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We derive the null energy condition, understood as a constraint on the Einstein-frame Ricci tensor, from
world sheet string theory. For a closed bosonic string propagating in a curved geometry, the spacetime
interpretation of the Virasoro constraint condition is precisely the null energy condition, to leading
nontrivial order in the α0 expansion. Thus the deepest origin of the null energy condition lies in world sheet
diffeomorphism invariance.
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I. INTRODUCTION

In the absence of physical constraints, any spacetime
metric is formally an exact solution to Einstein’s equations,
as one can simply define the energy-momentum tensor to
be equal to the Einstein tensor for the given metric. Many
plausible physical constraints have been proposed, from
cosmic censorship to global hyperbolicity, but perhaps the
most important are the energy conditions. The energy
conditions are local inequalities, traditionally expressed
on the energy-momentum tensor, Tμν, that, loosely speak-
ing, capture the positivity of local energy density. The most
fundamental of these, the null energy condition (NEC),
requires that, at every point in spacetime,

Tμνvμvν ≥ 0; ð1Þ
for any lightlike vector, vμ. In addition to its role in
constraining the set of physical spacetimes, the NEC is
invoked in several key gravitational theorems. For example,
the NEC is a central assumption in the Hawking-Penrose
singularity theorems [1] that ensure the existence of the
big bang singularity, as well as in the second law of
thermodynamics for black holes [2].
Although the energy conditions may appear reasonable,

they are nevertheless ad hoc physical constraints without a
clear origin in fundamental theory [3]. Their validity has
consequently been questioned [4–6]. Indeed, the strong
energy condition has already been fruitfully discarded in
inflationary cosmology. However, the null energy condition
appears to be of a different character. In particular, its role
in black hole thermodynamics should give us pause about
dispensing with it; numerous thought experiments have
shown that black hole thermodynamics is essential to the
consistency of ordinary thermodynamics.
It is therefore important to prove the NEC from first

principles. Now, expressed in the form of (1), the NEC
appears as a property of the energy-momentum tensor for
matter. One might think then that some basic principle of

quantum field theory (QFT), our extraordinarily powerful
framework for describing matter, would ensure (1), perhaps
in some appropriate classical limit. However, that does not
appear to be the case. We now know of several effective
field theories [6]—such as theories of ghost condensates [7]
or conformal galileons [8]—that violate (1) but seem
perfectly consistent with the basic principles of QFT.
Indeed, it is easy to come up with a semitrivial counter-
example. Consider the theory of a free massless ghost. The
Lagrangian is merely that of a free massless scalar field but
with the “wrong” overall sign. An overall sign does not
affect the classical equations of motion of course. In fact,
the theory can be quantized as well. No instability of the
vacuum arises since there is no coupling to other “normal”
particles with positive energy. And yet this theory violates
the NEC; evidently, the NEC does not emerge readily from
the principles of QFT.
To proceed, note that the NEC is typically invoked in the

context of general relativity. Here the sign of the matter
action is relevant because it is no longer an overall sign, but
a sign relative to the Einstein-Hilbert action. Thus if we are
to derive the NEC from first principles, we must do so in a
theory that includes both matter and gravity. Moreover, the
NEC is invariably used in conjunction with Einstein’s
equations. Then Tμνvμvν ≥ 0 ⇔ Rμνvμvν ≥ 0. Indeed, for
the purpose of many theorems, the whole point of assuming
(1) is to transmit the positivity condition to the Ricci tensor,

Rμνvμvν ≥ 0; ð2Þ

so that it can be put to use in Raychaudhuri’s equation. Our
first key insight, then, is to regard (2) as the actual physical
requirement; we continue to refer to it as the null energy
condition, even though, expressed in this form, it is now a
statement about geometry rather than about energy den-
sities. We derive precisely this equivalent form of the null
energy condition as a general consequence of world sheet
string theory. String theory of course is a theory of both
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matter and gravity and it is a promising place to look
because it contains supergravity which, like most well-
behaved theories, happens to satisfy the null energy
condition as an accidental fact. The goals of this paper
then are to derive the null energy condition from string
theory, to thereby uncover the deepest origin of the NEC,
and to identify the physical principle behind it.

