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Locating sources of diffusion and spreading from minimum
data is a significant problem in network science with great
applied values to the society. However, a general theoretical
framework dealing with optimal source localization is
lacking. Combining the controllability theory for complex
networks and compressive sensing, we develop a framework
with high efficiency and robustness for optimal source
localization in arbitrary weighted networks with arbitrary
distribution of sources. We offer a minimum output
analysis to quantify the source locatability through a
minimal number of messenger nodes that produce sufficient
measurement for fully locating the sources. When the
minimum messenger nodes are discerned, the problem of
optimal source localization becomes one of sparse signal
reconstruction, which can be solved using compressive
sensing. Application of our framework to model and empirical
networks demonstrates that sources in homogeneous and
denser networks are more readily to be located. A surprising
finding is that, for a connected undirected network with
random link weights and weak noise, a single messenger
node is sufficient for locating any number of sources. The
framework deepens our understanding of the network source
localization problem and offers efficient tools with broad
applications.

1. Introduction
Dynamical processes taking place in complex networks are
ubiquitous in natural and in technological systems [1], examples
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of which include disease or epidemic spreading in the human society [2,3], virus invasion in computer
and mobile phone networks [4,5], behaviour propagation in online social networks [6] and air or water
pollution diffusion [7,8]. Once an epidemic or environmental pollution emerges, it is often of great
interest to be able to identify its source within the network accurately and quickly so that proper
control strategies can be devised to contain or even to eliminate the spreading process. In general,
various types of spreading dynamics can be regarded as diffusion processes in complex networks, and
it is of fundamental interest to be able to locate the sources of diffusion. A straightforward, brute-force
search for the sources requires accessibility of global information about the dynamical states of the
network. However, for large networks, a practical challenge is that our ability to obtain and process
global information can often be quite limited, making brute-force search impractical with undesired or
even disastrous consequences. For example, the standard breadth-first search algorithm for finding the
shortest paths, when being implemented in online social networks, can induce information explosion
even for a small number of searching steps [9]. Recently, in order to locate the source of the outbreak of
Ebola virus in Africa, five medical practitioners lost their lives [10]. All these call for the development
of efficient methodologies to locate diffusion sources based only on limited, practically available
information without the need of acquiring global information about the dynamical states of the entire
network.

There were pioneering efforts in addressing the source localization problem in complex networks,
such as those based on the maximum-likelihood estimation [11], belief propagation [12], the phenomena
of hidden geometry of contagion [13] and inverse spreading [14,15]. In addition, some approaches
have been developed for identifying super spreaders that promote spreading processes stemming
from sources [16–18]. In spite of these efforts, achieving accurate source localization from a small
number of measurements remains challenging. Prior to our work, a systematic framework dealing
with the localization of diffusion sources for arbitrary network structures and interaction strength was
missing.

In this paper, we develop a theoretical framework to address the problem of network source
localization in a detailed and comprehensive way. The main focus is on the fundamental issue of
locatability, i.e. given a complex network and limited (sparse) observation, are diffusion sources locatable?
A practical and extremely challenging issue is, given a network, can a minimum set of nodes be identified
which produce sufficient observation so that sources at arbitrary locations in the network can actually
be located? To address these issues in a systematic manner, we use a two-step solution strategy. First,
we develop a minimum output analysis to identify the minimum number of messenger/sensor nodes,
denoted as Nm, to fully locate any number of sources in an efficient way. The ratio of Nm to the
network size N, nm ≡ Nm/N, thus characterizes the source locatability of the network in the sense that
networks requiring smaller values of nm are deemed to have a stronger locatability of sources. Our
success in offering the minimum output analysis stems from taking advantage of the dual relation
between the recently developed controllability theory [19] and the canonical observability theory [20].
Second, given Nm messenger nodes, we formulate the source localization problem as a sparse signal
reconstruction problem, which can be solved by using compressive sensing (CS) [21,22], a convex
optimization paradigm. The basic properties of CS allow us to accurately locate sources from a small
amount of measurement from the messenger nodes, much less than that required in the conventional
observability theory. We use our framework to examine a variety of model and real-world networks,
and offer analytical prediction of nm and demonstrate good agreement with numerical calculations. We
find that the connection density and degree distribution play a significant role in source locatability,
and sources in a homogeneous and denser network are more readily to be located, which differs
from existing algorithms for source localization in the literature [11,14,15]. A striking and counter-
intuitive finding is that, for an undirected network with one connected component and random link
weights, a single messenger node is sufficient to locate any number of sources in the presence of
weak noise.

