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Studies of stratified spin-up experiments in enclosed cylinders have reported the
presence of small pockets of well-mixed fluids but quantitative measurements of the
mixedness of the fluid has been lacking. Previous numerical simulations have not
addressed these measurements. Here we present numerical simulations that explain
how the combined effect of spin-up and thermal boundary conditions enhances or
hinders mixing of a fluid in a cylinder. The energy of the system is characterized by
splitting the potential energy into diabatic and adiabatic components, and measure-
ments of efficiency of mixing are based on both, the ratio of dissipation of available
potential energy to forcing and variance of temperature. The numerical simulations of
the Navier–Stokes equations for the problem with different sets of thermal boundary
conditions at the horizontal walls helped shed some light on the physical mechanisms
of mixing, for which a clear explanation was absent. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4895435]

I. INTRODUCTION

Stratified spin-up flow is a classical fluid mechanics problem that has received considerable
attention in recent years. Spin-up occurs when a fluid in state of solid body rotation experiences a
sudden increase in the rotation rate, resulting in the propagation of stresses into the interior. The
dynamics of spin-up/down is particularly relevant to large-scale geophysical flows, for example, in
situations where wind stresses in the open ocean and coastal regions generate ocean gyres and can
result in baroclinic motions prompt to distort the temperature field, generate turbulent mixing, and
enable redistribution of heat fluxes.1–8

The study of mechanisms leading to efficient mixing has long been appreciated in the context
of stratified shear flows9 and thermal convection.10–15 For example, shear can increase mixing at
stratified interfaces by triggering Kelvin-Helmholtz (K-H) instabilities and can produce turbulence
via interaction of Reynolds stresses.16, 17 Turbulence in the ocean can also be generated by other
mechanisms, including mean velocity shear, breaking of surface or internal waves, and surface
cooling.

Motions associated with upwelling are known to cause localized mixing.5, 18 Since most of
the time new water masses are formed at the surface by cooling, and their spin-up is clearly of
utility in determining ensuing flow patterns, it will be helpful to understand how the spin of water
masses in basins subjected to different thermal boundary conditions affect the mixing. Laboratory
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experiments of salt-stratified spin-up in a cylinder have shown qualitative measures of mixing,19–22

and recent three-dimensional simulations have demonstrated how different sets of thermal boundary
conditions at the horizontal walls (adiabatic or fixed temperatures) affect the time of formation of
columnar baroclinic vortices.23 Nevertheless, quantitative measurements of mixing and the physical
mechanisms controlling its efficiency in spin-up flows has remained relatively unexplored.

In this paper, we study the spin-up of a thermally stratified flow in a cylindrical container in a
numerical setting. In addition to the two sets of thermal boundary conditions (prescribed temperatures
at the horizontal walls or adiabatic) considered in Refs. 23 and 24, we include a combination of (i)
prescribed temperature at the bottom wall and adiabatic at the top, and (ii) prescribed temperature
at the top wall and adiabatic at the bottom. The quest here is to investigate how these different
thermal boundary conditions, potentially relevant to ocean flows, affect the conversion of energy,
the advection of scalars, and the quality of mixing. Our procedure for characterizing the energy
conversions follows that of Ref. 25 and split the potential energy into components. One component
is the “background” potential energy which has no capacity to do work, and the other is the
“available” potential energy to do work. Two questions we address here are: (i) where the kinetic
energy supplied by the spin-up terminates, and (ii) how the quality of mixing can be quantified.
In the stratified-mixing community is common practice to define the efficiency of mixing as the
ratio of the dissipation of the available potential energy to the sum of rates of kinetic and available
potential energies in the system.9 For this flow configuration, irreversible processes (diabatic) act
on large scales at the late stages of flow development, as opposed to the mixing process associated
with small scales at the onset of spin-up. We have found that as the flow tends to steady state,
the mixing efficiency can have negative values due to numerical noise, and viewing this ratio as
a “mixing efficiency” may be misleading. For this reason, quantifying mixing in the initial-value
decaying problem must be interpreted very differently, particularly when diffusion dominates. We
found useful to include a procedure for determining the quality of mixing based on the variance of
temperature26–28 which is commonly used in chaotic mixing. Furthermore, common belief assumes
that the best stirring to create mixing is either turbulent or exhibits chaotic trajectories. However,
this optimal stirring depends on the boundary flux configuration. These issues will be addressed in
Secs. II and III.