II. SPACETIME NULL VECTORS FROM THE
VIRASORO CONSTRAINTS

Both versions of the null energy condition call for null
vectors. Our first task, then, is to see how spacetime null
vectors arise from world sheet string theory. Consider a
bosonic closed string propagating in flat space. We briefly
recall some elementary facts about world sheet string
theory. The Polyakov action is

S½Xμ; hab� ¼ −
1

4πα0

Z
d2σ

ffiffiffiffiffiffi
−h

p
hab∂aXμ∂bXνημν

−
c
4π

Z
d2σ

ffiffiffiffiffiffi
−h

p
R: ð3Þ

We use latin indices to denote the two world sheet
coordinates, which are taken to be dimensionless, and
greek indices for the D spacetime coordinates. Here hab is
the dimensionless world sheet metric and R is the corre-
sponding Ricci scalar. c is an arbitrary dimensionless
constant. The action is manifestly diffeomorphism and
Weyl invariant. From the target-space perspective, Xμðτ; σÞ
are the spacetime coordinates of the world sheet point
labeled by ðτ; σÞ. However, from the world sheet perspec-
tive, the index μ is an internal index on a set of D scalars.
Thus, as the Lagrangian indicates, world sheet bosonic
string theory is simply a two-dimensional field theory of D
massless scalars, Xμ, coupled to two-dimensional Einstein
gravity.
The equation of motion for each Xμ is a wave equation:

�
−

∂2

∂τ2 þ
∂2

∂σ2
�
Xμðτ; σÞ ¼ 0: ð4Þ

This is subject to the periodic boundary condition
Xμðτ; σ þ 2πÞ ¼ Xμðτ; σÞ. The general solution is

Xμðτ; σÞ ¼ xμ þ α0pμτ þ i

ffiffiffiffi
α0

2

r X
n≠0

αμn
n
e−inðτ−σÞ

þ i

ffiffiffiffi
α0

2

r X
n≠0

~αμn
n
e−inðτþσÞ; ð5Þ

where xμ, pμ, αμn, and ~αμn are arbitrary constants, constrained
only by a reality condition. Since the index μ just labels the
world sheet scalar, there is at this stage no particular reason
for the spacetime vector pμ, say, formed by the collection of

constants p0;…pD−1 to be necessarily timelike, spacelike,
or null.
The equations of motion for hab are just Einstein’s

equations in two dimensions:

−
c
2π

�
Rab −

1

2
habR

�
¼ Tab: ð6Þ

The left-hand side is zero because Einstein’s tensor
vanishes identically in two dimensions. The right-hand
side is

Tab ¼
1

2πα0

�
∂aXμ∂bXνημν −

1

2
habð∂XÞ2

�
: ð7Þ

Switching to light-cone coordinates on the world sheet,

σ� ≡ τ � σ; ð8Þ

we can write the world sheet metric locally as

hab ¼
�

0 − 1
2

− 1
2

0

�
; ð9Þ

and we see that Tþ− is identically zero, even prior to using
the equations of motion for hab. The remaining equations
require

Tþþ ¼ 0; T−− ¼ 0: ð10Þ

These are the Virasoro constraint conditions; as already
mentioned, they are precisely Einstein’s equations in two
dimensions. Explicitly, from (7), we have

∂þXμ∂þXνημν ¼ 0; ð11Þ

as well as a similar equation withþ replaced by −. Define a
vector field vμþ ¼ ∂þXμðσ; τÞ. Then

ημνv
μ
þvνþ ¼ 0: ð12Þ

That is, vμþ is null. We see that, through the Virasoro
conditions, world sheet string theory naturally singles out
spacetime null vectors.