Theoretically, the combination of the minimum output analysis (derived from the controllability and
observability theories for complex networks) and the CS-based localization method constitutes a general
framework for locating diffusion sources in complex networks. It represents a powerful paradigm to
exactly quantify the source locatability of a network and to actually locate the sources efficiently and
accurately. Because of the CS-based methodology, our framework is robust against noise [23,24], paving
way to practical implementation in noise environment.
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2. Results
2.1. A general framework to locate sources with minimum number of messenger nodes
We consider a class of diffusive processes on networks, described by

xi(t + 1) = xi(t) + β

N∑
j=1

[wijxj(t) − wjixi(t)]. (2.1)

This equation constitutes a good approximation for different types of linear diffusion processes and
the linearization of some nonlinear diffusion processes [25]. For example, epidemics can be treated as
linear dynamics in the early stages if the network connectivity is high. Variable xi(t) that denotes the
state of node i at time t captures the fraction of infected individuals, the concentration of water or air
pollutant, etc., at place i. β is the diffusion coefficient, wij (wji) is the weight of the directed link from node
j to node i (i to j), (wij = wji for undirected networks), and N is the number of nodes in the network (size).
It is noteworthy that the value of the diffusion parameter β should be constrained to ensure the physical
meaning of xi(t), i.e. xi(t) is confined in the range [0, 1] at any time t for any node. We can prove that the
confinement of xi(t) leads to β ∈ (0, mini=1,2,...,N(1/

∑N
j=1, j�=i wji)] (see electronic supplemental material,

S1 for the proof). Equation (2.1) is discrete in time, greatly facilitating computation and analysis. When
observations are made from a subset of nodes, the messenger nodes, system (2.1) incorporating outputs
from these nodes can be written concisely as

{
x(t + 1) = (I + βL)x(t),

y(t) = Cx(t),
(2.2)

where x(t) ∈ R
N is the state vector of the entire network at time t, I ∈ R

N×N is the identity matrix,
L = (W − D) is a Laplacian matrix, W ∈ R

N×N is the weighted adjacency matrix of elements wij, D ∈ R
N×N

is a diagonal matrix of elements di denoting the total out-weight
∑

j∈Γi
wji of node i, where Γi is the

neighbouring set of i. The vector y(t) ∈ R
q is the output at time t and C ∈ R

q×N is the output matrix.
Messenger nodes are specified through matrix C and y(t) records the states of these nodes. The source
localization problem is illustrated in figure 1, which is a kind of inverse problem for diffusion and
spreading dynamics on complex networks.

The basic difference between source nodes and other nodes in the network is that initially (t = t0), the
states of the former are non-zero while those of the latter are zero. To achieve accurate localization of an
arbitrary number of sources at arbitrary locations, it is only necessary to recover the initial states of all
nodes from the measurements of the messenger nodes at a later time (t > t0). A solution to this problem
can be obtained using the observability condition in canonical control theory. To be specific, we consider
instants of time: t0, t1, . . . , t, and perform a simple iterative process that yields the relation between x(t)
and x(t0): x(t) = [I + βL]t−t0 x(t0). Consequently, the output, which depends on x(t0), can be expressed
as y(t) = C(I + βL)t−t0 x(t0). The key to accurate localization of sources lies in the existence of a unique
solution of the equation, given the output vector y(t) from the set of messenger nodes as specified by C.
Intuitively, to obtain a unique solution, no fewer than N snapshots of measurement are needed. Without
loss of generality, we assume that uninterrupted time series from t0 to t0 + N − 1 are available. We obtain

Y = O · x(t0), (2.3)

where Y ∈ R
qN , the initial state vector is x(t0) ∈ R

N , q is the number of messenger nodes, and the matrix
O ∈ R

qN×N is nothing but the observability matrix in the canonical control theory (see §5.1 for details
of equation (2.3)). The observability full rank condition [26] stipulates that, if and only if rank(O) = N,
there exists a unique solution of equation (2.3) and the state vector x(t0) at initial time t0 is observable.
Insofar as the given output matrix C satisfies the observability rank condition, the initial states of the
nodes can be fully reconstructed from the states of the messenger nodes, and all sources can then be
located. A challenge is that, in a realistic situation, the initial time t0 is often unknown, rendering the
immediate application of the canonical observability condition invalid. However, a unique and desired
feature of our framework is that both x(t0) and t0 can be inferred based on CS (see §§3 and 5.2). Thus, it
is possible to develop a theoretical framework on the basis of the observability condition (see electronic
supplementary material, S2 for continuous-time processes).
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Figure 1. Illustration of source localization problem. (a) A randomnetworkwith two sources at the initial time t = 0. (b–d) The diffusion
process at t = 1 (b), t = 2 (c) and t = 5 (d), respectively. The colour bar represents the state of node xi(t), and those links along which
diffusion occurred are marked with red. Panels (a) to (d) describe a diffusion (spreading) process from two sources to the whole network
according to equation (2.1). (e–g) Five messenger nodes whose states at three time constants can be measured and collected. The
messenger nodes are specified by the output matrix C and the states of messenger nodes and inaccessible nodes constitute y(t). The
time of (e), (f ) and (g) corresponds to (b), (c) and (d), respectively. However, in the real situation, the time as well as the initial time is
unknown. The only available information for locating sources is the states of a set of messenger nodes at some time and the network
structure. (e), (f ) and (g) to (a) describe the source localization problem to be solved. Moreover, we aim to identify a minimum set of
messenger nodes to locate an arbitrary number of sources at any location by virtue of our minimum output analysis and optimization
based on compressive sensing.

