi
) and scale (γi) so that it will have little influence on the posterior distributions.

The posterior inference can be made through the joint posterior samples (β0, β1, δ), which will be drawn
through a Markov chain Monte Carlo (MCMC) technique (Gilks et al., 1996). In particular, here we
employ a Gibbs sampling algorithm through their full conditional distributions in (9), (11) and (12).
Although the last two conditional posteriors are not “standard” distributions, they are log-concave func-
tions. The implementation of efficient Adaptive Rejection Sampling (ARS) technique (Gilks and Wild,
1992) can be utilized within Gibbs sampling procedure. The technique is a type of rejection sampling
using a sequence of envelope and squeezing functions which converge to the target density function as
sampling proceeds. It is also adaptive since the envelope and squeezing functions are constructed at
previously sampled points. See the algorithm details in Gilks and Wild (1992).
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Table 1 Simulated Data: Prespecified Values

Stress Number Failures at Each Stress Stress Changing Times Terminated Time
k ni τi τk
3 6, 3, 9 0.5, 2.0 3.5
4 9, 14, 5, 12 0.5, 2.0, 3.5 5.0
5 15, 6, 3, 1, 10 0.5, 2.0, 3.5, 5.0 8.0
6 12, 6, 9, 2, 1, 8 0.5, 2.0, 3.5, 5.0, 8.0 10.0

Table 2 Simulated Data: Parameters Estimation with True Values β0 = −2.85, β1 = −1, δ = 2.97

Stress Number k Posterior Estimates 95% Credible Intervals

3 β̂0 = −3.10 (−3.55,−2.60)

β̂1 = −0.94 (−1.14,−0.85)

δ̂ = 2.93 (2.84, 3.08)

4 β̂0 = −3.06 (−3.49,−2.66)

β̂1 = −0.93 (−1.10,−0.89)

δ̂ = 2.99 (2.88, 3.03)

5 β̂0 = −3.02 (−3.38,−2.71)

β̂1 = −0.97 (−1.04,−0.93)

δ̂ = 2.96 (2.95, 2.98)

6 β̂0 = −2.95 (−3.30,−2.74)

β̂1 = −0.98 (−1.02,−0.92)

δ̂ = 2.98 (2.96, 2.98)

4 Applications

4.1 Simulation Study

We first investigate the performance of the proposed method using simulated datasets from the
Weibull PH model with the parameter values β0 = −2.85, β1 = −1 and δ = 2.97. The simulated data
contain k = 3, 4, 5, 6 stresses, in which the number of failures ni at each stress generated from the discrete
uniform(1,15), the time points of stresses changed and the pre-specified termination time listed in Table
1. The failure times wij at i

th stress level were generated from the Weibull distribution with the log-scale
function log(θi) = β0 + β1xi, i = 1, 2, ..., k, where the stress levels xi are generated from N (2, 1). For the
Bayesian analysis, we adopt somehow vague but proper prior distributions with hyperparameter values
chosen as κ0 = κ1 = κ2 = 0.001, γ0 = γ1 = γ2 = 0.001, η0 = η1 = η2 = 1. For each simulated data, we run
five MCMC chains with fairly different initial values and each with 500 burn in iterations followed by 1,000

sample iterations. The scale reduction factor estimate
√
R̂ =

√
V ar(ψ)
W is used to monitor convergence of

MCMC simulations (Gelman et al., 1996), where ψ is the estimand of interest, V ar(ψ) = n−1
n W + 1

nB
with the iteration number n for each chain, the between- and within-sequence variances B and W . The
scale factors for the sequences of β0, β1 and δ are within 1.00-1.02 for all five MCMC chains, indicating
their convergence. To provide relatively independent samples for improvement of prediction accuracy, we
calculated the posterior estimates by the means of every 5th sampled values after discarding the first
500 iterations for all five MCMC chains. The posterior results, summarized in Table 2, clearly show that
the estimation precision increases as the number of stresses k increases, and that 95% credible intervals
(Eberly and Casella, 2003) are relative narrow, especially for the estimation of β1 and δ.
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Table 3 Test Data on Cable Insulation

Kilovolts Final Step Failure or Suspension (+) Time (min)
26.0 1 363.9+, 898.4+
28.5 2 1160.0
31.0 3 1962.9, 2460.9, 2460.9+, 2700.4
33.4 4 2923.9
36.0 5 102, 113, 113, 1096.9, 1097.9, 4142.1
38.5 6 345, 345+, 370, 1249, 1250.8, 1333, 1333+

Table 4 Estimation Results for the Cable Data

Parameter MLE (95% Confidence Intervals) Bayes PH Model
CE Model PH Model (95% Credible Intervals)

δ 0.76 (0.18, 1.33), 0.72 (0.15, 1.31) 0.70 (0.19, 1.21)
β0 -111.37 (-195.93, -26.51), –113.56 (-196.25, -28.43) -120.73 (-173.51, -42.12)
β1 15.07 (3.59, 26.52), 14.98 (3.65, 26.07) 12.55 (5.80, 22.69)