II. GOVERNING EQUATIONS AND THE NUMERICAL SCHEME

Consider a Newtonian fluid of kinematic viscosity ν, thermal diffusivity κ , and coefficient of
volumetric expansion α, confined in a cylinder of radius R and height h where the gravity and
rotation vectors are collinear, as shown schematically in Figure 1. Initially, the fluid is thermally
stratified in the vertical direction, with a temperature difference of �T over h. The fluid is spun-up
from an initial state Ωi = Ω(1 − ε) to a new rotation rate Ω , where ε = �Ω/Ω and �Ω is the
change of background rotation. To non-dimensionalize the system we use the flow depth h as the
length scale, the inertial time Ω−1 as the time scale and �T as the temperature scale resulting in six
non-dimensional parameters:

Aspect ratio: Γ = R/h,

Ekman number: E = ν/Ωh2,

Froude number: F = Ω2h/g,

Burger number: B = N/Ω,

Prandtl number: Pr = ν/κ,

Rossby number: ε = �Ω/Ω,

where N = (αg�T/h)1/2 is the buoyancy frequency. The non-dimensional governing equations, under
the Boussinesq approximation, are

(∂t + u · ∇)u = −∇ p + B2Θez + 2u × ez − F B2Θr er + E∇2u, (1)

(∂t + u · ∇)Θ = Pr−1 E∇2Θ, ∇ · u = 0, (2)
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FIG. 1. Schematic of the spin-up seven rotations after the cylinder is accelerated from the initial rotation rate Ωi = Ω(1 − ε)
to Ω . The left and right quadrants show the vortex core and the accumulation of cold fluid at the bottom corner, respectively.

where u is the velocity field in the rotating frame with components (u, v, w), the cylindrical co-
ordinates (r, θ , z) are the components of r, p is the pressure (including gravitational and cen-
trifugal contributions), and Θ is the non-dimensional temperature. The unit vectors in the radial
and vertical directions are er and ez , respectively. The initial conditions in the rotating frame are
u = w = 0, v = −ε r , and Θ = z, the side-wall is no-slip and adiabatic, the top boundary is shear-
free, the bottom wall no-slip.

The change in kinetic (Ek), potential (Ep), background potential (Eb), and available potential
(Ea = Ep − Eb) energy take the form

�Ek = d

dt

∫
V

1

2
|u|2dV =

∫
V

(
B2Θ w − B2 FΘ r u − E |∇u|2) dV, (3a)

�E p = d

dt

∫
V

B2

(
1

B2 F
− Θ

)
z dV =

∫
V

(−B2Θ w − B2 Pr−1 E z ∇2Θ
)

dV,

=
∫

V
−B2Θ w dV − B2 Pr−1 E

∫
S

z ∇Θ · n dS

+B2 Pr−1 E
∫ 2π

0

∫ Γ

0
[ΘT − ΘB] rdr dθ, (3b)

�Eb = d

dt

∫
V

B2

(
1

B2 F
− Θ

)
zR dV

= −B2 Pr−1 E
∫

S
zR∇Θ · n dS + B2 Pr−1 E

∫
V

d zR

d Θ
|∇Θ|2 dV, (3c)

�Ea = d

d t

∫
V

B2

(
1

B2 F
− Θ

)
(z − zR) dV

=
∫

V
−B2Θ w dV − B2 Pr−1 E

∫
S
(z − zR)∇Θ · n dS

+B2 Pr−1 E
∫ 2π

0

∫ Γ

0
[ΘT − ΘB] rdr dθ − B2 Pr−1 E

∫
V

d zR

d Θ
|∇Θ|2 dV . (3d)

Here, zR(Θ, t) is the vertical coordinate of the reference state where all the temperature surfaces
are horizontal and ΘT and ΘB are the temperatures at the top and bottom walls, respectively.
The adiabatic reversible vertical buoyancy flux Φz = ∫

V −B2Θ w dV , the rate of conversion from

internal to potential energy Φi = B2 Pr−1 E
∫ 2π

0

∫ Γ

0 [ΘT − ΘB] rdr dθ , and the surface integral
Sdi f f = −B2 Pr−1 E

∫
S(z − zR)∇Θ · n dS give the rate of change of available potential energy due
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to diffusive heat across the boundaries, and Φd = −B2 Pr−1 E
∫

V dzR/dΘ|∇Θ|2 dV is the rate of
change of background potential energy.