2.2. Minimum number of messengers for source localization
Beyond the canonical observability theory, here our goal is to identify a minimum set of messenger nodes
to satisfy the full rank condition for observability. However, the brute-force method of enumerating
all possible choices of the messenger nodes is computationally prohibitive [27], as the total number
of possible configurations is 2N . Our solution is to use the recently developed, exact controllability
framework [19] based on the standard Popov–Belevitch–Hautus (PBH) test theory [28] and to exploit the
dual relationship between controllability and observability [20], which results in a practical framework
to find the required Nm messenger nodes. In particular, for an arbitrary network, according to the PBH
test and the exact controllability framework, Nm is determined by the maximum geometric multiplicity
of the eigenvalues λi of the matrix I + βL. After some matrix calculation, we obtain that (see electronic
supplementary material, S3)

Nm = max
i

{N − rank[λL
i I − L]}, (2.4)

where λL
i is the eigenvalue of matrix L and μ(λL

i ) ≡ N − rank[λL
i I − L] is the geometric multiplicity of λL

i .
It is worth noting that the formula of Nm does not contain the diffusion parameter β, indicating that
choices of β do not affect the locatability measure nm. Equation (2.4) as a result of the standard PBH test
is a general minimum output analysis for arbitrary networks.

For an undirected network, L is symmetric and the geometric multiplicity is nothing but the
eigenvalue degeneracy. In addition, the eigenvalue degeneracy of L is equal to that of I + βL (see
electronic supplementary material, S3). Thus, Nm is determined by the maximum eigenvalue degeneracy
of L as

Nundirect
m = max

i
{δ(λL

i )}, (2.5)

where δ(λL
i ) is the degeneracy of λL

i (the number of appearances of λL
i in the eigenvalue spectrum).

Equation (2.5) based on the PBH test is our minimum output analysis for arbitrary undirected networks.
Equations (2.4) and (2.5) are the exact theory (ET) for minimum output Nm without any

approximations, but the associated computational cost resulting from calculating the eigenvalues and
identifying maximum value through a large number of comparisons in equations (2.4) and (2.5) is
generally high. Taking advantage of the ubiquitous sparsity of real networks [29], we can obtain an
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Figure 2. Locatability measure nm for ER and SF networks. (a–b) For undirected networks, source locatability measure nm as a function
of the connecting probability 〈k〉/N for (a) unweighted ER networks and (b) weighted ER networks. (c–d) nm as a function of the
average degree 〈k〉 for (c) unweighted SF networks, and Nm as a function of the average degree 〈k〉 for (d) weighted SF networks.
For undirected networks, the values of nm are obtained from the exact theory (ET; equation (2.5)), fast estimation (FE; equation (2.6)),
and analytical prediction (Analytical), for different network sizes. The analytical prediction for ER networks is based on equation (2.7). For
SF networks in (c), the prediction is from the cavity method. (e–h) For directed networks, source locatability measures nm as a function
of the connecting probability 2〈k〉/N for (e) unweighted and (f ) weighted ER networks, and as a function of 〈k〉 for (g) unweighted and
(h) weighted SF networks. For directed networks, the ET results come from equation (2.4), while the FE results for ER and SF networks
are from equation (2.6). The analytical predictions for ER and SF networks are from equations (2.8) and (2.9), respectively. For weighted
networks, link weights are randomly selected from a uniform distribution in the range (0, 2), which leads to that the mean weight is
approximately one. The ET and FE results are obtained by averaging over 50 independent realizations, and the error bars represent the
standard deviations. For undirected ERnetworks, 〈k〉= Npcon,where pcon is the connecting probability between each pair of nodes. Thus,
pcon = 〈k〉/N. For directed ER networks, 〈k〉= Npcon/2, yielding pcon = 2〈k〉/N.

alternative method to estimate Nm with much higher efficiency. In particular, for sparse networks, we
have (see electronic supplementary material, S4)

nsparse
m ≈ 1 − rank(aI − L)

N
, (2.6)

where for undirected networks, a is either zero or the diagonal element with the maximum multiplicity
(number of appearances in the diagonal) of matrix L. The matrix rank as well as eigenvalues in
formula (2.6) can be computed using fast algorithms from computational linear algebra, such as SVD
with the computation complexity O(N3) [30] or LU decomposition with the computation complexity
O(N2.376) [31]. In general, equation (2.6) allows us to compute nm efficiently, thereby the term fast
estimation (FE) method.