III. NULL ENERGY CONDITION FROM THE
VIRASORO CONSTRAINTS

Now we make the obvious generalization to curved
spacetime. Consider a closed bosonic string propagating on
some background. We will not need to assume world sheet
conformal invariance at order α0; we will not make use of
any vanishing of the beta functions for the background
fields.
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The Polyakov action now reads

S½Xμ; hab� ¼ −
1

4πα0

Z
d2σ

ffiffiffiffiffiffi
−h

p
hab∂aXμ∂bXνgμνðXÞ

−
1

4π

Z
d2σ

ffiffiffiffiffiffi
−h

p
ΦðXÞRh: ð13Þ

We have replaced the Minkowski metric ημν by the general
spacetime metric gμνðXÞ. Consistent with world sheet
diffeomorphism invariance, we have also allowed there
to be a scalar field, ΦðXðτ; σÞÞ, which is the dilaton field;
we neglect the antisymmetric Kalb-Ramond field, Bμν, for
simplicity. Also, we have added a subscript h to the two-
dimensional world sheet Ricci scalar to distinguish it
clearly from the curvature of D-dimensional spacetime.
We now perform a background field expansion

Xμðτ; σÞ ¼ Xμ
0ðτ; σÞ þ Yμðτ; σÞ where Xμ

0ðτ; σÞ is some
solution of the classical equation of motion. Then, for
every value of ðτ; σÞ, we can use field redefinitions as usual
[9,10] to expand the metric in Riemann normal coordinates
about the spacetime point Xμ

0ðτ; σÞ:

gμνðXÞ ¼ ημν −
1

3
RμανβðX0ÞYαYβ

−
1

6
∇ρRμανβðX0ÞYρYαYβ þ � � � ð14Þ

Contracted with ∂aXμ∂aXν, the second and higher terms
introduce quartic and higher terms in the Lagrangian;
spacetime curvature turns (13) into an interacting theory:

SP½X;h� ¼ SP½X0;h�−
1

4πα0

Z
d2σ

ffiffiffiffiffiffi
−h

p
habðημνð∂aYμ∂bYνÞ

þRμανβðX0Þ∂aX
μ
0∂bXν

0Y
αYβþ�� �Þ: ð15Þ

The resultant divergences can be canceled by adding
suitable counterterms to the original Lagrangian.
Integrating out Y, the one-loop effective action is [9,10]

S½Xμ
0; hab�

¼ −
1

4πα0

Z
d2σ

ffiffiffiffiffiffi
−h

p
hab∂aX

μ
0∂bXν

0ðημν þ Cϵα
0RμνðX0ÞÞ

−
1

4π

Z
d2σ

ffiffiffiffiffiffi
−h

p
CϵΦðX0ÞRh: ð16Þ

Here Cϵ is the divergent coefficient of the counterterms.
In light-cone coordinates, the Virasoro constraints now

read

0 ¼ ∂�X
μ
0∂�Xν

0ðημν þ Cϵα
0Rμν þ 2Cϵα

0∇μ∇νΦÞ: ð17Þ

Defining vμþ ¼ ∂þXμ as before, we recover (12) at zeroth
order in α0. Note that at every point Xμ

0ðτ; σÞ the spacetime
metric gμνðXÞ is just ημν; for a string passing through such a

point, vμþ is therefore null with respect to both ημν and
gμνðXÞ. To derive the null energy condition, consider then
an arbitrary null vector vμ in the tangent plane of some
arbitrary point in spacetime. Let there be a test string
passing through the given point with either ∂þXμ or ∂−Xμ

equal to vμ at the point. By local Lorentz invariance, we can
always find such a test string. Then, to first order in α0, (17)
says

vμvνðRμν þ 2∇μ∇νΦÞ ¼ 0: ð18Þ

This is tantalizingly close to our form of the null energy
condition, (2), but for two differences: it is an equality,
rather than an inequality, and there is an additional,
unwanted term involving the dilaton.
However, now we recall that the metric that appears in

the world sheet action is the string-frame metric. We can
transform to Einstein frame by defining

gμν ¼ e
4Φ
D−2gEμν: ð19Þ

Doing so, we find

RE
μνvμvν ¼ þ 4

D − 2
ðvμ∇E

μΦÞ2: ð20Þ

The right-hand side is manifestly non-negative. Hence we
have

RE
μνvμvν ≥ 0: ð21Þ

This establishes the null energy condition. It is remarkable
that the Virasoro constraints yield precisely the geometric
form of the NEC, right down to the contractions with null
vectors.