The vertical height of the reference state zR is computed from the probability density function
λ(Θ) of the temperature similarly to29

λ(Θ̃) = 1

V

∫
V

δ(Θ̃ − Θ) dV . (4)

Using the probability density function (4), the reference position zR(Θ) yields

zR(Θ) = 1 −
∫ ΘM

Θ

λ(Θ̃) dΘ̃, (5)

where the nondimensional height of the domain is 1 and ΘM is the maximum value of the temperature
at time t. The potential energy of the reference state Eb can now be obtained from

Eb = B2πΓ 2
∫ 1

0

(
1

B2 F
− Θ

)
zR dzR . (6)

The mixing efficiency η in a Boussinesq flow is often defined as the ratio between the dissipation
part of the available potential energy to that of the sum of the dissipation of Ek and Ea,

η = (�Ea)diss

�Ea + �Ek
= Φi + Sdi f f + Φd

Φi + Sdi f f + Φd + ε
, (7)

where the dissipation of Ek is ε = − ∫
V E |∇u|2dV and the dissipation part of Ea is (�Ea)diss

= Φz + Sdi f f + Φd . In the special case of spin-up the initial kinetic energy is provided by the term∫
V −F B2Θr u dV and �Ek always decreases. Once the flow reaches a final state of solid body

rotation, �Ek = �Ea = 0.
To solve the governing equations (1) and (2), we employed the fractional-step finite-difference

method of Ref. 30. The code has been tested in a wide variety of enclosed cylindrical flows,23, 31–35

establishing resolution requirements over a wide range of parameters. The grid is clustered near
the bottom boundary where at least 10 points were placed inside the Ekman layer to have enough
resolution near the wall. The typical grid used was nθ × nr × nz = 96 × 351 × 151. Details about the
experimental and numerical test problems used for verification of the numerical code and selection
of number of grid points can be found in Ref. 24.

To characterize the departure of the flow from axisymmetry, we quantify the azimuthal distur-
bances by splitting the variables into nonaxisymmetric and axisymmetric parts. For example, the
velocity in (1) can be expressed as u(r, θ, z) = ū(r, z) + u′(r, θ, z), where

ū(r, z) = 1

2π

∫ 2π

0
u(r, θ, z) dθ. (8)

The energy equation for the azimuthal perturbations is obtained after substituting (8) in the momen-
tum equation (1), taking the dot product with u′, and integrating over the entire domain V , yielding

�E ′
k = d

dt

∫
V

1

2
|u′|2dV = −

∫
V

u′ · (u′ · ∇ū)dV − B2
∫

V
Θ w′dV

+F B2
∫

V
Θ ru′dV − E

∫
V

|∇u′|2dV =
4∑

i=1

hi . (9)

The left-hand-side of (9) represents the kinetic energy growth rate of the azimuthal disturbance due
to (h1) shear of the mean axisymmetric flow (barotropic production); (h2) conversion of gravitational
potential energy (baroclinic production); (h3) conversion of centrifugal potential energy; and (h4)
viscous dissipation.32

This investigation focuses on the regime that corresponds to the transient Ekman bottom bound-
ary layer, based on the criterion of Ref. 36, to determine the region of stability, i.e., Reδ < 55, where
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TABLE I. Boundary conditions used in the simulations.

Case Bottom wall (z = 0) Top wall (z = 1)

PB_PT Θ = 0 Θ = 1
AB_PT ∂Θ/∂z = 0 Θ = 1
PB_AT Θ = 0 ∂Θ/∂z = 0
AB_AT ∂Θ/∂z = 0 ∂Θ/∂z = 0

Reδ = Uδ/ν is the Reynolds number referenced to the bottom Ekman layer depth δ and the character-
istic velocity U = �Ω R. Laboratory experiments of Ref. 37 showed that the Ekman layer remains
stable until Reδ ≈ 57 and becomes fully turbulent at Reδ ≥ 150. Since the parametric studies of
Refs. 22, 24, and 38 also showed that for Γ < 1, the spin-up is less prone to become non-
axisymmetric, we then consider large radius to height aspect ratio only, and set Γ = 3.3. The spin-up
is in the nonlinear regime, and we considered three values for Rossby number, i.e., ε = {0.5, 0.73, 1}.
The Ekman number is set at E = 7.2 × 10−4, the Burger number at B = 2.52, the Prandtl number at
Pr = 6.85, and the Froude number at F = 9.0 × 10−4. These values guarantee the flow is in the
transient regime, axisymmetric for ε = 0.5 and prone to develop columnar vortex structures due to
baroclinic instabilities for both ε = 0.73 and 1, for the thermal boundary conditions listed in Table I.