2.3. Analytical results for model networks
We first apply our minimum output analysis to undirected Erdös–Rényi (ER) random [32] and scale-
free (SF) [33] networks and derive analytical results. Figure 2 shows that, as the average degree 〈k〉
(〈k〉 ≡ (1/N)

∑N
i ki, where ki is the node degree of i) is increased, nm decreases for undirected ER random

networks with identical and random link weights. For the random networks, the efficient formula (2.6)
can be further simplified. In particular, for small values of 〈k〉, due to the isolated nodes and the
disconnected components, zero dominates the eigenvalue spectrum of the matrix L [34] where, for
example, each disconnected component generates at least one zero eigenvalue in L. For large values
of 〈k〉, we expect all eigenvalues to be distinct without any dominant one. In this case, we can still choose
zero to be the eigenvalue associated with a in equation (2.6). Taken together, in a wide range of 〈k〉 values,
the efficient formula equation (2.6) holds with a = 0. Alternatively, the value of nm for ER networks can
be theoretically estimated using the degree distribution because of the dominance of the null eigenvalue
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(see electronic supplementary material, S4)

nUER
m ≈

⎧⎨
⎩

1 − 〈k〉/2 〈k〉 ∈ [0, 1]
1

〈k〉 (f (〈k〉) − f (〈k〉)2/2) 〈k〉 ∈ (1, ∞),
(2.7)

where f (〈k〉) = ∑∞
k=1(kk−1/k!)(〈k〉e−〈k〉)k.

For undirected SF networks, a in the efficient formula (2.6) is the diagonal element with the maximum
number of appearances in the diagonal of matrix L. In the controllability framework, the density of
the driver nodes can be calculated [34,35] with the cavity method [36]. The principle can be extended
to analysing locatability measure of SF networks in a similar manner (see electronic supplementary
material, S5). The analytical estimation for both ER and SF networks is in good agreement with the results
of ET and FE, as shown in figures 2a–d. Indeed, the results indicate that choosing a = 0 in the efficient
formula (2.6) is justified for the ER networks. For small values of 〈k〉, zero dominates the eigenvalue
spectrum, and there are a number of messenger nodes with nm > 1/N. When 〈k〉 exceeds a certain value,
all eigenvalues become distinct, which accounts for the result of a single driver node with nm = 1/N. This
relation holds as 〈k〉 is increased further.

We also find that random link weights have little effect on nm for ER networks (e.g. comparing
figure 2a with figure 2b), due to the fact that an ER network tends to have many isolated components.
By contrast, for SF networks, random link weights can induce a dramatic difference from the case of
identical link weights, as shown in figure 2c with figure 2d. Particularly, a single messenger node is
sufficient to locate sources for random link weights with weak noise, regardless of the values of 〈k〉
and N. This phenomenon can be explained based on equation (2.5), where random link weights can
be regarded as imposing perturbation to the eigenvalues of the relevant unweighted Laplacian matrix
(the locations of non-zero elements in the two matrices are the same). If the network has a single
component, the unweighted Laplacian matrix has only one zero eigenvalue in the spectrum. The random
link weights will shift the non-zero eigenvalues in the spectrum, making the probability of finding two
or more identical eigenvalues effectively zero. We then expect to find one null eigenvalue and N − 1
distinct non-zero eigenvalues so that the entire spectrum contains eigenvalues that are all distinct. As
a result, according to equation (2.5), we have Nm = 1 for the undirected, single-component SF network
with random link weights. A generalization is that, for an arbitrary undirected network with random
link weights and multiple components, the value of Nm is exclusively determined by the number
of components, Nc, i.e. Nm = Nc, due to the fact that each component contributes a null eigenvalue.
Consequently, the maximum eigenvalue degeneracy that determines Nm is equal to the number of
components, Nc.

We now turn to directed ER and SF networks. For unidirectional links in such a network, the average
degree of the network is 〈k〉 = 〈kout〉/2 = 〈kin〉/2, where kout and kin denote the out-degree and in-degree,
respectively. For directed ER networks, the FE formula is equation (2.6) with a = 0. Analytical prediction
of nm can be obtained based on the FE (see electronic supplementary material, S4)

nDER
m ≈ e−〈k〉 + 〈k〉2 e−2〈k〉

4
. (2.8)

For directed SF networks, the FE formula is still equation (2.6) with a = 0, −1 or −2 (see electronic
supplementary material, S4). The quantity nm can be theoretically predicted via (see electronic
supplementary material, S4)

nDSF
m ≈

N−1∑
k=1

2−kP(k), (2.9)

where k is node degree and P(k) = P(kin + kout) is the degree distribution. Figure 4e–h shows, for directed
ER and SF networks, the results of nm from FE and analytical prediction agree well with those from ET
without any approximations.

It is noteworthy that for directed networks with random link weights, Nm is not determined by the
number of components, Nc, because there can be more than one zero in the eigenvalue spectrum of
a component, a situation that differs from that for undirected networks. In particular, for a directed
network, the matrix L can have any number of zero diagonal elements because any node without
outgoing links corresponds to such a diagonal element. According to the minimum output analysis, there
can then be any number of messenger nodes in a component. As a result, in contrast with undirected
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Figure 3. Source locatability of empirical networks. (a) The locatability measure nm as a function of average degree 〈k〉 for a number of
real social and technological networks, on which diffusion and spreading processes may occur. (b) The locatability measure obtained by
usingexact theorynm(ET) (equation (2.4) or equation (2.5)) andobtainedbyusing fast estimationnm(FE) (equation (2.6)) of real networks.
Here, 〈k〉 = 〈kin〉/2= 〈kout〉/2 for a directed network. Theoretical results of ER network (equation (2.7)) and SF network with γ = 3
(equation (2.9)) are shown as a reference. Hollow symbols represent the results of unweighted real networks and solid symbols represent
the results of real networks with random link weights selected from a uniform distribution in the range (0, 2). More details of the real
networks can be found in electronic supplementary material, S6 and table S1.

networks with random weights, the quantity Nm in directed networks with random link weights should
be calculated by using either equation (2.4) or equation (2.6) for sparse networks, not by counting the
number of disconnected components.