IV. NULL ENERGY CONDITION IN
LOWER DIMENSIONS

We have derived the null energy condition from the
Virasoro constraint in bosonic string theory. The one-loop
effective action we used was for a string moving in the
critical number of spacetime dimensions, i.e. D ¼ 26 for a
bosonic string. We could, though, just as well have
considered a noncritical string moving in a lower-
dimensional spacetime. In that case, the dilaton beta
function would include an additional term proportional
to D − 26 at the same order in α0. However, the variation of
this term with respect to hab is proportional to hab and so,
since hþþ ¼ h−− ¼ 0, it does not contribute to the Virasoro
constraints; our derivation of the NEC goes through as
before. Hence we do not need to assume the critical
number of dimensions, or indeed, more generally, that
the background fields satisfy the vanishing beta-function
constraints.
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This already establishes the NEC in lower dimensions
using world sheet string theory. However, it is also
interesting to derive the NEC for lower dimensions directly
in field theory language [11]. An advantage of our geo-
metric formulation of the NEC, (2), is that it is easy to
show that the NEC in lower dimensions follows from the
NEC in higher dimensions. This is because, for a given
compactification, it is straightforward to compute the
lower-dimensional Ricci tensor in terms of the higher-
dimensional Ricci tensor. Let us demonstrate this for
compactification over a circle.
Consider first Kaluza-Klein reduction on a circle. Write

the D-dimensional line element as

ds2 ¼ ~gijðxÞdxidxj þ e2ϕðxÞdy2: ð22Þ

Suppose there is a null vector ~vi in the D − 1-dimensional
space. Then there is an associated null vector in the
D-dimensional space, namely vμ ¼ ð ~vi; 0Þ. Calculating
the Ricci tensor of the D-dimensional metric, and trans-
forming the lower-dimensional Ricci tensor, ~Rij, to
Einstein frame, yields

~RE
ij ~vi ~vj ¼ Rμνvμvν þ

�
D − 2

D − 3

�
ð ~vi ~∇E

i ϕÞ2; ð23Þ

where ~RE
ij and ~∇E

i refer to the lower-dimensional Einstein-
frame metric. As the equation indicates, if Rμνvμvν ≥ 0
then ~RE

ij ~vi ~vj ≥ 0: the higher-dimensional NEC implies the
lower-dimensional NEC.
Next, consider warped compactification. Write the line

element as

ds2 ¼ e2AðyÞ ~gijðxÞdxidxj þ dy2; ð24Þ

where AðyÞ is the warp factor. Calculating the Ricci tensors
yields

~Rij ¼ Rij þ e2AðyÞ ~gijðA00 þ ðD − 1ÞA02Þ; ð25Þ

where 0 denotes differentiation with respect to y. Again,
consider a null vector ~vi in the D − 1-dimensional space
and its counterpart vμ in the D-dimensional space. Since ~v
is null, we have ~gij ~vi ~vj ¼ 0. Hence

~Rij ~vi ~vj ¼ Rμνvμvν; ð26Þ

and, again, the validity of the D-dimensional NEC implies
that of the D − 1-dimensional NEC.
Thus, for both Kaluza-Klein and warped compactifica-

tions, if the NEC in D dimensions holds, then the NEC in
D − 1 dimensions does. Since we have already established
the null energy condition in the maximal (critical) number
of dimensions, it follows by induction that the null energy
condition applies in all lower dimensions, at least for

toroidal compactifications. This, incidentally, is unlike
the case for the weak energy condition, which is not
inherited from higher dimensions.