We will describe the time-evolution of the solutions in terms of the number of rotations
τ ( = t/2π ) instead of the normalized time t.

III. RESULTS AND DISCUSSION

The contours of temperature shown in Figures 2 and 3 demonstrate that when the flow is spun-
up, Ekman transport along the bottom boundary layer transports cold fluid radially outwards and
forms well-mixed corner regions that rotate faster than the interior. The isotherms deform and vortex
lines tilt in this region, generating an unstable system that can convert potential energy into kinetic
energy. The kinetic energy dissipates through friction and reduces the temperature contrast through
temperature advection. This is a common feature of the thermally stratified spin-up flow, regardless
of the thermal boundary conditions imposed on the horizontal walls.

When the Ekman pumping ceases, the secondary circulation reverses direction and the cold
fluid from the corner regions moves back to replace the warm fluid in the core. This occurs about
20 rotations later for PB_PT and PB_AT than for AB_AT and AB_PT. The delay is influenced by
the boundary condition at the bottom wall. Notice also that near the adiabatic walls, the fluid that
is replaced is nearly homogeneous, whereas near the wall with prescribed temperatures the fluid
remains stratified .

The spatio-temporal evolution of temperature along a vertical line at three fixed radii of
Figures 4 and 5 shows the formation of “cold” corner regions at r = 3.2 and entrainment of
warm fluid at r = 0.05, both at early times. The cold fluid moves through the Ekman layer radially
outwards. The formation of baroclinic waves can be better appreciated around the interface of the
core (r = 1.7) with about one wave per four rotations until these waves are damped by thermal and
viscous dissipation.

The flow behavior for ε = {0.5, 0.73} is similar to that of ε = 1. The main difference is the
time at which the flow becomes three-dimensional, with the transition occurring later for smaller
Rossby numbers, but the first baroclinic instability starts seven rotations after spin-up. This is
better appreciated from the history profile of azimuthal disturbances hi. When isothermal boundary
conditions are prescribed at the bottom (PB_PT and PB_AT), the development of the flow may be
divided into two different stages as shown in Figures 6 and 7 for both ε = 0.73 and 1, respectively.
The first stage occurs at early times (within 20 rotations) and is characterized by the rise and decay
of the baroclinic perturbation. The instability decays due to the increased stratification at the bottom
wall where the temperature has been prescribed, i.e., the instability is suppressed and the flow
becomes more axisymmetric. The second stage occurs after 20 rotations, in which the flow begins
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FIG. 2. Contours of temperature Θ on the r − z plane at ε = 1. The horizontal dimensions of the cylinder are in Cartesian
coordinates x = [−Γ, Γ ] and the vertical is z = [0, 1]. At τ = 0, there are 10 linearly spaced contour-levels in the range
Θ = [0, 1]. See videos for PB_PT and for PB_AT. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4895435.1] [URL:
http://dx.doi.org/10.1063/1.4895435.2]

to oscillate and breaks into several columnar vortex structures. For adiabatic bottom (AB_AT and
AB_PT), after the baroclinic perturbation develops, the vortex-core becomes baroclinically unstable
and the flow breaks up into different lenses. Details on how the unstable system develops columnar
vortices have been reported in Ref. 24.

One of the main objectives of this study is the quantification of mixing for several types of
thermal boundary conditions on the horizontal walls, and the probability density function λ(Θ) is
a good indicator of how the temperature is spatially distributed during spin-up. The probability
density function λ(Θ) is evaluated numerically by scanning the temperature field, placing its values
into bins and normalizing the values by the number of control volumes in each bin. We used two
approaches and compared their results. The first consists on interpolating the temperature from the
non-uniform grid (r, θ , z) to a uniform Cartesian grid (x, y, z) of size �x = �y = �z = 0.01. The
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FIG. 3. Contours of temperature Θ on the r−z plane at ε = 1. The horizontal dimensions of the cylinder are in Carte-
sian coordinates x = [−Γ, Γ ] and the vertical is z = [0, 1]. At τ = 0, there are 10 linearly spaced contour-levels
in the range Θ = [0, 1]. See videos for AB_AT and for AB_PT. [URL: http://dx.doi.org/10.1063/1.4895435.3] [URL:
http://dx.doi.org/10.1063/1.4895435.4]

second is by taking the non-uniform grid and use the conditional probability density function in Θ

and the volume of the cell, with a number of cells equal to the number of grids nθ × nr × nz = 96
× 351 × 151. Both approaches have yielded nearly identical results.