2.4. Source locatability of real networks
We also investigate the source locatability nm for a number of empirical social and technological
networks, on which diffusion or spreading processes may occur. Because of the lack of link weights in the
real networks, we consider two typical scenarios, unweighted networks and random weight distribution.
As shown in figure 3a, nm for an unweighted real network is always larger than or equal to that of the
network with random weights, indicating that random link weights are beneficial to source localization.
Another feature is that sources in the technological networks with heterogeneous degree distribution
(e.g. Wiki-vote, p2p-Gnutella, PGP, Political blogs, USAir) are usually more difficult to be located than
the social networks with relatively homogeneous degree distribution.

We also test the practical feasibility of our fast estimation approaches by using the real networks. As
shown in figure 3b, we obtain a good agreement between nm(ET) based on the exact locatability theory
with high computational complexity and nm(FE) from the fast estimation with much higher efficiency
for both unweighted and weighted real networks with random weights. These results validate our fast
estimation approach as applied to real networks. (The characteristics of the real networks are described
in electronic supplementary material, S6 and table S1).

Combining the results of real and model networks, we discover that the average node degree,
the degree distribution and the link weight distribution jointly determine the source locatability. In
particular, sources in networks with a homogeneous degree distribution, more connections and random
link weights are more readily to be located.

2.5. Identification of messenger node set
We demonstrate how the Nm messenger nodes can be identified using the theory of exact observability
of complex networks [19]. In particular, according to the classic PBH test theory [28] and our locatability
theory, the output matrix C associated with the Nm messenger nodes satisfies the rank condition
rank

(
λmaxI−L

C

) = N, where λmax is the eigenvalue with the maximum geometric multiplicity μ(λmax) of
matrix L, i.e. N − rank(λmaxI − L) reaches maximum value that is nothing but Nm (see equation (2.4);
electronic supplementary material, S3). Messenger nodes can be identified insofar as the output matrix
C is determined. The computation complexity of our elementary transformation is O(N2(log N)2) [37].
Figure 4a–j illustrates, for an undirected and a directed network, the working of our method of
identifying the messengers. For each case, we first compute the eigenvalues λL

i of the matrix L and
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Figure 4. Identification ofmessengers. (a–b) Illustration of ourmethod to identifymessenger nodes for (a) a simple undirected network
and (b) a simple directed network. (c–d) Eigenvalues of the undirected network in (a) and that of the directed network in (b), respectively.
In (c) and (d), the eigenvalue λmax corresponding to the maximum geometric multiplicityμ(λmax) is highlighted in red. (e–f ) Matrix
λmaxI − L for the network in (a) and (b), respectively, where λmax is highlighted. (g–h) Row canonical form of the matrix in (e) and
(f ) as a result of elementary row transformations, respectively. Here, linearly dependent columns in (g) and (h) are highlighted in blue.
(i–j) Messenger nodes corresponding to the linearly dependent columns in the network in (a) and (b), respectively, and output signals
produced by messenger nodes. For the network in (a) and (b), the configuration of messengers is not unique as it depends on the
elementary row transformation, but the number of messengers Nm is fixed and solely determined byμ(λmax).

find the eigenvalue λmax corresponding to μ(λmax). We then implement elementary row transformation
on λmaxI − L to obtain its row canonical form that reveals a set of linearly dependent columns. The
messenger nodes are nothing but the nodes corresponding to the columns that are linearly dependent
on other columns. The minimum number of messenger nodes (linearly dependent columns) is exactly
Nm. Note that alternative configurations of the messenger nodes are possible. For example, as shown
in figure 4g, we find that columns 1 and 2, and columns 4 and 5 are linearly correlated, requiring two
messengers. As a result, there are four equivalent combinations for the messenger nodes: (1, 4), (1, 5),
(2, 4) and (2, 5), any of which can be chosen.

3. Source localization based on compressive sensing
A result from the canonical observability theory is that, in order to fully reconstruct x(t0) from solutions
of equation (2.3), at least N-step measurements from the messenger nodes are necessary. However, for
our localization problem, the sources are ‘minority’ nodes in the sense that the number of sources is much
smaller than the network size. In fact, the states of most nodes in the network are zero initially, indicating
that the vector x(t0) is sparse with a large number of zero elements. The sparsity of x(t0) can be exploited
to greatly reduce the measurement requirement. In particular, in the CS framework for sparse signal
reconstruction [22,38], equation (2.3) can be solved and accurate reconstruction of x(t0) can be achieved
through solutions of the following convex-optimization problem

min ‖x(t0)‖1 subject to Y = O · x(t0), (3.1)