4.2 Real Data Analysis

We apply the proposed Bayesian method to two real SSALT datasets. The first data is from a step-
stress test of cable insulation described in Nelson (1980). The test was run to estimate life of cable at
a design stress of 400 volts/mil. Table 3 shows the pattern of specified stresses (Kilovolts), final step
and total time on tested specimens. We adopt diffused priors with hyperparameter values κ0 = κ1 =
κ2 = 0.01, γ0 = γ1 = γ2 = 0.01, η0 = η1 = η2 = 1, and run five MCMC chains wth different starting

values. In this case 20,000 iterations were sufficient for convergence since the Gelman-Rubin statistic
√
R̂

for all three parameters are close to 1. The parameter values are estimated as the means of every 5th

sampled values after discarding first 5,000 iterations. These posterior estimates are close to the maximum
likelihood estimates (MLE) obtained from the Weibull PH model, as summarized in Table 4. For the
purpose of comparison, in this table, we also report the MLE and large-sample based 95% confidence
intervals (Meek and Escobar, 1995) for each parameter for both Weibull CE model (Nelson, 1980) and
PH model as well as the 95% credible intervals by the Bayesian approach (Eberly and Casella, 2003).
Both frequentist and Bayesian approaches provide similar parameter estimation values, but the credible
intervals obtained from the Bayesian approach are a little narrower than the confidence intervals from
the frequentist approach.

The second SSALT data is from degradation experiments of light emitting diodes (LED) described in
Zhao and Elsayed (2005). It is known that high temperature and high humidity can significantly shorten
the lifetime of LED. The experiment was conducted at four temperature levels under a constant humidity
level. The failure data were used for predicting the products lifetime under the normal use temperature,
500C. The test was terminated at the time of 720 hours and some test units are removed (right censored)
at the times of changing temperature due to various reasons. The experimental condition and lifetime
data are summarized in Table 5.

According to the Arrhenius model of reliability testing with temperature, the natural stress variable
is the reciprocal of the temperature in degree Kelvin, i.e. xi = 1/Ti. For this analysis, we set xi = 323/Ti
to normalize the stress by making x = 1 at T = 323(500C). As previously, the vague priors with
hyperparameter values κ0 = κ1 = κ2 = 0.01, γ0 = γ1 = γ2 = 0.01, η0 = η1 = η2 = 1 are chosen, and five
MCMC chains were run with different starting values. The parameter values are estimated as the means of
every 5th sampled values after discarding first 5,000 iterations. Table 6 listed MLE and interval estimates
for each parameter as well as the posterior estimates and credible intervals by the Bayesian PH model. It
is observed that with noninformative priors, the Bayesian approach provides the comparable estimation
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Table 5 LED Testing Conditions and Lifetime Data

Temperature Testing Period Failure or Suspension (+) Time
(in degree Kelvin) (in hours)

363 (0, 300) 300+
413 (300, 500) 347, 397, 432, 491, 500+, 500+
433 (500, 600) 512, 567, 574, 588, 597, 600+, 600+
448 (600, 720) 603, 605, 615, 633, 634, 637, 644, 653, 675, 684, 699,

706, 718, 720, 720+, 720+, 720+, 720+

Table 6 Estimation Results for the LED Data

Parameter MLE (95% Confidence Intervals) Bayes PH Model
CE Model PH Model (95% Credible Intervals)

δ 6.81 (4.03, 9.59), 5.27 (3.15, 7.39) 4.91 (4.52, 5.61)
β0 -20.73 (-34.74, -6.72), -22.18 (-36.13, -8.23) -23.29 (-26.17, -18.76)
β1 -15.06 (-34.36, 4.24), -16.34 (-35.25, 2.57) -11.70 (-17.80, -7.86)

results as frequentist approach with a little narrower interval estimation. In fact, one can see that the 95%
confidence interval of β1 is large enough to include zero which indicates that the effect of the stress cannot
be identified at this significant level. This difficulty does not appear in Bayesian inference, even with the
vague prior distributions. Therefore, in this case, the reliability prediction can be improved by the Bayesian
approach. We run another chain with relatively informative priors by choosing the hyper-parameters κ0 =
κ1 = κ2 = 0.1, γ0 = γ1 = γ2 = 0.1, η0 = η1 = η2 = 1, the estimates become δ̂ = 4.83, β̂0 = −23.61, β̂1 =
−12.08, and 95% credible intervals are (4.57, 5.50), (−25.18,−20.06), (−18.27,−8.85), respectively. Not
surprisingly, it leads to narrower intervals for the parameter estimations.

5 Conclusions

In this article we presented a Bayesian approach for Weibull PH model for SSALT data analysis and
demonstrated the key difference between this model and the traditional Weibull CE model. The Weibull
PH model directly links the effect of physical stress to the product failure rate, and avoids the model
complexity caused by time transformation in a cumulative fashion. The formulation of Weibull PH model
makes posterior inference mathematically simpler than Weibull CE model without sacrificing flexibility for
fitting data. The prior distributions we adopted result in a conjugate prior for the intercept parameter in
the log-linear life-stress function, and log-concavity of conditional posteriors for other parameters, making
the Bayesian analysis very convenient and efficient. Oftentimes reliability testing generates limited number
of failure time data, which causes extremely flat likelihood function and large uncertainty in parameter
estimation. Bayesian inference can overcome this difficulty, especially when some prior information on the
acceleration model can be acquired from existing studies or from engineering experience. The examples
showed the convenience and efficiency of MCMC algorithm in the posterior inference.
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