Contours of λ(Θ) and cross-sections at various numbers of rotation are shown in Figures 8 and
9, at ε = 1, to show the spatio-temporal distribution of temperature for the different sets of boundary
conditions considered in this study.

At later times, the linear stratification for PB_PT is almost recovered, whereas for AB_AT, the
distribution of temperature is bi-modal, with the asymptotic values of temperature concentrating
around the mean 〈Θ〉 = 0.5. The time evolution of λ(Θ) for PB_AT and AB_PT at ε = 1 is shown
in Figure 9. For PB_AT, the asymptotic temperature distribution will be Θ = 0 whereas for AB_PT
will be Θ = 1.
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FIG. 4. Spatio-temporal evolution of the temperature along a vertical line at θ = 0 at ε = 1 and r as indicated. The horizontal
axis indicates time in the range 0 ≤ τ ≤ 160 and the vertical axis the location of the probes in the range 0 ≤ z ≤ 1. At τ = 0,
there are 10 linearly spaced contour-levels in the range Θ = [0, 1]. The figures in the left column correspond to PB_PT, and
those in the right column to PB_AT.

The energy rates for ε = 1 are shown in Figure 10. Note that the reference energy
∫

V 1/B2 FdV
has been subtracted from the potential and background energies, but not their uniform rate of
laminar diffusion, thus emphasizing the energetics associated with the thermal boundary conditions.
The kinetic energy driving the motion of the fluid during spin-up is supplied via the centrifugal
buoyancy term and it is always positive and decaying. Early in the flow evolution the potential
energy increases in all cases due to the positive buoyancy flux Φz as shown in Figure 11. This
increase in potential energy results from the radial flow through the Ekman layer that pushes the

FIG. 5. Spatio-temporal evolution of the temperature along a vertical line at θ = 0 at ε = 1 and r as indicated. The horizontal
axis indicates time in the range 0 ≤ τ ≤ 160 and the vertical axis the location of the probes in the range 0 ≤ z ≤ 1. At τ = 0,
there are 10 linearly spaced contour-levels in the range Θ = [0, 1]. The figures in the left column correspond to AB_AT, and
those in the right column to AB_PT.
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FIG. 6. Time evolution of hi-terms in the rate of change of kinetic energy of azimuthal perturbations at ε = 0.73. Barotropic
term h1 (—– black); baroclinic term h2 (– – red); centrifugal term h3 (– · · – green); and viscous dissipation term h4 (– · –
blue).

FIG. 7. Time evolution of hi-terms in the rate of change of kinetic energy of azimuthal perturbations at ε = 1. Barotropic
term h1 (—– black); baroclinic term h2 (– – red); centrifugal term h3 (– · · – green); and viscous dissipation term h4 (– · –
blue).
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FIG. 8. (a) Contours of probability density λ(Θ) as function of number of rotations τ and (b) cross-sections of λ at: —–
(black) τ = 0; – – (red) τ = 10; – – · – – (green) τ = 125; – · – (blue) τ = 160; and – · · – (brown) τ = 200. The Rossby
number is ε = 1.

FIG. 9. (a) Contours of probability density λ(Θ) as function of number of rotations τ and (b) cross-sections of λ at: —–
(black) τ = 0; – – (red) τ = 10; – – · – – (green) τ = 125; – · – (blue) τ = 160; and – · · – (brown) τ = 200. The Rossby
number is ε = 1.
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FIG. 10. Time evolution of energies Ei as function of number of rotations τ . Kinetic energy Ek (black —–), potential energy
Ep (red – –), background potential energy Eb (green – · –), and available potential energy Ea (blue – · · –). The Rossby number
is ε = 1.