where ‖x(t0)‖1 = ∑N
i=1 |xi(t0)| is the L1 norm of x(t0), Y ∈ R

qM, O ∈ R
qM×N and x(t0) ∈ R

N .
If O satisfies the restricted isometry property (RIP) [39], a full reconstruction of x(t0) can be guaranteed

theoretically through M-step measurements via some standard optimization method, where M is much
smaller than N. For realistic complex networks, the RIP may be violated, but because of the linear
independence of rows in matrix O it is still feasible to reconstruct x(t0) from sparse data, where M can
still be much smaller than N. Another advantage associated with the CS framework lies in its robustness
against noise. Especially, to obtain the direct solution of x(t0) is not possible when there is measurement
noise or measurements are not sufficient (M < N), but the CS framework overcomes these difficulties.

A complete description of our framework to reconstruct the initial states with unknown t0 is described
in §5.2. Here, we present an example of locating diffusion sources in an SF network, as shown in figure 5.
For an SF network of a single connected component and random link weights, our minimum output
analysis gives Nm = 1, and the single messenger node can be selected arbitrarily. As shown in figure 5a for
an SF network with four sources and a single messenger node. For convenience, we define data ≡ M/N,
i.e. the ratio of the utilized amount of measurement to the amount required by the canonical observability
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Figure 5. An example of locating sources in undirected weighted SF networks. (a) Illustration of an SF network with four sources with
colours representing the initial state values. One messenger node is specified as a blue square. The thickness of the links represents
their weight and the sizes of the nodes indicate their degrees. (b) The form of Y= Ox(t0) and the sparse initial state vector x(t0) to be
reconstructed by using compressive sensing from a relatively small amount of data. (c) Reconstructed state xi(t) of each node for t ≤ tini,
where the initial observation time is tini (tini ≥ t0). Colours represent the values of xi(t) with t ≤ tini. (d) Reconstructed initial state xi(t0)
of each node from different initial observation time tini when t0, the true triggering time, is being successfully inferred. Colours represent
the reconstructed values of xi(t0). The colours have the same meanings as those in (a). The four sources are randomly selected and their
xi(t0) values are larger than zero. (e) Area under a receiver operating characteristic (AUROC) as a function of t (t ≤ tini) for a fixed initial
observation time tini. (f ) AUROC versus t for different initial observation time tini anddifferent number of sources (Ns). Network parameters
are set as follows. Network size is N = 50, the average degree is 〈k〉 = 4, and the random link weights are selected from a uniform
distribution in the range (0, 2). For the diffusion dynamics, we set the diffusion parameter to beβ = 0.05 and the initial state of sources
inx(t0) is randomly selected fromauniformdistribution in the range (0.1, 1). To implement the source localization process, the parameters
are: noise amplitudeσ = 0, data= 0.5, and the results are obtained by averaging over 300 independent simulations.

theory. Figure 5b shows the form of Y = Ox(t0), in which the initial state vector x(t0) is to be reconstructed.
Note that x(t0) is quite sparse with four non-zero elements corresponding to the four sources. Thus, x(t0)
can be reconstructed by using the compressive sensing from a relatively small amount of data. Figure 5c
shows, for data = 0.5 and in the absence of noise, four sources and their locations as well as the initial
(triggering) time t0 can be accurately inferred, even though t0 is unknown. We see that the reconstructed
state x(tini − 3) is the sparsest in the sense that it is sparser than all the other states before and after tini − 3.
This indicates that the initial time is t0 = tini − 3 and x(tini − 3) is the initial state, in which xi(tini − 3) with
non-zero values correspond to sources.

An alternative criterion for inferring initial time t0 is that x(t0) is non-negative but some elements in
x(t0 − 1) are negative. The presence of negative values in x(t0 − 1) is because of the violation of physical
process at time t0 − 1. Actually, the diffusion process at t0 − 1 does not exist, such that there is no physical
solution of x(t0 − 1), regardless of using any methods to solve x(t0 − 1). A forced solution of x(t0 − 1) will
account for unreasonable values in x(t0 − 1). As a result, negative values in x(t0 − 1), x(t0 − 2), . . . are
highly possible, and offer an alternative way to the sparsity x(t) for inferring t0.

In this manner, not only can we locate the sources but we can also infer the initial states of the source
nodes. As shown in figure 5c, the reconstructed initial state values of the sources at t = t0 are in good
agreement with those shown in figure 5a (see §5.2 for more details). Figure 5d shows how different initial
observation time tini affects source localization. We find that, in the wide range of tini from tini = t0 − 10 to
tini = t0 + 80, four sources can be precisely located from a small amount of data. Here, tini < t0 indicates
that we started to observe messenger nodes prior to the occurrence of the diffusion event from the four
sources, which is possible because t0 is unknown. If tini is much earlier than t0, the spreading process
may not occur after M-step measurements, rendering source localization impossible using any method
in principle. This accounts for the failure of our method for tini < t0 − 20. Also, if tini is much later than t0,
computing errors and noise effect will be amplified by using the CS-based optimization, leading to the
inaccuracy of source localization, e.g. tini > t0 + 90. These issues notwithstanding, our method is quite
effective for a vast range of tini for multiple sources based on sparse data from a minimum number of
messenger nodes.
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To characterize the performance of our source localization method, we use a standard index from