V. DISCUSSION

The null energy condition plays a vitally important role
in gravity, in establishing the existence of the big bang
singularity, in proving the second law of thermodynamics
for black holes [2,12], and in prohibiting the traversability
of wormholes, the creation of laboratory universes [13],
and the building of time machines [14]. Moreover, it is the
main local constraint that determines which solutions of
Einstein’s equations are physical. Here we have shown that
the null energy condition, understood as a condition on the
Ricci tensor, arises as the spacetime consequence of the
Virasoro constraint in string theory.
Let us make a few observations. First, since we only used

the Virasoro constraint and nowhere imposed the vanishing
of the beta functions, we never invoked the supergravity
equations of motion explicitly. Second, in supergravity, as
indeed in most well-behaved theories, the null energy
condition happens to hold without any clear origin or
principle associated with it. It is not evident from the
supergravity Lagrangian alone whether the NEC had to
hold because of some stability-related property of QFT, or
because of supersymmetry (which is how the supergravity
Lagrangian is constructed; note that the supersymmetry
algebra implies that the Clifford vacuum has vanishing
energy), or perhaps even because of black hole thermo-
dynamics. By contrast, here we have identified the principle
behind the NEC: it is reparametrization invariance—world
sheet diffeomorphism invariance—which gives rise to the
Virasoro constraints whose spacetime interpretation is
precisely the null energy condition, complete with con-
tractions with null vectors. Moreover, we learn that the
result has nothing to do with supersymmetry, having been
obtained from the bosonic string. Third, simply because it
is made up of the kinds of field content one usually
encounters, the supergravity Lagrangian also obeys the
weak and strong energy conditions. But these do not seem
to emerge in any natural way from the world sheet. And
finally, let us just mention that, in holographic theories, the
validity of the NEC in the bulk has been related to the
existence of a c theorem in the dual theory [15].
This work can be generalized in many directions. An

obvious extension is to consider fermionic background
fields in superstring theory. In string theory, the special role
played by orientifolds, nondynamical branes which do
violate the null energy condition, is intriguing; it appears
that they evade the implicit assumptions of our proof. Also,
having identified the origin of the NEC, we can see how it
could in principle be extended by considering the Virasoro
constraint in the presence of higher genus and α0 correc-
tions. The role of the world sheet genus [16] is especially
interesting: in the field theory limit, higher genus
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corresponds to higher loops, where presumably the NEC in
its usual form is violated, as we expect from considering
quantum phenomena such as Casimir energy or Hawking
radiation. It would also be very interesting to determine the
Virasoro constraint at next order in α0. This would indicate
what the corresponding condition on the geometry is for
higher-derivative gravity. Perhaps such an expression might
help in obtaining the elusive proof of the second law of
thermodynamics for black holes of higher-derivative
gravity.
In conclusion, we have found a very satisfying resolution

of the origin of the null energy condition. As anticipated,
the first-principles origin of the NEC lies not in the
quantum field theory of matter, or in general relativity,
but in string theory, through an equation containing both
matter and gravity. Moreover, the necessary condition can
equally be regarded as being Rμνvμvν ≥ 0, a geometric
equation. This constraint is the central premise in the proofs
of a host of gravitational theorems. It is particularly
pleasing that a constraint in spacetime is obtained on the
world sheet from the Virasoro constraint, itself a

gravitational equation—of two-dimensional gravity. Thus
Einstein’s equations in two dimensions restrict the physical
solutions of Einstein’s equations in spacetime. This then is
another example of the beautiful interplay between equa-
tions on the world sheet and in spacetime. On the world
sheet, a two-dimensional conformal field theory is coupled
to two-dimensional Einstein gravity. In the presence of
background fields, conformal invariance at order α0
requires the vanishing of the beta functions which,
famously, yields Einstein’s equations in spacetime, while,
at the same order in α0, the Virasoro constraint coming from
world sheet Einstein gravity is precisely the null energy
condition in spacetime.
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