heavy (cold) fluid to the corner regions. This is a process that occurs between about τ = 0 and 7.
How long does the cold fluid remain in the corner regions depends mainly on the bottom boundary
condition. The prescribed temperature at the bottom causes a concentration of isotherms parallel to
the wall increasing the buoyancy locally and counter-acting the motion of cold fluid from the corner
regions back to the core. This is why the buoyancy flux remains positive for a longer number of
rotations compared to the adiabatic bottom walls shown in Figure 11. Notice also that Φz is maximal
and Φd is minimal (global for AB_AT and AB_PT and local for PB_PT and PB_AT) at around τ = 7
when the Ekman transport shuts down, but the background potential energy Eb continues to increase
due to diffusion as shown in Figure 10. The potential and available potential energies peak at around
τ = 18 for AB_AT and AB_PT and around τ = 35 and for PB_PT and PB_AT. This coincides
with the global minimal of the buoyancy flux Φz for all thermal boundary conditions depicted in
Figure 11, where it clearly shows that the magnitude of Φd is about two to three times larger than
Φi . Notice that for adiabatic bottom walls, the magnitude of Φd is smaller than the corresponding
value when the bottom wall temperatures are prescribed. For a truly turbulent flow |Φd | 	 Φi , in
our case, it is an indication that the flow is in the laminar regime. This suggests that PB_PT and
PB_AT are more laminar than AB_AT and AB_PT.

The term Φi + Sdi f f + Φd indicates the rate of conversion from Ea to Eb in these flows.15 Note
also that the Sdiff is only slightly different from zero during the spin-up time and its contribution
to the energy exchange is relatively small. For τ < 60, most of the conversion from Ea to Eb is
accomplished by mixing because −Φd 	 Φi + Sdi f f . For τ > 60, Φd + Φi ≈ Sdi f f ≈ 0 owing to
the fact that at later times, Ek ≈ Ea ≈ 0 and Ep ≈ Eb because vertical motions are suppressed, i.e.,
the vertical buoyancy flux Φz = 0 and the potential energy increases/decreases at the rate of Φi .
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FIG. 11. Rates of energy exchange for the indicated thermal boundary conditions at ε = 1.

The effects of boundary conditions on the mixing efficiency is illustrated in Figure 12. For
prescribed temperatures at the bottom wall, the mixing efficiency at ε = 1 peaks at around
τ = 28, which coincides with a local minimum of |�Ea + �Ek|, as shown in Figure 11. For τ

> 60, the increase and the oscillations of the mixing efficiency are caused by amplified noise due to
the smallness of both (�Ea)diss and �Ea + �Ek → 0, when diffusion dominates the scalar transport
and vertical motions are absent.

One of the main objectives of this study is the quantification of mixing for several types of
thermal boundary conditions on the horizontal walls. As we have seen, the definition of mixing
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FIG. 12. Time evolution of the instantaneous mixing efficiency η. PB_PT (black —–); PB_AT (red – –); AB_AT (green – ·
–); and AB_PT (blue – · · –).
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(a) (b)

FIG. 13. (a) Variance of temperature σ and (b) modified variance of temperature σ̂ . � (green online): PB_AT and ε = 0.5;
– · – · – (green online): AB_PT and ε = 0.5; ◦ (blue online): PB_PT and ε = 1; — (blue online): AB_AT and ε = 1; � (red
online): PB_AT and ε = 1; and – – – (red online): AB_PT and ε = 1.

efficiency as the ratio of the dissipation Ea to forcing �Ea + �Ek is useful only for a time period
where the flow is in the transient regime, which is also the interest in spin-up. However, if we are
interested in the long-term mixing due to diffusion only, it is useful to introduce a measure of mixing
valid for long times, i.e., when the fluid nearly reaches a new state of solid body rotation. A norm
that is commonly used to quantify the mixing of the fluid is given by the magnitude of the variance
of the scalar Θ,26–28

σ = 〈Θ2(r, θ, z, t)〉 − 〈Θ(r, θ, z, t)〉2

〈Θ2(r, θ, z, 0)〉 − 〈Θ(r, θ, z, 0)〉2
, (10)

where 〈·〉 = 1/V
∫

V ·dV . In the presence of boundary fluxes, the norm (10) would reach an asymp-
totic limit, and normalizing the global measure by the value it would have in the absence of stirring,
instead of the initial value, would be more helpful, i.e.,

σ̂ = 〈Θ2(r, θ, z, t)〉
〈Θ̂2(r, θ, z, t)〉 , (11)

where Θ̂ is the temperature due to diffusion only.39 The temperature Θ̂ is obtained by solving the
diffusion problem ∂tΘ̂ = Pr−1 E∇2Θ̂ . Efficient mixing implies σ̂ < 1, if the stirring decreases the
variance relative to molecular diffusion alone, which is not always the case when boundary fluxes
are present.