signal processing, the area under a receiver operating characteristic (AUROC) [40,41]. In particular,
AUROC = 1 indicates the existence of a threshold that can entirely separate the initial states x(t0)
of the sources from other nodes in the network, giving rise to perfect localization of sources (see
electronic supplementary material, S7 for the detailed definition of AUROC). To give a concrete example,
we set tini = t0 + 10. Figure 5e shows that the value of AUROC reaches unity at tini − 10, namely t0,
demonstrating a nearly perfect localization of sources with different number. The highest reconstruction
accuracy at t = t0 corresponds to the highest sparsity of the reconstructed state at t0 in figure 5c. For t > t0,
at an arbitrary time t′, the number of nodes with non-zero states will be larger than the number of sources,
because of the diffusion from sources to the other nodes. Thus, one may not distinguish sources from the
other nodes based on the reconstructed x(t′), accounting for the lower values of AUROC at t′ compared
with that at t0. On the other hand, consider an arbitrary time t′′ with t′′ < t0. At t′′, the spreading process
has not occurred, and there is no causality between the states at t′′ and the observation. When we impose
the reconstruction on x(t′′), we cannot obtain the true x(t′′) with all zero elements but a virtual initial state
vector with certain errors when compared with x(t0). The reconstruction errors will cause more non-zero
states on the basis of x(t0), inducing a denser state vector than x(t0) and therefore lower values of AUROC.
The reconstruction errors also explain the fact that the value of AUROC decreases more rapidly for t < t0
than for t > t0. Figure 5f shows the statistical results of figure 5d. We see that AUROC reaches unity when
the observation time tini is about 3 time steps ahead of t0, and the AUROC value is nearly unchanged
as tini is further increased, which is consistent with the phenomena shown in figure 5d. (In addition,
examples of locating sources in ER networks with and without measurement noise, and in SF networks
with measurement noise are presented in electronic supplementary material, S8 and figures S1–S3.) Here,
we choose the node number 50, i.e. no. 50, to be the messenger. We also find the different choices of
messengers do not affect the result of the sources localization, see electronic supplementary material, S8
and figure S4 for the details. We also investigate effects of the network size on the sources localization,
and find that the data will be smaller for a larger network size when AUROC reaches 1, see electronic
supplementary material, S8 and figure S5. This is because that the initial state x(t0) is sparser when
the network size is larger, for a certain AUROC, then the amount of data will be smaller by using CS
methods.

We also systematically test the performance of our locatability framework with respect to data
requirement and robustness against noise. We assume that measurements are contaminated by white
Gaussian noise: ŷ(t) = y(t)[I + N (0, σ 2I)], where 0 ∈ R

N is zero vector and I ∈ R
N×N is the identity matrix,

and σ is the standard deviation. The results of AUROC as a function of data for ER and SF networks
are shown in figures 6a and 6b, respectively. In the absence of noise (σ = 0), even for data = 0.1, high
values of AUROC can be achieved, e.g. 0.9, especially for SF networks. The value of AUROC exceeds
0.95 when the amount of data is 0.3, and reaches unity for data ≥ 0.5. The essential feature holds in
the presence of noise and for arbitrary values of Ns (see electronic supplementary material, S9 and
figure S6). Another finding is that, fewer sources (smaller values of Ns) require less data, due to the
fact that a sparser x(t0) is induced as a result of smaller Ns and in general, the CS framework requires
less data to reconstruct a sparser vector. Systematic results on noise resistance are shown in figures 6c–d,
where we see that the AUROC value is nearly indistinguishable across different numbers of sources, Ns.
This is different from the results in figure 6a,b, and there is almost no difference between the results
from ER and SF networks. Figure 6c,d also shows that, as σ is increased from 0 to 1, the AUROC
value is only slightly reduced (AUROC ≈ 0.85 for σ = 1), indicating the extraordinary robustness of our
locatability framework against noise. We also study the effect of the diffusion parameter β on source
localization with respect to different data amounts and values of the noise variance. We find that β has
little influence on the accuracy of source localization (see electronic supplementary material, S10 and
figures S7–S9).

4. Discussion
We developed a framework for locating sources of diffusion or spreading dynamics in arbitrary complex
networks (directed or undirected, weighted or unweighted) based solely on sparse measurement from
a minimum number of messenger nodes. The key to the general framework lies in combining the
controllability theory of complex networks with the compressive sensing paradigm for sparse signal
reconstruction, both being active areas of research in network science and engineering. Particularly,
the minimum set of messenger nodes can be identified efficiently using the minimum output analysis
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Figure 6. Locatability performance in undirected ER and SF networks. (a–d) AUROC as a function of data for (a) weighted ER and (b)
unweighted SF networks, and as a function of noise varianceσ for (c) weighted ER and (d) unweighted SF networks. In (a) and (b),σ is
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SF networks. The results are obtained by averaging over 500 independent simulations. The other parameters are the same as in figure 5.

based on exact controllability of complex networks and the dual relation between controllability and
observability. The ratio of the minimum messenger nodes to the network size characterizes the source
locatability of complex networks. We find that sources in a denser and homogeneous network are more
readily to be located, which distinguishes our work from those in the literature based on alternative
algorithms. A finding is that, for undirected networks with one component, random link weights and
weak noise, a single messenger node is sufficient to locate sources at any locations in the network. By
using the data from the minimum set of messenger nodes, an approach based on compressive sensing is
offered to precisely infer the initial time, at which the diffusion process starts, and the sources with non-
zero states initially. Because the initial state vector to be recovered for source localization is generically
sparse, compressive sensing can be employed to locate the sources from small amounts of measurement,
making our framework robust against insufficient data and noise. Practically, the highlights of our
framework consist of the following three features: minimum messenger nodes, sparse data requirement
and strong noise resistance, which allow the sources of dynamical processes to be identified accurately
and efficiently.

Our approach was partially inspired by the pioneering effort in connecting the conventional
observability theory for canonical linear dynamical systems with the compressive sensing
approach [42–44]. To our knowledge, the source locatability problem has not been tackled in such a
comprehensive way prior to our work. The minimal output analysis based on the controllability and
observability theory for complex networks deepens our understanding of the dynamical processes
on complex networks, which finds applications, e.g. in the design and analysis of large-scale sensor
networks. Incorporating compressive sensing to uncover the sources and the original time of diffusion
represents an innovative approach to a practical problem of significant interest but limited by finite
resources for collecting data and by measurement or background noise. The underlying principle of
the framework can potentially be applied to solving other optimization problems in complex networks.
While we study diffusion models on time-invariant complex networks, our general framework provides
significant insights into the open problem of developing source localization methods for time-variant
complex networks hosting nonlinear diffusion processes.
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5. Methods
5.1. The main localization formula
The detailed form of Y = O · x(t0) is

⎛
⎜⎜⎜⎜⎝

y(t0)
y(t0 + 1)

...
y(t0 + N − 1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

C
C[I + βL]

...
C[I + βL]N−1

⎞
⎟⎟⎟⎟⎠ x(t0), (5.1)

where N time steps of measurements are necessary to ensure full rank of the observability matrix O.
Insofar as O is of full rank, according to the canonical observability theory, there exists a unique solution
of the initial states to the main localization function.

5.2. Reconstruction of initial state x(t0) without knowledge of initial time t0
For realistic diffusive processes on networks, the initial time t0 is usually not known a priori, making
inference of the initial state x(t0) a challenging task. Taking advantage of the sparsity of the initial vector
x(t0) and the underlying principle of compressive sensing, we articulate an effective method to uncover
both x(t0) and t0 from limited measurements.

Say the initial observation time is tini (tini ≥ t0). Considering all possible t0 ahead of tini, we need to
reconstruct a series of states, i.e. x(tini), x(tini − 1), · · · , x(t′0) to ensure that the actual t0 lies in between tini
and t′0. The series of states can be reconstructed from the uninterrupted observation y(tini), . . . , y(tini +
N − 1) according to the following equations:

⎛
⎜⎜⎜⎜⎜⎝

y(tini)

y(tini + 1)
...

y(tini + N − 1)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

C

C[I + βL]
...

C[I + βL]N−1

⎞
⎟⎟⎟⎟⎟⎠ x(tini),

⎛
⎜⎜⎜⎜⎜⎝

y(tini)

y(tini + 1)
...

y(tini + N − 1)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

C[I + βL]

C[I + βL]2

...

C[I + βL]N

⎞
⎟⎟⎟⎟⎟⎠ x(tini − 1)

...

and

⎛
⎜⎜⎜⎜⎜⎝

y(tini)

y(tini + 1)
...

y(tini + N − 1)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

C[I + βL]tini−t′0

C[I + βL]tini−t′0+1

...

C[I + βL]tini−t′0+N−1

⎞
⎟⎟⎟⎟⎟⎠ x(t′0).

(5.2)

The reconstruction process is terminated and t0 can be inferred if a sparsest state is identified, say
x(t1), i.e. x(t1) is sparser than all reconstructed states at time before and after t1. Then, x(t1) is taken as the
initial state with the initial time t0 = t1.

By exploiting the natural sparsity of x(t), the CS framework for sparse signal reconstruction
allows us to reconstruct x(tini), x(tini − 1), . . . , x(t′0) iteratively from a small amount of data, i.e.
M-step measurements and M < N, i.e. Y ∈ R

qM, O ∈ R
qM×N and x(t′0) ∈ R

N. By contrast, at least N-step
measurements are required in the conventional observability theory (equation (5.2)), where M depends
on the sparsity of the state vector. In general, M can be much smaller than N, insofar as the number
of sources Ns is much smaller than the network size N. According to equations (3.1) and (5.2), x(tini),
x(tini − 1), . . ., x(t′0) can be reconstructed efficiently from a small amount of observation that is much
smaller than that required in the conventional observability theory.
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