For PB_PT the flow mixes locally, but asymptotically, the flow returns to a state of linear
stratification, therefore we can expect that this flow will not produce any global mixing. The typical
case of an initial value-decaying problem is AB_AT where the final state of mixing is equal to the
initial mean. For this case, it is customary to use the variance of temperature to quantify the mixing
efficiency. Figure 13(a) shows the variance σ for PB_AT and AB_PT at ε = 0.5 and 1. These norms
are bounded below by a solid line (AB_AT) and above by circles (PB_PT) representing the best
and worst mixing efficiencies (at ε = 1), respectively. For prescribed temperature at the bottom
wall, the variance increases from its initial value to a maximum and then decreases. The variance is
larger in the higher ε case due to the more energetic spin-up that pushes more well-mixed cold fluid
to the corner regions (compared to the smaller ε value), generating a higher temperature contrast
with the core. The opposite effect is seen when the bottom wall is adiabatic, i.e., the variance of
temperature is lower for ε = 1 than for ε = 0.5. This is also expected, since the amount of fluid
and its temperature (carried to the corner region through the Ekman layer) is larger for the higher
value of ε. The mixing features mentioned above seem to agree with the flow similarities of PB_AT
with PB_PT and AB_PT with AB_AT. The modified variance σ̂ in Figure 13(b) demonstrates how
well the fluid mixes compared to the purely diffusive case for the same conditions as Figure 13(a),
where σ̂ < 1 corresponds to efficient mixing. Notice however, that after several tens of rotations the
mixing generated by PB_AT is unexpectedly smaller than AB_PT. Surprisingly, at τ = 300 the flow
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AB_PT generates as much mixing as the pure diffusion case, and excluding AB_AT, only PB_AT at
ε = 1 provides σ̂ < 1 for τ > 300.

IV. CONCLUSIONS

In this paper, we have studied numerically the mixing efficiency of spin-up stratified by temper-
ature. Four different combinations of boundary conditions were considered at the bottom/top walls,
i.e., prescribed but fixed temperatures, adiabatic or a combination of these two. The kinetic-energy
growth-rate of the azimuthal disturbance was used to determine the occurrence of the baroclinic
instability. We found that the spin-up with prescribed temperature at the bottom wall and adiabatic
top wall was remarkably similar to the flow generated when both temperatures at the horizontal walls
were prescribed (PB_PT). Special emphasis was placed on quantifying the mixing in a Boussinesq
flow using both, a ratio between the dissipation part of the available potential energy to that of the
sum of the dissipation of Ek and Ea, and the variance of temperature (a ratio of the variance to the
value it would have without stirring). We have analyzed the energetics of the flow and determined
the relationship among the different components for different thermal boundary conditions leading
to a better understanding of the spin-up flow. When the temperatures are prescribed on the horizontal
walls the asymptotic state recovers its initial stratification, thus the effect of spin-up worsens the
global mixing. When the walls are adiabatic, the flow achieves the highest efficiency of mixing. As
expected, the mixing efficiency for a flow with prescribed temperature on one wall and adiabatic on
the other yielded a mixing efficiency higher than PB_PT but lower than AB_PT.

Since the flow features for AB_PT resembled those of AB_AT, and the latter yielded the
highest degree of mixing, we expected that the combination of bottom adiabatic wall and prescribed
temperature at the top would render better mixing than PB_AT. This was true only for intermediate
times, but asymptotically, PB_AT always performed better than AB_PT (for the same ε). This was
confirmed by evaluating the potential energy available for mixing for the two flows. During spin-up,
the prescribed bottom-wall temperature cooled down the fluid moving radially through the Ekman
layer towards the corner regions, creating pockets of cold, but well-mixed fluid, keeping the potential
energy available for mixing at a higher level than that obtained through the bottom adiabatic wall.
This in turn created higher gradients of temperature, and therefore better mixing for large times.

Several topics of nonlinear spin-up flows remain unexplored that could be potentially important.
One of them is how mixing is affected by thermal diffusivity in spin-up. For periods longer than
the Ekman spin-up, thermal diffusion is certainly important. If the thermal diffusion is small, the
system may take longer time to reach a final state of mixing, whether uniform or linearly stratified,
according to the boundary conditions imposed on the horizontal walls. But whether or not a small
thermal diffusion will render better mixing for short times is an open question. Further investigation
is also needed on the effects of salt-stratification. These two effects are currently being investigated.
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